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Abstract

Fusion is a well-known form of combining normal modal logics en-
dowed with a Hilbert calculi and a Kripke semantics. Herein, fusion
is studied over logic systems using sequent calculi labelled with truth
values and with a semantics based on a two-sorted algebra allowing,
in particular, the representation of general Kripke structures. A wide
variety of logics, including non-classical logics like, for instance, modal
logics and intuitionistic logic can be presented by logic systems of this
kind. A categorical approach of fusion is defined in the context of these
logic systems. Preservation of soundness and completeness by fusion
is studied. Soundness is preserved without further requirements, com-
pleteness is preserved under mild assumptions.
Keywords: fusion of modal logic, labelled deduction, sequent calculi,
general Kripke semantics.

1 Introduction

Fusion is a well-known form of combining normal modal logics endowed with
a Hilbert calculi and a Kripke semantics [11] that produces a new modal
logic system from two others sharing a propositional basis. The resulting
system has the shared basis and the modalities from both composed logics.
It is a restricted form of fibring ([25, 24]) and appeared first in the work of
Thomason [22]. Herein, fusion of modal logics possibly endowed with general
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Kripke semantics is addressed. The logics are endowed with labelled sequent
calculi.

Modal sequent calculi labelled with truth values were introduced in [16,
15]. The semantics for these calculi is presented by a two-sorted algebra
which allows the natural representation of general Kripke structures. Gen-
eral Kripke semantics [25] is important since it is possible to prove strong
completeness results over this semantics for modal logics that are not strongly
complete with respect to the standard Kripke semantics. An example of such
logic is GL, the normal modal logic with the Löb axiom 2(2ξ ⊃ ξ) ⊃ 2ξ
which is not strongly complete with respect to any class of standard Kripke
structures but is strongly complete for general Kripke structures. So in our
setting it is possible to provide a strongly complete calculi also for these
logics. Moreover, each modal logic strongly complete with respect to the
standard Kripke semantics is naturally strongly complete with respect to the
generalized semantics.

When deduction systems of different kinds are compared, usually it is
concluded, in terms of use in practice, that Hilbert-style systems are not so
intuitive as Gentzen-style systems such as natural deduction, sequent calculi
and tableaux systems. However, the development of Gentzen systems for non-
classical logics often requires more effort than the elaboration of a Hilbert
calculus. For a modal calculus, as an example, one has to start from scratch.
A solution to this is the employment of labelling techniques. These techniques
can provide a general environment for presenting different logics in a uniform
way. Worlds as labels was already found in the pioneer work of Prior [17].
Subsequently, the use of labelling was employed in presentations for several
logics [10, 5, 23, 18] like, for instance, modal logic [3], finite-valued logic
[2], relevance logic [20] and conditional logic [6]. Usually labelling in modal
logic is used with worlds being the labels and assertions being of the form
w : ϕ, where w is a world and ϕ is an usual modal formula. Together with
expressions to reason about the accessibility relation they constitute what
is called in [21, 7] a configuration. But in general in this approach it is not
possible to distinguish global and local reasoning. The use of truth-values
instead of worlds solves this problem.

The use of truth values as labels can provide analytical labelled calculi
for a wide class of normal modal systems, sharing a common core of rules,
which can be useful for automation. Moreover the use of truth values as
labels is relevant to the theory and application of combination of deduction
systems since this requires a sufficiently general notion of labelled deduction
[19]. So, an interesting direction of research not developed in [16] is the study
of combination of modal logic systems where the calculus is with sequents
with formulas labelled with truth values.
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Fusion will be defined here as a categorical operation. To the reader
not used to category theory, it is recommended to see [14] for the basic
concepts needed in this work. The categorical approach brings as advantages
the possibility to define several “kinds of fusion” taking different sets of
shared connectives instead of only the propositional ones. Using the fusion
as a categorical operation it can be possible to calculate fusion of logics not
previously considered, the only requirement is that the logic can be presented
in our setting.

The paper begins, in Section 2, with the basics about logic systems la-
belled with truth values. In Section 3, it is presented the algebraic view of
fusion of modal systems, based on the definition of fusion presented in [8]. In
Section 4, fusion is defined in a categorical way as a pushout in an appropri-
ate category. For that, logic system morphisms are defined and some of their
properties investigated. Finally, in Section 5, the preservation of soundness
and completeness by fusion is investigated. At the end, some conclusions and
suggestions of future work are described.

2 Preliminaries

In this section it is presented the principal definitions and properties of logic
systems labelled with truth values. First, the language used to construct
terms, formulas and assertions is described, as well as the notion of substi-
tution. Then, sequents, derivations and sequent calculi are defined. After
that, the semantics, which is given by a two-sorted algebra, is presented, as
well as the notion of logic system. Finally, some examples and applications
of the concepts developed during the section are provided.

2.1 Language

The objective of this subsection is to define the basic assertions of the lan-
guage. It contains expressions of the form θ ≤ ϕ expressing that the truth
value associated to the term θ is less than or equal to the denotation of for-
mula ϕ. In modal logics endowed with a Kripke semantics truth values can
be seen as sets of worlds.

The language is built over a signature where connectives, operators and
sets of variables are specified. There are three kinds of variables: truth
value unbound variables (usually represented as x, element of X), truth
value bound variables (usually represented as y, element of Y ) and formula
unbound variables (usually represented as z, element of Z).
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Definition 2.1 A signature is a tuple Σ = 〈C,O,X, Y, Z〉 where C = {Ck :
k ∈ N} and O = {Ok : k ∈ N} such that each Ck and Ok is a countable set
and ⊥,> ∈ O0, and X, Y, Z are countable sets. All these sets are pairwise
disjoints.

The elements of each Ck are known as (formula) constructors or connec-
tives of arity k. Those of each Ok are known as (truth value) operators of
arity k.

Definition 2.2 A signature ΣM = 〈C,O,X, Y, Z〉 for a modal logic with a
modality is such that:

• C0 = {t, f} ∪ {pi : i ∈ N};

• C1 = {¬,2};

• C2 = {∧,∨,⊃};

• Ck = ∅ for k ≥ 3;

• O0 = {>,⊥};

• O1 = {I,N};

• O2 = {lb};

• Ok = ∅ for k ≥ 3;

• X, Y and Z are disjoint countable sets of variables.

The formula constructors are the usual ones in modal logic. Operators are
used namely to reason about the accessibility relation and to relate terms. In
the case of the signature presented, N is the neighbor operator representing
the collection of neighbors according to the accessibility relation associated
to the denotation of a term; lb(t1, t2) represents a lower bound of the terms t1
and t2; and I(t) represents an atomic truth value contained in the denotation
of the term t.

Definition 2.3 The signature ΣP for propositional logic is ΣM without the
connective 2 and the operator N.

The next three definitions show how to construct formulas, terms and
assertions. Formulas and terms follow the same construction process, as
expected. For that, assume given the following three sets {ξi : i ∈ N},
{τi : i ∈ N} and {Γi : i ∈ N}, whose elements are called meta-variables of
formulas, terms and bags of assertions, respectively.
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Definition 2.4 The set F (Σ) of (schema) simple formulas over Σ is induc-
tively defined as follows: (i) ξi ∈ F (Σ) for every i ∈ N; (ii) z ∈ F (Σ) for every
z ∈ Z; and (iii) c(ϕ1, ..., ϕk) ∈ F (Σ) whenever c ∈ Ck and ϕ1, ..., ϕk ∈ F (Σ).
The set gF (Σ) of ground simple formulas is composed of the elements in
F (Σ) without meta-variables and cF (Σ), the closed simple formulas, is the
set of elements of gF (Σ) without variables.

For instance, ξ1 ∨ z4, 2ξ2 ⊃ ξ1, ¬p2 ∧ z1 are some formulas that can be
constructed using the signature of Definition 2.2.

As mentioned before, terms are constructed similarly to formulas. For
the labelled logic systems considered in this work, terms are seen as labels:
they represent truth values.

