Robustness of Logical Depth

L. Antunes and A. Souto and A. Teixeira

Instituto de Telecomunicagoes *
Faculdade de Ciéncias Universidade do Porto

Abstract. Usually one can quantify the subjective notion of useful in-
formation in two different perspectives: static resources — measuring the
amount of planing required to construct the object; or dynamic resources
— measuring the computational effort required to produce the object. We
study the robustness of logical depth measuring dynamic resources, prov-
ing that small variations in the significance level can cause large changes
in the logical depth.

Classification: Kolmogorov Complexity, Information Measures.

1 Introduction

Philosophy and meaning of information has a long history, however recently
interest in this area has increased and researchers have tackled this from different
approaches and perspectives, namely its meaning, quantification and measures
of information and complexity. In this paper we are interested in measures of
meaningful or useful information. In the past there have been several proposals
to address this question: sophistication [Kop87,Kop95], logical depth [Ben88],
effective complexity [GMLI6], meaningful information [Vit06], self-dissimilarity
[WMO07], computational depth [AFvMVO06], facticity [Adrl2]. Pieter Adiraans
[Adr12] divided the several approaches to defined a string as interesting in:
i) some amount of computation resources are required to construct the object
(Sophistication, Computational Depth). ii) exists a trade-off between the model
and the data code under two part code optimization (meaningful information,
effective complexity, facticity) and finally iii) it has internal phase transitions
(self-dissimilarity).

Solomonoff [Sol64], Kolmogorov [Kol65] and Chaitin [Cha66] independently de-
fined a rigorous measure of the information contained in an individual object =z,
as the length of the shortest program that produces the object x. This measure
is usually called Kolmogorov complexity of x and is denoted by K(z). A ran-
domly generated string, with high probability, has high Kolmogorov complexity,
so contains near maximum information. However by being randomly generated,

* This work was supported by FCT projects PEst-OE/EEI/LA0008/2011 and
PTDC/EIA-CCO/099951/2008. The authors are also supported by the grants
SFRH/BPD/76231/2011 and SFRH/BD/33234/2007 of FCT.

makes it unlikely to have useful information as we can obtain a similar one by
flipping fair coins.

Usually one can quantify the subjective notion of useful information, as in item
i) previously defined, in two different perspectives: static resources — measuring
the amount of planing required to construct the object; or dynamic resources —
measuring the computational effort required to produce the object.

Regarding dynamic resources, the Kolmogorov complexity of a string « does not
take into account the time effort necessary to produce the string from a descrip-
tion of length K (z). Bennett [Ben88]| called this effort logical depth. Intuitively,
a computationally deep string takes a lot of computational effort to be recov-
ered from its shortest description while shallow strings are trivially constructible
from their K(z), i.e., the shortest program for x does not require lots of com-
putational power to produce it. After some attempts, Bennett [Ben88] formally
defined the s-significant logical depth of an object x as the time required by a
standard universal Turing machine to generate x by a program p that is at most
s bits longer than its Kolmogorov complexity. Thus, an object is logically deep
if it takes a lot of time to be generated from any short description.
Bennett[Ben88] claimed that the significance level in logical depth is due to
stability reasons. In this paper we study its robustness, i.e., if small variations in
the significance level can cause large changes in the logical depth. In this sense
we show that logical depth is not robust.

The rest of the paper is organized as follows: in the next section, we introduce
some notation, definitions and basic results needed for the comprehension of
the rest of the paper. In Section 3, we prove that logical depth is not a stable
measure.

2 Preliminaries

In this paper we use the binary alphabet X' = {0,1}. X* = {0,1}* is the set
of all finite binary strings that are normally represented by z, y and z. X™ and
Y=™ are the set of strings of length n and the set of strings of length at most
n, respectively. We denote the initial segment of length k of a string = with
length |z| by (1.5 and its i'" bit by x;. The function log will always mean the
logarithmic function of base 2. | k| represents the largest integer smaller or equal
than k. All resource-bounds used in this paper are time constructible, i.e., there
is a Turing machine whose running time is exactly ¢(n) on every input of size
n, for some time ¢. Given a program p, we denote its running time by time(p).
Given two functions f and g, we say that f € O(g) if there is a constant ¢ > 0,
such that f(n) < c-g(n), for almost all n € N.

2.1 Kolmogorov Complexity

We refer the reader to the book of Li and Vitdnyi [LV08] for a complete study
on Kolmogorov complexity.

Definition 1 (Kolmogorov complexity). Let U be a universal prefix-free
Turing machine. The prefix-free Kolmogorov complezity of x € X* giveny € L™
18,

K(aly) = min{lp| : U(p,y) = z}.

The t-time-bounded prefix-free Kolmogorov complexity of x € X* given y € X*
18,
K'(zly) = min{|p| : U(p,y) = = in at most t(|z|) steps}.
P

The default value for the axillary input y for the program p, is the empty string
€ and to avoid overloaded notation we usually drop this argument in those cases.
We choose as a reference universal Turing machine a machine that affects the
running time of a program on any other machine by at most a logarithmic factor
and the program length by at most a constant number of extra bits.