Definition 2.5 The set T (Σ) of (schema) terms over Σ is inductively defined
as follows: (i) τi ∈ T (Σ) for every i ∈ N; (ii) x ∈ T (Σ) for every x ∈ X;
(iii) y ∈ T (Σ) for every y ∈ Y ; (iv) o(θ1, ..., θk) ∈ T (Σ) whenever o ∈ Ok

and θ1, ..., θk ∈ T (Σ); and (v) #ϕ ∈ T (Σ) whenever ϕ ∈ F (Σ). The set
gT (Σ) of ground terms is composed of the elements in T (Σ) without meta-
variables and cT (Σ), the closed terms, is the set of elements of gT (Σ) without
variables.

For instance, τ3, lb(y1, τ1), #ξ1 are some terms that can be constructed
in the context of the signature of Definition 2.2. The intended purpose of
#ϕ is to represent syntactically the truth value associated to the formula ϕ.

The reasoning in the logic systems considered herein is based on asser-
tions. There are basically two types of assertions: about terms and their
relationship and about formulas and their relationship with terms.

Definition 2.6 The set A(Σ) of (schema) assertions over Σ is composed of
expressions of the following six forms: (i) Ωθ and 0θ (positive and negative
truth value indivisibility assertion, respectively) with θ ∈ T (Σ); (ii) θ v θ′

and θ 6v θ′ (positive and negative truth value comparison assertion, respec-
tively) with θ, θ′ ∈ T (Σ); and (iii) θ ≤ ϕ and θ � ϕ (positive and negative
labelled formula, respectively) with θ ∈ T (Σ) and ϕ ∈ F (Σ). The set gA(Σ)
of ground assertions is composed of the elements in A(Σ) without meta-
variables and cA(Σ), the closed assertions, is the set of elements of gA(Σ)
without variables.

It is interesting to note at this point that the semantics of terms is given
by algebras of truth values which, when induced by Kripke structures, may be
such that the denotation of a term is a set of worlds. In this case this approach
assigns a range of possible worlds to a formula instead of a single world (as is
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commonly used in labelled modal systems). The intended meaning of Ωθ is to
express that the truth value is atomic (there is no truth value strictly smaller
than it besides falsum) and 0θ is its conjugate. The notion of conjugate δ is
defined as follows: (i) Ωθ is 0θ; (ii) 0θ is Ωθ; (iii) θ v θ′ is θ 6v θ′; (iv) θ 6v θ′
is θ v θ′; (v) θ ≤ ϕ is θ � ϕ; and (vi) θ � ϕ is θ ≤ ϕ.

Some assertions that can be constructed using the signature of Definition
2.2 are Ωy1 (the variable y1 represents an atomic truth value), ⊥ v y2

(falsum is less or equal to the truth value associated to the variable y2),
> � ξ1 ∧ ξ2 (the formula ξ1 ∧ ξ2 is not associated to the truth value true).

In the following, Bf (U) denotes the set of all finite bags of elements in
the set U .

Substitutions are maps over meta-variables as is described in the def-
inition below. They are used in derivations to assign concrete values to
meta-variables.

Definition 2.7 A (schema) substitution over Σ is a map σ such that, for all
i ∈ N: (i) σ(ξi) ∈ F (Σ); (ii) σ(τi) ∈ T (Σ); and (iii) σ(Γi) ∈ Bf (A(Σ) ∪ {Γi :
i ∈ N}). The set of (schema) substitutions over Σ is denoted by Sbs(Σ). A
ground substitution over Σ is a schema substitution ρ such that, for all i ∈ N:
(i) ρ(ξi) ∈ gF (Σ); (ii) ρ(τi) ∈ gT (Σ); and (iii) ρ(Γi) ∈ Bf (gA(Σ)). The set
of ground substitutions over Σ is denoted by gSbs(Σ).

2.2 Calculi

This subsection starts by introducing the notion of sequent.

Definition 2.8 A sequent over a signature Σ is a pair s = 〈∆1,∆2〉, written
∆1 → ∆2, where ∆1,∆2 ∈ Bf (A(Σ) ∪ {Γi : i ∈ N)}).

It is common the application of rules in derivations to be restricted by
constraints. Here, constraints are presented in the form of provisos, that is,
restrictions on substitutions.

Definition 2.9 A (local) proviso over Σ is a map π : gSbs(Σ)→ {0, 1}. The
unit proviso up is as follows: up(ρ) = 1 for every ρ ∈ gSbs(Σ). The zero
proviso zp is as follows: zp(ρ) = 0 for every ρ ∈ gSbs(Σ).

Given two provisos π and π′, their intersection is the proviso (π ∩ π′)
such that (π ∩ π′)(ρ) = π(ρ) × π′(ρ). The expression π ⊆ π′ denotes that
π(ρ) ≤ π′(ρ) for each ground substitution ρ.

In this work the following two provisos are needed:
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• (τk : y)(ρ) = 1 iff ρ(τk) ∈ Y , and

• (τk 6∈∆)(ρ) iff ρ(τk) does not occur in ∆ρ.

The first proviso only allows ground substitutions where τk is replaced by
a truth value bound variable. The other proviso accepts a ground substitution
ρ only if τk is replaced by a ground term not occurring in ∆ρ.

Definition 2.10 A rule over a signature Σ is a triple r = 〈{s1, ..., sp}, s, π〉

written
s1 . . . sp

s �π where s1, ..., sp, s are sequents over Σ and π is a
proviso over Σ.

For (normal) modal logics several kinds of rules are needed: rules for con-
nectives, rules for operators, structural rules, etc. For the sake of illustration
see Table 1 for some specific rules for connectives. For instance in the rules
for 2 it can be seen the intrinsic relation between the N operator and the
modality.

Lf

τ1 v ⊥,Γ1 → Γ2

τ1 ≤ f ,Γ1 → Γ2 Rf

Γ1 → Γ2, τ1 v ⊥
Γ1 → Γ2, τ1 ≤ f

Lt

τ1 v >,Γ1 → Γ2

τ1 ≤ t,Γ1 → Γ2 Rt

Γ1 → Γ2, τ1 v >
Γ1 → Γ2, τ1 ≤ t

L∧
τ1 ≤ ξ1, τ1 ≤ ξ2,Γ1 → Γ2

τ1 ≤ (ξ1 ∧ ξ2),Γ1 → Γ2 R∧
Γ1 → Γ2, τ1 ≤ ξ1 Γ1 → Γ2, τ1 ≤ ξ2

Γ1 → Γ2, τ1 ≤ (ξ1 ∧ ξ2)

L¬
Ωτ1,Γ1 → Γ2, τ1 ≤ ξ1

Ωτ1, τ1 ≤ (¬ ξ1),Γ1 → Γ2 R¬
Ωτ1, τ1 ≤ ξ1,Γ1 → Γ2

Ωτ1,Γ1 → Γ2, τ1 ≤ (¬ ξ1)

L⊃
Ωτ1,Γ1 → Γ2, τ1 ≤ ξ1 Ωτ1, τ1 ≤ ξ2,Γ1 → Γ2

Ωτ1, τ1 ≤ (ξ1 ⊃ ξ2),Γ1 → Γ2 R⊃
Ωτ1, τ1 ≤ ξ1,Γ1 → Γ2, τ1 ≤ ξ2
Ωτ1,Γ1 → Γ2, τ1 ≤ (ξ1 ⊃ ξ2)

L∨
Ωτ1, τ1 ≤ ξ1,Γ1 → Γ2 Ωτ1, τ1 ≤ ξ2,Γ1 → Γ2

Ωτ1, τ1 ≤ (ξ1 ∨ ξ2),Γ1 → Γ2 R∨
Ωτ1,Γ1 → Γ2, τ1 ≤ ξ1, τ1 ≤ ξ2
Ωτ1,Γ1 → Γ2, τ1 ≤ (ξ1 ∨ ξ2)

L2

N(τ1) ≤ ξ1,Γ1 → Γ2

τ1 ≤ (2ξ1),Γ1 → Γ2 R2

Γ1 → Γ2,N(τ1) ≤ ξ1
Γ1 → Γ2, τ1 ≤ (2ξ1)

Table 1: Specific rules for connectives

Table 2 shows some specific rules for the operators of a (normal) labelled
modal logic. For example the rules for N state that the neighborhood of
a truth value is induced by the neighborhoods of the atomic truth values
contained in it. Rules I and ΩI impose that I(t) represents an atomic truth
value contained in the denotation of t, as long as t is not ⊥. Rules for lb
establish that lb(t1, t2) is a lower bound of t1 and t2.

The unit proviso up is usually omitted. A rule is said to be endowed with
a persistent proviso if its proviso does not change value when the context of
the rule is enriched with closed assertions. Examples of rules with this kind of
provisos are given below. The “fresh bound variable” proviso, with the form
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LNΩ

τ3 v τ1,Ωτ3,Ωτ2,Γ1 → Γ2, τ2 6vN(τ3)

Ωτ2,Γ1 → Γ2, τ2 6vN(τ1)
�τ3 : y, τ3 6∈ τ1, τ2,Γ1,Γ2

RNΩ

Ωτ2,Γ1 → Γ2,Ωτ3 Ωτ3,Ωτ2,Γ1 → Γ2, τ3 v τ1 Ωτ3,Ωτ2,Γ1 → Γ2, τ2 v N(τ3)

Ωτ2,Γ1 → Γ2, τ2 v N(τ1)

I Γ1 → Γ2, I(τ1) v τ1 ΩI

Γ1 → Γ2, τ1 6v⊥
Γ1 → Γ2,ΩI(τ1)

lb1 Γ1 → Γ2, lb(τ1, τ2) v τ1 lb2 Γ1 → Γ2, lb(τ1, τ2) v τ2

Table 2: Specific rules for operators

τ2 : y; τ2 6∈ τ1,Γ1,Γ2, is persistent in every rule. Indeed, for every ground sub-
stitution ρ, it holds (τ2 : y ∩ τ2 6∈ τ1,Γ1,Γ2)(ρ) = (τ2 : y ∩ τ2 6∈ τ1,Γ1,Γ2, δ)(ρ)
as long as δ is a closed expression. Clearly, every rule endowed with the unit
proviso up is endowed with a persistent proviso.

Definition 2.11 A (sequent) calculus is a pair C = 〈Σ,R〉 where Σ is a
signature and R is a finite set of rules over Σ.

The next notion of this subsection is the notion of derivation. It is a
sequence of steps where each step is either an axiom or a hypothesis or
results from the application of some rule.

Definition 2.12 Given a sequent calculus C, a sequent s′ is said to be derived
from a set S of sequents with proviso π, written S ` s′ � π, if there is a
derivation sequence (d1, π1)..., (dn, πn) such that: d1 is s′ and π ⊆ π1; and for
every i = 1, ..., n:

1. either di ∈ S and πi is up;

2. or there is an assertion that occurs in both sides of di and πi is up;

3. or there are r ∈ R, ρ ∈ Sbs(Σ), p ∈ N and i1, ..., ip ∈ {i+ 1, ..., n} such

that rρ =

di1 . . . dip
di

�π′
and πi = π′ ∩ πi1 ∩ . . . ∩ πip .

The use of truth value as labels permits to distinguish between local and
global reasoning. A formula ϕ is globally derived from ψ1, . . . , ψk provided
that the sequent > ≤ ψ1, . . . ,> ≤ ψk → > ≤ ϕ is derived. On the other
hand, ϕ is locally derived from ψ1, . . . , ψk provided that for any atomic el-
ement y1, Ωy1,y1 ≤ ψ1, . . . ,y1 ≤ ψk → y1 ≤ ϕ is derived. Notice that
in the proof of a local or a global consequence the derivation does not use
hypothesis.
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Definition 2.13 In a sequent calculus 〈Σ,R〉 a formula ϕ is globally derived
from formulas ψ1, . . . , ψk, denoted by ψ1, . . . , ψk `gR ϕ iff `R > ≤ ψ1, . . . ,> ≤
ψk → > ≤ ϕ. A formula ϕ is locally derived from formulas ψ1, . . . , ψk,
denoted by ψ1, . . . , ψk `lR ϕ iff `R Ωy1,y1 ≤ ψ1, . . . ,y1 ≤ ψk → y1 ≤ ϕ.

2.3 Semantics

Semantics is based on a two-sorted algebra: a sort for truth values and
another for denotations of formulas. In [16] it is shown that it is possible
to move between general Kripke structures and these algebras (one of these
ways is illustrated in Example 2.25).

Definition 2.14 Let Σ be a signature. A Σ-algebra is a triple A = 〈F, T, ·A〉
where F and T are sets and ·A is a map such that:

• cA : F k → F for each c ∈ Ck;

• oA : T k → T for each o ∈ Ok,

• #A : F → T ;

• ΩA ⊆ T ;

• vA⊆ T × T ;

• ≤A⊆ T × F .

Given a Σ-algebra A = 〈F, T, ·A〉, the set {〈F, T 〉} is denoted by V (A),
and whenever A is a class of Σ-algebras, VA denotes the set ∪A∈AV (A).

The notion of reduct of an algebra by a signature will be useful along the
work, specially when defining fusion algebraically.

Definition 2.15 Given a Σ-algebra A = 〈F, T, ·A〉 and a signature Σ′ such
that Σ′ ⊆ Σ, the reduct of A by Σ′ is the Σ′-algebra A|Σ′ = 〈F, T, ·A|Σ′ 〉 such
that:

• cA|Σ′ = cA for all c ∈ Σ′,

• oA|Σ′ = oA for all o ∈ Σ′,

• ΩA|Σ′ = ΩA, vA|Σ′ =vA, and ≤A|Σ′ =≤A.

In order to define the denotation of formulas and terms, the notion of
assignment over a Σ-algebra is needed. Basically it specifies the meaning of
the variables in the Σ-algebra.
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Definition 2.16 An unbound variable assignment over A is a function α
that maps each element of X to an element of T and each element of Z to
an element of F . A bound variable assignment over A is a map β from Y to
T .

The definition of denotation is made in two parts: the denotation of
formulas (where only unbound variable assignments may be used) and the
denotation of terms (where both kinds of assignments are needed).

Definition 2.17 The denotation of ground simple formulas at a Σ-algebra A
for an unbound variable assignment α, is inductively defined in the following
way:

• JzKAα = α(z);

• Jc(ϕ1, ..., ϕk)KAα = cA(Jϕ1KAα, ..., JϕkKAα).

The denotation at A for assignments α, β over A of ground terms is induc-
tively defined in the following way:

• JxKAαβ = α(x);

• JyKAαβ = β(y);

• Jo(θ1, ..., θk)KAαβ = oA(Jθ1KAαβ, ..., JθkKAαβ);

• J#ϕKAαβ = #A(JϕKAα).

The definition of satisfaction of assertions and sequents can be given
capitalizing on the denotation of terms and formulas presented above.

Definition 2.18 The satisfaction by A for α and β of ground assertions and
sequents is defined as follows:

• Aαβ 
 Ωθ iff JθKAαβ ∈ ΩA;

• Aαβ 
 0θ iff JθKAαβ 6∈ΩA;

• Aαβ 
 θ v θ′ iff 〈JθKAαβ, Jθ′KAαβ〉 ∈vA;

• Aαβ 
 θ 6v θ′ iff 〈JθKAαβ, Jθ′KAαβ〉 6∈ vA;

• Aαβ 
 θ ≤ ϕ iff 〈JθKAαβ, JϕKAα〉 ∈≤A;

• Aαβ 
 θ � ϕ iff 〈JθKAαβ, JϕKAα〉 6∈ ≤A;
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• Aαβ 
 ∆′ → ∆′′ iff Aαβ 
 δ for some δ ∈ ∆′′ ∪∆′.

Definition 2.19 A Σ-algebra A and an unbound variable assignment α over
it satisfies an ground formula ϕ, denoted by Aα 
 ϕ whenever Aαβ 
 ϕ for
every bound variable assignment β over A.

Entailment is now defined over a class of algebras.

Definition 2.20 Given a class A of Σ-algebras, a ground sequent s is A-
entailed by the ground sequents s1, . . . , sp, written s1, . . . , sp �A s, iff, for
each A ∈ A and unbound variable assignment α over A, Aα 
 s whenever
Aα 
 si for every bound variable assignment β over A and every i = 1, . . . , p.