Definition 2 (c-incompressible). A string x is c-incompressible if and only
if K(x) > |z| —c.

A simple counting argument can show the existence of c-incompressible strings.
In fact,

Theorem 1. There are at least 2™ - (1 — 27°) + 1 strings x € X" that are c-
incompressible.

Bennett [Ben88| said that a string « is logically deep if it takes a lot of time to
be generated from any short description. The c-significant logical depth of an
object x is the time that a universal Turing machine needs to generate x by a
program that is no more than c bits longer than the shortest description of x.

Definition 3 (Logical depth). Let x be a string, ¢ a significance level. A
string’s logical depth at significance level c, is:

ldepth, (x) = n%in{time(p) dpl < K(x) + e AU(p) =x}.

One can however, scale down the running time for program length by using a
Busy Beaver function, similar to the notion of Busy Beaver computational depth
introduced in [AF09).

Definition 4 (Busy Beaver function). The Busy Beaver function, BB, is
defined by

BB:N— N

n — rlnzlmi({running time of U(p) when defined}
pilp|<n

Definition 5 (Busy Beaver logical depth). The Busy Beaver logical depth,
with significance level ¢, of x € X™ is defined as:

ldepth?® (z) = mlin {3p:|p| < K(x) 4+ c and U(p) =z in time < BB(I)}

Notice that this is a rescaling of Definition 3, since BB~!(Idepth,(z)) = ldepth?? (x).
From this new definition it is clear that ldepth?? (z) < K (x)+O(1). In fact, one
can simulate any computation, keeping track of the amount of computation steps
and thus, K (time(p)) < |p| + O(1) which implies ldepth?? (z) < K () + O(1).
Notice also that the Busy Beaver logical depth is a static measure based on
programs length.

3 Instability of logical depth

In this section we prove that even slightly changes of the constant on the signif-
icance level ¢ of logical depth determines large variation of this measure.

Theorem 2. For every sufficiently large n there are constants ¢, k1 and ks and a
string x of length n such that ldepth,,, () > 2™ and ldepthy, ;. (v) < O(n-logn).

Proof. Consider the following set:
A={zeX": (Tp)|p|<n+ K(n)—cAU(p) =z in time < 2"}

Considering B = XY™ — A, we know that B has at least 2"(1 — 27¢) elements.
Let € B such that n+ K(n) —c¢— k1 < K(z) < n+ K(n) — ¢ — ko for some
constants ki and ky. We show that these strings exist in Lemma 3.1 bellow.
Thus,

— ldepthy, (z) > 2".
Assume that ldepth,,, () < 2", then, by definition of logical depth, there is a
program p of size at most K(x)+ke <n+K(n)—c—ke+ks=n+K(n)—c
such that U(p) = in time < 2™, which implies that z would be an element
of A, which contradicts the choice of x.

— ldepthy, ;. () < O(n).
Since the significance level is 2c¢+ k1, then we can consider programs to define
its logical depth of length at least n+K (n)—c—k1+2c+k; = n+K(n)+c (and
of course of length at most n+K(n)—c—ka+2c+k; = n+K(n)+c+k—ks).
So, if ¢ is sufficiently large to allow a prefix free version of the program print
to be one of the possible programs, then we conclude that ldepth,, ;. () is
at most the running time of print(z), which is at most O(n - logn).

Lemma 3.1. Let ¢ be a constant and B be the set described in the last proof.
There are constants k1 and ko and strings in B such that n —c¢ — k) < K(x) <
n—c—kq.

Proof. Consider the set S={x € X" : K(x) >n+ K(n) —c—ki}.

It is easy to see that every element in S is in B. Let p be the program of size
< n+ K(n)—c—a where a is a constant to be defined later that has the longest
running time. Notice that K(p) > n + K(n) — ¢ — a — [for some [. In fact, if
K(p) <n+ K(n) —c—a—1 for all [then we could consider the program that
runs p*, the 1st program in the lexicographic order that produces p to obtain

p and then run it again and that would be a smaller program that would have
longer running time. More formally, consider the program ¢ = RUN(:) where
RUN describes the universal Turing machine with some data and run it on U.
Since RUN is describable by a constant number of bit, say s, then, if the data
isp* lgl =p*l+s <n+Kn)—a—-1+s <n+ K(n) — a for sufficiently
large I. Furthermore, timey (q) > timey (RUN (p*)) = timey (p*) + timey (p) >
timey (p) which contradicts the choice of p.

Let ¢ be the running time of p and let x be the first string in the lexicographic
order such that K*(x) > n + K(n). Thus,

— K(z) < K(p)+b<n+K(n)—c—a+b for some constant b since from p
we can compute ¢ and then compute x.

— K(x) > n+K(n)—c—a. In fact, if K(z) < n+ K(n)—c—a then considering
q the prefix-free program that witnesses the Kolmogorov complexity of = we
would have that |¢| < n — ¢ — a and then U(q) = x. Thus, by definition of
p we get time(q) < time(p) and hence K*(z) < n+ K(n) — a contradicting
the choice of z.