The notion of entailment is easily extended to (schema) sequents possibly
with provisos. A sequent s is A-entailed by the sequents s1, . . . , sp with
proviso π, written s1, . . . , sp �A s� π, iff s1ρ, . . . , spρ �A sρ for every ground
substitution ρ over Σ such that π(ρ) = 1.

Definition 2.21 A class of algebras A is called appropriate for the rule
r = 〈{s1, ..., sp}, s, π〉 if s1, . . . , sp �A s � π. And an algebra A is said to be
appropriate for a rule if so is the class {A}. The class of algebras is full for
a calculus 〈Σ,R〉 if it is the class of all Σ-algebras that are appropriate for
all rules in R.

2.4 Logic systems

The definition of logic system is now presented. A logic system puts together
the different components of a logic: the syntax, the deductive system and
the semantics.

Definition 2.22 A logic system is a triple 〈Σ,R,A〉 where 〈Σ,R〉 is a se-
quent calculus and A is a class of Σ-algebras.

A logic system is said to be:

• sound if A is appropriate for each rule in R;

• full if A is the class of all Σ-algebras that are appropriate for each rule
in R;

• complete if s1, . . . , sp `R s whenever s1, . . . , sp �A s for any closed
sequents s, s1, . . . , sp.
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2.5 Applications and examples

To finish this section the notions developed in the preceding subsections are
illustrated. The subsection starts by defining what is a labelled calculus
for a normal modal logic, and then passes through examples of derivation
and satisfaction until presenting examples of modal logic systems for deontic
logic, knowledge logic and Löb provability logic.

The labelled sequent calculi developed herein for modal logic is composed
by three kinds of rules: structural rules, rules about order (order rules) and
rules for constructors.

LwΩ

Γ1 → Γ2

Ωτ1,Γ1 → Γ2 RwΩ

Γ1 → Γ2

Γ1 → Γ2,Ωτ1

LwT

Γ1 → Γ2

τ1 v τ2,Γ1 → Γ2 RwT

Γ1 → Γ2

Γ1 → Γ2, τ1 v τ2

LwF

Γ1 → Γ2

τ1 ≤ ξ1,Γ1 → Γ2 RwF

Γ1 → Γ2

Γ1 → Γ2, τ1 ≤ ξ1

LcT

τ1 v τ2, τ1 v τ2,Γ1 → Γ2

τ1 v τ2,Γ1 → Γ2 RcT

Γ1 → Γ2, τ1 v τ2, τ1 v τ2
Γ1 → Γ2, τ1 v τ2

LcF

τ1 ≤ ξ1, τ1 ≤ ξ1,Γ1 → Γ2

τ1 ≤ ξ1,Γ1 → Γ2 RcF

Γ1 → Γ2, τ1 ≤ ξ1, τ1 ≤ ξ1
Γ1 → Γ2, τ1 ≤ ξ1

Table 3: Weakening and contraction rules

The structural rules are composed of weakening and contraction rules,
as presented in Table 3; conjugation rules, as presented in Table 4; and two
cut rules (presented in Table 5): one for assertions with v and the other for
assertions with ≤.

LxiΩ

Γ1 → Γ2,Ωτ1

0τ1,Γ1 → Γ2 RxiΩ

Ωτ1,Γ1 → Γ2

Γ1 → Γ2,0τ1

LxiT

Γ1 → Γ2τ1 v τ2
τ1 6v τ2,Γ1 → Γ2 RxiT

τ1 v τ2,Γ1 → Γ2

Γ1 → Γ2, τ1 6v τ2

LxiF

Γ1 → Γ2, τ1 ≤ ξ1
τ1 � ξ1,Γ1 → Γ2 RxiF

τ1 ≤ ξ1,Γ1 → Γ2

Γ1 → Γ2, τ1 � ξ1

LxeΩ

Γ1 → Γ2,0τ1

Ωτ1,Γ1 → Γ2 RxeΩ

0τ1,Γ1 → Γ2

Γ1 → Γ2,Ωτ1

LxeT

Γ1 → Γ2, τ1 6v τ2
τ1 v τ2,Γ1 → Γ2 RxeT

τ1 6v τ2,Γ1 → Γ2

Γ1 → Γ2, τ1 v τ2

LxeF

Γ1 → Γ2, τ1 � ξ1

τ1 ≤ ξ1,Γ1 → Γ2 RxeF

τ1 � ξ1,Γ1 → Γ2

Γ1 → Γ2, τ1 ≤ ξ1

Table 4: Conjugation rules

The intuition behind the rules in Table 6 for basic assertions should be
obvious. It is interesting to notice how it is expressed by a rule that the
meaning of Ωt should be an atomic truth value.
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cutT

Γ1 → Γ2τ1 v τ2 τ1 v τ2,Γ1 → Γ2

Γ1 → Γ2 cutF

Γ1 → Γ2, τ1 ≤ ξ1 τ1 ≤ ξ1,Γ1 → Γ2

Γ1 → Γ2

Table 5: Cut rules

Ω>
Ωτ1,Γ1 → Γ2, τ1 ≤ ξ1

Γ1 → Γ2,> ≤ ξ1
�τ1 : y1, τ1 6∈Γ1,Γ2

Ω

Γ1 → Γ2, τ1 6v⊥ Ωτ2, τ2 v τ1,Γ1 → Γ2, τ1 v τ2
Γ1 → Γ2,Ωτ1

�τ2 : y, τ2 6∈ τ1,Γ1,Γ2

L#

τ1 ≤ ξ1,Γ1 → Γ2

τ1 v #ξ1,Γ1 → Γ2 R#

Γ1 → Γ2, τ1 ≤ ξ1
Γ1 → Γ2, τ1 v #ξ1

⊥T Γ1 → Γ2,⊥ v τ1 ⊥F Γ1 → Γ2,⊥ ≤ ξ1

Ω⊥
Γ1 → Γ2,Ωτ1

Γ1 → Γ2, τ 6v⊥ > Γ1 → Γ2, τ1 v >

Table 6: Order rules for basic assertions

Rules about the relation between the truth values are also needed. It is
easy to understand their motivation when considering the case of truth values
being subsets of worlds in a Kripke structure. These rules are presented in
Table 7.

cons Γ1 → Γ2,> 6v⊥ ref Γ1 → Γ2, τ1 v τ1

transT

Γ1 → Γ2, τ1 v τ2 Γ1 → Γ2, τ2 v τ3
Γ1 → Γ2, τ1 v τ3 transF

Γ1 → Γ2, τ1 v τ2 Γ1 → Γ2, τ2 ≤ ξ1
Γ1 → Γ2, τ1 ≤ ξ1

Lasym

Ωτ1,Ωτ2, τ1 v τ2,Γ1 → Γ2

Ωτ1,Ωτ2, τ2 v τ1,Γ1 → Γ2 Rasym

Ωτ1,Ωτ2,Γ1 → Γ2, τ1 v τ1
Ωτ1,Ωτ2,Γ1 → Γ2, τ2 v τ1

Table 7: Order rules about truth values

Finally, order rules for v and ≤ are presented in Table 8. It is worthwhile
to explain the rules RgenF and LgenF. The rule RgenF indicates that if
the denotation of τ2 is less than or equal to the denotation of ξ1 for all
atomic truth values assigned to τ2 included in the denotation of τ1, then
the denotation of τ1 is less than or equal to the denotation of ξ1. Observe
that it is imposed that τ2 is fresh so that the universal quantifier does not
capture other variables namely those in τ1,Γ1 and Γ2. The rule LgenF can
be interpreted as follows: assuming that τ1 ≤ ξ1 and Γ1 hold, in order to
conclude γ2 for some γ2 ∈ Γ2 it is enough to show that there is an atomic
element τ2, less than or equal to τ1 such that from τ2 ≤ ξ1 it is possible to
conclude γ2.

Definition 2.23 A sequent calculus for a normal modal logic with a modal-
ity is the pair 〈ΣM ,RM〉 where ΣM is the signature in Definition 2.2 and RM

is the set constituted by the rules in Tables 1, 2, 3, 4, 5, 6, 7 and 8.

It is now presented an example of a derivation in the context of a sequent
calculus for a normal modal logic.
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LgenT

Ωτ2, τ2 v τ3,Γ1 → Γ2 Ωτ2,Γ1 → Γ2, τ2 v τ1 τ1 v τ3,Γ1 → Γ2,Ωτ2

τ1 v τ3,Γ1 → Γ2

RgenT

Ωτ2, τ2 v τ1,Γ1 → Γ2, τ2 v τ3
Γ1 → Γ2, τ1 v τ3

�τ2 : y, τ2 6∈ τ1, τ3,Γ1,Γ2

LgenF

Ωτ2, τ2 ≤ ξ1,Γ1 → Γ2 Ωτ2,Γ1 → Γ2, τ2 v τ1 τ1 ≤ ξ1,Γ1 → Γ2,Ωτ2

τ1 ≤ ξ1,Γ1 → Γ2

RgenF

Ωτ2, τ2 v τ1,Γ1 → Γ2, τ2 ≤ ξ1
Γ1 → Γ2, τ1 ≤ ξ1

�τ2 : y, τ2 6∈ τ1,Γ1,Γ2

Table 8: Order rules

Example 2.24 In the context of the sequent calculus introduced in Defini-
tion 2.23, the following holds: Ωy1,y1 ≤ ψ1,y1 ≤ ψ2 → y1 ≤ ϕ `R→ > ≤
(ψ1 ∧ ψ2)⊃ ϕ.

1. → > ≤ (ψ1 ∧ ψ2)⊃ ϕ RgenF 2
2. Ωy1,y1 v > → y1 ≤ (ψ1 ∧ ψ2)⊃ ϕ R⊃ 3
3. Ωy1,y1 v >,

y1 ≤ ψ1 ∧ ψ2 → y1 ≤ ϕ L∧ 4
4. Ωy1,y1 v >,

y1 ≤ ψ1,y1 ≤ ψ2 → y1 ≤ ϕ Lw 5
5. Ωy1,y1 ≤ ψ1,y1 ≤ ψ2 → y1 ≤ ϕ hyp

One of the most common ways to express the semantics of modal logics
is by Kripke structures. Among Kripke structures, general Kripke structures
deserve a particularly importance since they provide a complete semantics
to some modal logic not complete with respect to the standard Kripke se-
mantics. These general Kripke structures can be represented in our setting
as showed in the next example.

Example 2.25 (Σ-algebra induced by a general Kripke structure) A
general Kripke structure is a tuple K = 〈W,B,;, V 〉 where W is the set of
possible worlds, B ⊆ 2W is the set of admissible values, ;⊆ W 2 is the ac-
cessible relation corresponding to the modal connective 2 and V : Π→ B is
the valuation map. From any general Kripke structure K, it can be defined
an algebra AK = 〈F, T, ·AK

〉 where:
• F = B;
• T = 2W ;
• #AK

= λb.b;
• a ∈ ΩAK

iff a is a singleton;
• 〈a, a′〉 ∈vAK

iff a ⊆ a′;
• 〈a, b〉 ∈≤AK

iff a ⊆ b;
• ⊥AK

= ∅;
• >AK

= W ;
• IAK

= λa.ι(a);

14



• NAK
= λa.{w′ ∈ W : exists w ∈ a such that w ; w′};

• lbAK
= λaa′.a ∩ a′;

• fAK
= ∅;

• tAK
= W ;

• piAK
= V (pi);

• ¬AK
= λb.W \ b;

• 2AK
= λb.{w ∈ W : NAK

({w}) ⊆ b};
• ∧AK

= λbb′.b ∩ b′;
• ∨AK

= λbb′.b ∪ b′;
• ⊃AK

= λbb′.(W \ b) ∪ b′;
with ι : T → F being a choice function.

The next example shows that the axiom for reflexivity is satisfied by
the Σ-algebra induced by a general Kripke structure that is not reflexive.
Actually, the axiom characterizes reflexivity only among standard frames.
But it is possible to characterize general frames with a reflexive accessibility
relation using rule T that appears in Table 9.

Example 2.26 Consider the general Kripke structure 〈W,B,;, V 〉 where
W = {w1, w2}, ;= {〈w1, w2〉, 〈w2, w1〉}, B = {∅,W} and V such that
p1 = ∅ and p2 = W . Let A be the Σ-algebra induced by this general Kripke
structure according to Example 2.25. Thus, A 
 > ≤ (2pi)⊃ pi for i = 1, 2
as showed below. In fact:
• J>KA = W ;
• Jp1KA = ∅;
• Jp2KA = W ;
• 2A(∅) = ∅;
• 2A(W ) = W .
Then A
>≤(2p1)⊃p1 iff 〈J>KA, J(2p1)⊃p1KA〉 ∈≤A iff 〈W,⊃A(J2p1KA,

Jp1KA)〉 ∈≤A iff 〈W,⊃A(2A(Jp1KA), Jp1KA)〉 ∈≤A iff 〈W,⊃A(2A(∅),∅)〉 ∈≤A
iff 〈W,⊃A (∅,∅)〉 ∈≤A iff 〈W,W 〉 ∈≤A.

And, for p2: A 
 > ≤ (2p2) ⊃ p2 iff 〈J>KA, J(2p2) ⊃ p2KA〉 ∈≤A iff
〈W,⊃A(J2p2KA, Jp2KA)〉 ∈≤A iff 〈W,⊃A(2A(Jp2KA), Jp2KA)〉 ∈≤A iff 〈W,⊃A
(2A(W ),W )〉 ∈≤A iff 〈W,⊃A(W,W )〉 ∈≤A iff 〈W,W 〉 ∈≤A.

It is now presented the definition of modal logic system, which is used in
the next section to define fusion.

Definition 2.27 A modal logic system is a logic system 〈Σ,R,A〉 where
the signature Σ is as Definition 2.2, the rules are at least those described in
Definition 2.23 and A is a class of Σ-algebras as in Definition 2.14.
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Observe that in a modal logic system the following consequences hold:

• ϕ `gR 2ϕ and

• `gR 2(ϕ⊃ ψ)⊃ (2ϕ⊃2ψ).

As practical examples of modal logic systems, a deontic logic system,
a Löb provability logic system and a knowledge logic system are presented
below.

Example 2.28 Consider the modal logic system D = 〈ΣD,RD,AD〉 for a
deontic logic system, see [13], where:

• ΣD is a modal signature as in Definition 2.2 where 2ϕ is intended to
mean that ϕ is obligatory;

• RD is the set of rules as in Definition 2.23 plus the rule D:

Ωτ1,Γ1 → Γ2,N(τ1) 6v⊥

expressing that for any atomic truth value there is at least another
truth value acceptable by it, i.e., everything obligatory associated to
the atomic truth value holds in that other truth value;

• AD is a class of ΣD-algebras induced by general Kripke structures where
the accessible relation is right-unbounded, see [4], full for 〈ΣD,RD〉.

Deontic logic systems are concerned with what is obligatory at a certain
point. It has been widely used in a multitude of fields ranging from computer
science to philosophy or even in law. The logic system GL is concerned with
reasoning about provability, more specifically about what can be expressed by
arithmetical theories about their provability predicates, and was considered
for instance, when dealing with the logical omniscience problem, in combi-
nation with typed theories and programming languages, and in dealing with
reflection in artificial intelligence, automated deduction and verification.

Example 2.29 Consider the modal logic system GL = 〈ΣGL,RGL,AGL〉
corresponding to the modal Löb provability logic for a certain theory T, see
[1], where:

• ΣGL is a modal signature as in Definition 2.2 where 2ϕ is intended to
mean that ϕ is provable in T;
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• RGL is the set of rules as in Definition 2.23 plus the rule W (see [16]
for more information about this rule):

Ωτ1,Ωτ3, τ3 v N(τ1),Γ1 → Γ2, τ3 v τ2,N(τ3) 6v τ2
Ωτ1,Γ1 → Γ2,N(τ1) v τ2

�τ3 : y, τ3 6∈ τ1, τ2,Γ1,Γ2

• AGL is a class of ΣGL-algebras induced by general Kripke structures
where the accessibility relation is transitive and conversely well-founded,
full for 〈ΣGL,RGL〉. A relation is conversely well-founded if and only
if there no infinite ascending sequences.