Just take a > b and also k1 = a and ky = a — b.

Theorem 3. For every sufficiently large there are constants ¢, k1 and ko and a
string x of length n such that ldeptthzB(x) >n and ldepthfﬁkl () < O(logn).

Proof. The idea is similar to Theorem 2. We rewrite the proof has the reasoning
of the conclusions changes a bit.
Consider the following set:

A={xze X" : (Fp)lp| <n+ K(n)—cAU(p) =z in time < BB(n)}

Considering B = XY™ — A, we know that B has at least 2"(1 — 27°) elements.
Let z € B such that n + K(n) —c— k1 < K(z) < n+ K(n) — ¢ — ko for some
constants k1 and ko. Thus,

- ldeptthQB(x) > n.
Assume that ldepthiB(x) < n, then, by definition of busy beaver logical
depth, there is a program p of size at most K (z)+ks < n+K(n)—c—ko+ks =
n + K(n) — ¢ such that U(p) = z in time < BB(n), which implies that z
would be an element of A, contradicting the choice of z.

— Idepthy, ,, (z) < O(logn).
Since the significance level is 2c¢+ k1, then we can consider programs to define
its logical depth of length at least n4+K(n)—c—k1+2c+k; = n+K(n)+c (and
of course of length at most n+K(n) —c—ko+2c+k1 = n+K(n)+c+ki1—ka).
So, if ¢ is sufficiently large to allow a prefix free version of the program print
to be one of the possible programs, then we conclude that ldepthgﬁ K, () s at
most BB~} (time(print(x))) = BB *(nlogn) < O(logn) (since the busy
beaver function grows faster than any computable function, in particular
exponential).

We can adapt the argument presented above to prove that if we allow logarithmic
terms on the significance level of logical depth we get a similar result.

Corollary 3.1. For every n and sufficiently large there are constants c, k1 and
ko and a string x of length n such that ldepthp .. (z) > n and ldepthgirkl) x)

k2 logn log n(
O(logn).

Proof. The proof is equal to the previous one with the following adaptations:

A={ze X" :(3p)p| <n+ K(n)—-clogn ANU(p) =z in time < BB(n)}

and with a similar reasoning to Lemma 3.1 we can show the existence of a
string in the complement of A satisfying n+ K(n) — clogn — k1 logn < K(z) <
n+ K(n) — clogn — ks logn.

4 Conclusions

Our major contribution in this paper is the proof that the most commonly used
definition of logical depth in the literature is not stable, since small variations
in the significance level can cause drastic changes in the value of Logical depth
even if we correct it with a Busy Beaver function.

Acknowledgments

We thanks Bruno Bauwens for helpful discussions and comments.

This work was supported by FCT projects PEst-OE/EEI/LA0008/2011 and
PTDC/EIA-CCO/099951/2008. The authors are also supported by the grants
SFRH/BPD/76231/2011 and SFRH/BD/33234/2007 of FCT.

References

[Adr12] Pieter Adriaans. Facticity as the amount of self-descriptive information in
a data set. 2012.

[AF09] L. Antunes and L. Fortnow. Sophistication revisited. Theory of Computing

Systems, 45(1):150-161, Springer—Verlag, 2009.

[AFvMVO06] L. Antunes, L. Fortnow, D. van Melkebeek, and N. Vinodchandran. Com-
putational depth: concept and applications. Theoretical Computer Science,
354(3):391-404, Elsevier Science Publishers Ltd., 2006.

[Ben88| C. Bennett. Logical depth and physical complexity. In A half-century
survey on The Universal Turing Machine, pages 227-257, New York, NY,
USA, 1988. Oxford University Press, Inc.

[Cha66] G. Chaitin. On the length of programs for computing finite binary se-
quences. Journal of ACM, 13(4):547-569, ACM Press, 1966.

[GML96] Murray Gell-Mann and Seth Lloyd. Information measures, effective com-
plexity, and total information. Complezity, 2(1):44-52, 1996.

[Kol65]

[Kop87]
[Kop95]
[LVO8]
[Sol64]
[Vit06]

[WMO7]

A. Kolmogorov. Three approaches to the quantitative definition of infor-
mation. Problems of Information Transmission, 1(1):1-7, Springer—Verlag,
1965.

M. Koppel. Complexity, depth, and sophistication. Complex Systems,
1:1087-1091, Complex Systems Publication Inc., 1987.

M. Koppel. Structure. The universal Turing machine (2nd ed.): a half-
century survey, pages 403-419, Springer—Verlag, 1995.

Ming Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and
Its Applications. Springer-Verlag, 2008.

R. Solomonoft. A formal theory of inductive inference, Part I. Information
and Control, 7(1):1-22, Academic Press Inc., 1964.

Paul M. B. Vitdanyi. Meaningful information. IEEE Transactions on In-
formation Theory, 52(10):4617-4626, 2006.

David H Wolpert and William Macready. Using self-dissimilarity to quan-
tify complexity. Complezity, 12(3):77-85, 2007.