A multi-modal logic system, for a knowledge logic system is also pre-
sented. This system can actually be viewed as an example of fusion of n
modal logic systems, as it will be clear when fusion is introduced later on in
the paper.

Example 2.30 Consider a knowledge logic system K for n agents where
each modal formula Kiϕ is intended to mean that agent i knows ϕ, see [12].
That is, K = 〈ΣK ,RK ,AK〉 is such that:

• ΣK is a modal signature as Definition 2.2 with C1 = {¬, K1, . . . , Kn}
and O1 = {I,N1, . . . ,Nn};

• RK is the set of rules from Definition 2.23 with L2, R2, LNΩ andRNΩ
renamed as LKi, RKi, LNiΩ and RNiΩ for i = 1, . . . , n, together with
the rules listed in Table 9. As it is clear from the inspection of the
rules, Ti imposes that the associated accessibility relation is reflexive,
4i that it is transitive, and the rule 5i that the accessibility relation is
Euclidean. Together they impose that the relation is an equivalence;

• AK is a class of ΣK-algebras induced by general Kripke structures where
there are n accessibility relations which are equivalence relations, full
for 〈ΣK ,RK〉.

Γ1 → Γ2, τ1 v Ni(τ1)
Ti

Γ1 → Γ2,Ni(Ni(τ1)) v Ni(τ1)
4i

Ωτ1,Ωτ2,Ωτ3,Γ1 → Γ2, τ1 v Ni(τ3) Ωτ1,Ωτ2,Ωτ3,Γ1 → Γ2, τ2 v Ni(τ3) Ωτ1,Ωτ2,Γ1 → Γ2,Ωτ3

Ωτ1,Ωτ2,Γ1 → Γ2, τ1 v Ni(τ2)
5i

Table 9: Additional rules for the Knowledge Logic System K
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3 Algebraic account of fusion

In this section an algebraic account of fusion of modal logic systems based
in [8] are described. In the algebraic account, propositional connectives,
operators and rules may be shared between the modal logic systems but
modalities are not shared. In Section 4, fusion of modal logic systems possibly
sharing modalities is analyzed. Other types of combinations can be obtained
when sharing different sets of connectives, operators and rules which is easily
and naturally reached when working in the context of category theory.

Definition 3.1 Let L1 = 〈Σ1,R1,A1〉 and L2 = 〈Σ2,R2,A2〉 be two modal
logic systems such that all the connectives are shared except the modalities.
Moreover assume that the rules of these systems are the same except the
rules for the modal connectives and the rules for the respective N operators.

The fusion of L1 and L2 is the logic system 〈Σ,R,A〉 where:

• Σ is the signature 〈C,O,X, Y, Z〉 where C0 = {t, f} ∪ {pi : i ∈ N};
C1 = {¬} ∪ {2′} ∪ {2′′}; C2 = {∧,∨,⊃}; Ck = ∅ for all k ≥ 3;
O0 = {>,⊥}; O1 = {I} ∪ {N′} ∪ {N′′}; O2 = {lb}; Ok = ∅ for all
k ≥ 3;

• R keeps all the structural rules, the order rules and the logical rules for
⊃, ¬, ∨, ∧, lb and I. Furthermore, each rule in L1 (L2) that involves
the connective 2 or the operator N, renaming the connective 2 to 2′

(2′′) and the operator N to N′ (N′′), is in R;

• A is the class of Σ-algebras {AA1,A2 : A1 ∈ A1,A2 ∈ A2,A1|ΣP
= A2|ΣP

}
where AA1,A2 is such that AA1,A2|ΣP

= A1|ΣP
, 2′AA1,A2

= 2A1 ,2
′′
AA1,A2

=

2A2 ,N
′
AA1,A2

= NA1 and N′′AA1,A2
= NA2 , where ΣP is the signature

with the shared propositional connectives and operators.

As illustration, it is now described the algebraic account of fusion of the
deontic logic system and the Löb provability logic introduced in Example
2.28 and 2.29, respectively.

Example 3.2 The fusion of the logic system D presented in Example 2.28
and the logic system GL presented in Example 2.29 is such that:

• the signature is Σ as described in Definition 3.1, for simplicity, 2D is
used instead of 2′ (the modality for D) and 2GL for 2′′ (the modality
for GL). Note that it allows expressions like 2D2GLϕ with the intended
meaning that it is obligatory that ϕ is provable in a certain theory T;
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• the set of rules is R as described in Definition 3.1 (actually, it is RD ∪
RGL with the appropriate substitutions in the names of 2 and N);

• the class A is constituted by the algebras inducted by generalized
Kripke structures that have one accessibility relation which is right-
unbounded and another accessibility relation which is transitive and
right linear.

An example of a deduction in the context of the sequent calculus resulting
from the fusion of D and GL, described in Example 3.2, is now presented.
Note that the formula involved uses modalities from the two logics.

Example 3.3 It is now presented a deduction for 2D(2GL(ξ1⊃ξ2)⊃(2GLξ1⊃
2GLξ2)) in the context of the logic system resulting for the fusion of D and
GL as described in Example 3.2:

1. → > ≤ 2D(2GL(ξ1 ⊃ ξ2)⊃ (2GLξ1 ⊃ 2GLξ2)) R2D 2

2. → ND(>) ≤ 2GL(ξ1 ⊃ ξ2)⊃ (2GLξ1 ⊃ 2GLξ2)) transF 3,4

3. → ND(>) v > >
4. → > ≤ 2GL(ξ1 ⊃ ξ2)⊃ (2GLξ1 ⊃ 2GLξ2)) RgenF 5

5. Ωy1,y1 v > → y1 ≤ 2GL(ξ1 ⊃ ξ2)⊃ (2GLξ1 ⊃ 2GL1ξ2) R⊃ 6

6. Ωy1,y1 v >,
y1 ≤ 2GL(ξ1 ⊃ ξ2) → y1 ≤ 2GLξ1 ⊃ 2GLξ2 R⊃ 7

7. Ωy1,y1 v >,y1 ≤ 2GLξ1
y1 ≤ 2GL(ξ1 ⊃ ξ2) → y1 ≤ 2GLξ2 R2GL 8

8. Ωy1,y1 v >,y1 ≤ 2GLξ1
y1 ≤ 2GL(ξ1 ⊃ ξ2) → NGL(y1) ≤ ξ2 RgenF 9

9. Ωy1,y1 v >,y1 ≤ 2GLξ1
y1 ≤ 2GL(ξ1 ⊃ ξ2) → y2 ≤ ξ2 L2GL 10
Ωy2,y2 v NGL(y1)

10. Ωy1,y1 v >,NGL(y1) ≤ ξ1
y1 ≤ 2GL(ξ1 ⊃ ξ2) → y2 ≤ ξ2 LgenF 11,12,13
Ωy2,y2 v NGL(y1)

11. Ωy1,y1 v >,y2 ≤ ξ1
y1 ≤ 2GL(ξ1 ⊃ ξ2) → y2 ≤ ξ2 L2GL 14
Ωy2,y2 v NGL(y1),Ωy2

12. Ωy1,y1 v >
y1 ≤ 2GL(ξ1 ⊃ ξ2) → y2 ≤ ξ2,y2 v NGL(y1) ax
Ωy2,y2 v NGL(y1)

13. Ωy1,y1 v >,NGL(y1) ≤ ξ1
y1 ≤ K1(ξ1 ⊃ ξ2) → y2 ≤ ξ2,Ωy2 ax
Ωy2,y2 v NGL(y1)

14. Ωy1,y1 v >,y2 ≤ ξ1
NGL(y1) ≤ ξ1 ⊃ ξ2 → y2 ≤ ξ2 LgenF 15,16,17
Ωy2,y2 v NGL(y1),Ωy2

15. Ωy1,y1 v >,y2 ≤ ξ1
NGL(y1) ≤ ξ1 ⊃ ξ2 → y2 ≤ ξ2,Ωy2 ax
Ωy2,y2 v NGL(y1),Ωy2

16. Ωy1,y1 v >,y2 ≤ ξ1
Ωy2,y2 v NGL(y1) → y2 ≤ ξ2,y2 v NGL(y1) ax
Ωy2,Ωy2
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17. Ωy1,y1 v >,y2 ≤ ξ1
Ωy2,y2 ≤ ξ1 ⊃ ξ2 → y2 ≤ ξ2 L⊃ 18,19
Ωy2,y2 v NGL(y1),Ωy2

18. Ωy1,y1 v >,y2 ≤ ξ1
Ωy2,Ωy2 → y2 ≤ ξ2,y2 ≤ ξ1 ax
Ωy2,y2 v NGL(y1)

19. Ωy1,y1 v >,y2 ≤ ξ1
Ωy2,y2 ≤ ξ2 → y2 ≤ ξ2 ax
Ωy2,y2 v NGL(y1),Ωy2

4 Categorical view of fusion

The aim of this section is to define in categorical terms the fusion presented
algebraically in the previous section. An advantage of this approach is to
abstract fusion to a categorical construction which can be applied to other
types of logic systems and not only to modal logic systems. Another ad-
vantage of using the categorical presentation of fusion is that it is possible
to share modalities, besides the propositional connectives. In fact it is even
more general: any set of connectives can be shared.

The section is organized as follows: first it is presented the notion of
morphism between logic systems, since operations in category theory are
essentially operations between morphisms (for instance, in [9] the authors
define a category as a one-sorted algebra with just morphisms, but herein
the most common approach with objects is also used). After that, fusion is
showed to be a colimit.

4.1 Logic system morphisms

In order to define fusion as a categorical operation, logic system morphisms
are now introduced. Basically they are a pair of maps: one between signa-
tures and the other (a contravariant map) between classes of algebras pre-
serving the sets of terms and formulas. First the map between signatures is
defined.

Definition 4.1 Given signatures Σ and Σ′, a signature morphism is a map
h : Σ→ Σ′ such that, for each n ∈ N:

• hCn : Cn → C ′n;

• hOn : On → O′n, preserving > and ⊥;

• hX : X → X ′;

• hY : Y → Y ′;
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• hZ : Z → Z ′.

Signatures and signature morphisms constitute a category, named Sig.
It is easy to see that Sig is a subcategory of Set and has all limits and colim-
its. The map between algebras in a logic system morphism is contravariant
essentially in order for entailment to be preserved, and that happens if all
the models in the target logic have a correspondent by the morphism in the
source logic.

Definition 4.2 A logic system morphism m : L → L′ where L = 〈Σ,R,A〉
and L′ = 〈Σ′,R′,A′〉 is a pair m = 〈h, a〉 such that h : Σ→ Σ′ is a signature
morphism and for each r = 〈{s1, ..., sp}, s, π〉 ∈ R there is a rule in L′

h∗(s1) . . . h∗(sp)

h∗(s)
�h∗(π)

where h∗ the extension of h to assertions, sequents and provisos. Moreover,
a : A′ → A is a map such that:

• V (A′) = V (a(A′))

• ca(A′)(f1, ..., fk) = h(c)A′(f1, ..., fk);

• oa(A′)(t1, ..., tk) = h(o)A′(t1, ..., tk);

• #a(A′)f = #A′f ;

• vA′=va(A′);

• ≤A′=≤a(A′);

• ΩA′ = Ωa(A′).

Proposition 4.3 Logic systems and logic systems morphisms constitute a
category named Log.

Some important preservation properties are valid in the context of Log
as described below.

Proposition 4.4 (Preservation of derivations) Given m : L → L′ if
S `C s′ � π then h∗(S) `C′ h∗(s′) � h∗(π).

Proof: The proof follows by induction on the size of a derivation d =
(d1, π1), . . . , (dn, πn) for S `C s′ � π.

Base: d = (d1, π1).
So d1 = s′. Then:
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• either d1 ∈ S and π1 = up and so h∗(d1) ∈ h∗(S) and h∗(π1) = up;

• or there is an assertion that occurs in both sides of d1 and π1 = up.
Then h∗(d1) also has an assertion that occurs in both sides of the
sequent and h∗(π1) = up;

• or there are r ∈ R, ρ ∈ Sbs(Σ) such that rρ = d1
�π1

. Then,
h∗(r) is in R′ and using the fact that h∗(rρ) = h∗(r)h∗(ρ), the substi-
tution h∗(ρ) results in `C′ h∗(d1) � h∗(π1).

Step: d = (d1, π1), (d2, π2), . . . , (dn, πn) is a derivation in L.
The Induction Hypothesis is that (d2, π2), . . . , (dn, πn) has an “equivalent”

derivation, named dStep, in L′. Then:

• either d1 ∈ S and π1 = up and so h∗(d1) ∈ h∗(S) and h∗(π1) = up;

• or there is an assertion that occurs in both sides of d1 and π1 = up.
Then h∗(d1) also has an assertion that occurs in both sides of the
sequent and h∗(π1) = up;

• or there are r ∈ R, ρ ∈ Sbs(Σ), p ∈ N and i1, ..., ip ∈ {2, 3, ..., n} such

that rρ =

di1 . . . dip
d1

�π·
and π1 = π·∩πi1 ∩ . . .∩πip . Then consider

the rule in L′
h∗(s1) . . . h∗(sp)

h∗(s)
�h∗(π)

and by applying the substitution h∗(ρ) on that rule (knowing that
h∗(σ)(h∗(p)) = h∗(σ(p))), it happens that, for j = 1, . . . , p, h∗(ρ)(h∗(sj))
= h∗(ρsj) = h∗(dij ) and h∗(ρ)(h∗(s)) = h∗(ρs) = h∗(d1).

So, the derivation in L′ corresponding to d is h∗(dr)dStep. QED

Given a morphism between logic systems and assignments over a desti-
nation algebra, it is possible to consider corresponding assignments over the
source algebra in order to establish interesting preservation properties.

Definition 4.5 Given algebras A and A′ and assignments α and β over A,
the assignments over A′ such that the diagrams in Figure 1 commute, are
denoted by α′ and β′.

The lemma that follows establishes the preservation of the denotation of
a formula by a logic system morphism.
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>>~~~~~~~~
Z ′

α′

>>}}}}}}}

Figure 1: Commutative diagrams for α′ and β′

Lemma 4.6 Let ϕ be a formula, 〈h, a〉 : L → L′ a logic system morphism
and α′ and β′ as the previous definition, then JϕKa(A′)αβ = Jh(ϕ)KA′α′β′ .

Proof: The proof follows by induction on the structure of ϕ.

• ϕ is z.

JzKa(A′)αβ = α(z) = α′(hZ(z)) = Jh(z)KA′α′β′ .

• ϕ is c(ϕ1, . . . , ϕk).

J c(ϕ1, . . . , ϕk) Ka(A′)αβ = ca(A′) (Jϕ1 Ka(A′)αβ, . . . , Jϕk Ka(A′)αβ) = h(c)A′

(Jh(ϕ1)KA′α′β′ , . . . , Jh(ϕk)KA′α′β′) = Jh(c(ϕ1, . . . , ϕk))KA′α′β′ .

QED

The next three lemmas show the preservation of the denotations of the
three relations used in the satisfaction of assertions. They are used in the
proof of Proposition 4.10.

Lemma 4.7 Given A′ ∈ A′, JθKa(A′)αβ ∈ Ωa(A′) iff Jh(θ)KA′α′β′ ∈ ΩA′ , where
α′ and β′ are as in Definition 4.5.

Proof: The proof follows by induction on the structure of θ.
θ is x ∈ X.

JxKa(A′)αβ ∈ Ωa(A′) iff α(x) ∈ Ωa(A′)

iff α(x) ∈ ΩA′

iff α′(hX(x)) ∈ ΩA′

iff Jh(x)KA′α′β′ ∈ ΩA′

θ is y ∈ Y .

JyKa(A′)αβ ∈ Ωa(A′) iff β(y) ∈ Ωa(A′)

iff β(y) ∈ ΩA′

iff β′(hY (y)) ∈ ΩA′

iff Jh(y)KA′α′β′ ∈ ΩA′
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θ is o(θ1, . . . , θk).

Jo(θ1, . . . , θk)Ka(A′)αβ ∈ Ωa(A′) iff oa(A′)(Jθ1Ka(A′)αβ, . . . , JθkKa(A′)αβ) ∈ Ωa(A′)

iff h(o)A′(Jθ1Ka(A′)αβ, . . . , JθkKa(A′)αβ) ∈ ΩA′

iff h(o)A′(Jh(θ1)KA′α′β′ , . . . , Jh(θk)KA′α′β′) ∈ ΩA′

iff Jh(o)(h(θ1), . . . , h(θk))KA′α′β′ ∈ ΩA′

iff Jh(o(θ1, . . . , θk))KA′α′β′ ∈ ΩA′

θ is #ϕ.

• ϕ is z ∈ Z.

J#zKa(A′)αβ ∈ Ωa(A′) iff #a(A′)(JzKa(A′)α) ∈ Ωa(A′)

iff #a(A′)(α(z)) ∈ Ωa(A′)

iff #A′(α(z)) ∈ ΩA′

iff #A′α′(hZ(z)) ∈ ΩA′

iff #A′(Jh(z)KA′α′) ∈ ΩA′

iff Jh(#z)KA′α′β′ ∈ ΩA′

• ϕ is c(ϕ1, . . . , ϕk).

J#(c(ϕ1, . . . , ϕk))Ka(A′)αβ ∈ Ωa(A′)

iff #a(A′)(Jc(ϕ1, . . . , ϕk)Ka(A′)α) ∈ Ωa(A′)

iff #a(A′)(ca(A′)(Jϕ1Ka(A′)α, . . . , JϕkKa(A′)α)) ∈ Ωa(A′)

iff #A′(ca(A′)(Jϕ1Ka(A′)α, . . . , JϕkKa(A′)α)) ∈ ΩA′

iff #A′(h(c)A′(Jϕ1Ka(A′)α, . . . , JϕkKa(A′)α)) ∈ ΩA′

iff #A′(h(c)A′(Jh(ϕ1)KA′α′ , . . . , Jh(ϕk)KA′α′)) ∈ ΩA′

iff #A′(Jh(c)(h(ϕ1), . . . , h(ϕk))KA′α′) ∈ ΩA′

iff J#h(c(ϕ1, . . . , ϕk))KA′α′β′ ∈ ΩA′

iff Jh(#(c(ϕ1, . . . , ϕk)))KA′α′β′ ∈ ΩA′

QED

The previous lemma and the two that follow are used to show that the
relations between terms and the relation between terms and formulas are
preserved by morphisms.

Lemma 4.8 Given A′ ∈ A′, 〈JθKa(A′)αβ, Jθ′Ka(A′)αβ〉 ∈va(A′) iff 〈Jh(θ)KA′α′β′ ,
Jh(θ′)KA′α′β′〉 ∈vA′ , where α′ and β′ are as in Definition 4.5.
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Proof: The proof follows by induction on the structure of θ and θ′. It is
only considered the case when θ is x1 in X since the other cases are similar.

θ′ is x2 ∈ X.

〈Jx1Ka(A′)αβ, Jx2Ka(A′)αβ〉 ∈va(A′) iff 〈α(x1), α(x2)〉 ∈va(A′)

iff 〈α(x1), α(x2)〉 ∈ vA′

iff 〈α′(hX(x1)), α′(hX(x2))〉 ∈ vA′

iff 〈Jh(x1)KA′α′β′ , Jh(x2)KA′α′β′〉 ∈vA′

θ′ is y ∈ Y .

〈Jx1Ka(A′)αβ, JyKa(A′)αβ〉 ∈va(A′) iff 〈α(x1), β(y)〉 ∈va(A′)

iff 〈α(x1), β(y)〉 ∈vA′

iff 〈α′(hX(x1)), β′(hY (y))〉 ∈vA′

iff 〈Jh(x1)KA′α′β′ , Jh(y)KA′α′β′〉 ∈vA′

θ′ is o(θ1, . . . , θk).
〈Jx1Ka(A′)αβ, Jo(θ1, . . . , θk)Ka(A′)αβ〉 ∈va(A′)

iff 〈α(x1), oa(A′)(Jθ1Ka(A′)αβ, . . . , JθkKa(A′)αβ)〉 ∈va(A′)

iff 〈α(x1), oa(A′)(Jθ1Ka(A′)αβ, . . . , JθkKa(A′)αβ)〉 ∈vA′

iff 〈α(x1), h(o)A′(Jθ1Ka(A′)αβ, . . . , JθkKa(A′)αβ)〉 ∈vA′

iff 〈α′(hX(x1)), h(o)A′ (Jh(θ1)KA′α′β′ , . . . , Jh(θk)KA′α′β′)〉 ∈vA′

iff 〈Jh(x1)KA′α′β′ , Jh(o(θ1, . . . , θk))KA′α′β′〉 ∈vA′

θ′ is #ϕ.

• ϕ is z ∈ Z.

〈Jx1Ka(A′)αβ, J#zKa(A′)αβ〉 ∈va(A′) iff 〈α(x1),#a(A′)(JzKa(A′)α〉 ∈va(A′)

iff 〈α(x1),#a(A′)(α(z))〉 ∈va(A′)

iff 〈α(x1),#A′(α(z))〉 ∈vA′

iff 〈α′(hX(x1)),#A′(α′(hZ(z1)))〉 ∈vA′

iff 〈Jh(x1)KA′α′β′ ,#A′(Jh(z)KA′α′β′)〉 ∈vA′

iff 〈Jh(x1)KA′α′β′ , Jh(#z)KA′α′β′〉 ∈vA′

• ϕ is c(ϕ1, . . . , ϕk).

〈Jx1Ka(A′)αβ, J#(c(ϕ1, . . . , ϕk))Ka(A′)αβ〉 ∈va(A′)
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iff 〈α(x1),#a(A′)(Jc(ϕ1, . . . , ϕk)Ka(A′)α)〉 ∈va(A′)

iff 〈α(x1),#a(A′)(ca(A′)(Jϕ1Ka(A′)α, . . . , JϕkKa(A′)α))〉 ∈va(A′)

iff 〈α(x1),#A′(ca(A′)(Jϕ1Ka(A′)α, . . . , JϕkKa(A′)α))〉 ∈vA′

iff 〈α′(hX(x1)),#A′(h(c)A′(Jϕ1Ka(A′)α, . . . , JϕkKa(A′)α))〉 ∈vA′

iff 〈Jh(x1)KA′α′β′ ,#A′(h(c)A′(Jh(ϕ1)KA′α′ , . . . , Jh(ϕk)KA′α′))〉 ∈vA′

iff 〈Jh(x1)KA′α′β′ ,#A′(Jh(c(ϕ1, . . . , ϕk))KA′α′)〉 ∈vA′

iff 〈Jh(x1)KA′α′β′ , J#h(c(ϕ1, . . . , ϕk))KA′α′β′〉 ∈vA′

iff 〈Jh(x1)KA′α′β′ , Jh(#(c(ϕ1, . . . , ϕk)))KA′α′β′〉 ∈vA′

QED

Lemma 4.9 Given A′ ∈ A′, 〈JθKa(A′)αβ, JϕKa(A′)α〉 ∈≤a(A′) iff 〈Jh(θ)KA′α′β′ ,
Jh(ϕ)KA′α′〉 ∈≤A′ , where α′ and β′ are as in Definition 4.5.

Proof: The proof follows by structural induction on θ and in ϕ. It is only
considered the case when θ is x in X since the proof of the other ones are
similar to the proofs shown before.

• ϕ is z ∈ Z.

〈JxKa(A′)αβ, JzKa(A′)α〉 ∈≤a(A′) iff 〈α(x), α(z)〉 ∈≤a(A′) iff 〈α(x), α(z)〉
∈≤A′ iff 〈α′(hX(x)), α′(hZ(z))〉 ∈≤A′ iff 〈Jh(x)KA′α′β′ , Jh(z)KA′α′〉 ∈≤A′

• ϕ is c(ϕ1, . . . , ϕk).

〈JxKa(A′)αβ, Jc(ϕ1, . . . , ϕk)Ka(A′)α〉 ∈≤a(A′)

iff 〈α(x), ca(A′)(Jϕ1Ka(A′)α, . . . , JϕkKa(A′)α)〉 ∈≤a(A′)

iff 〈α(x), h(c)A′(Jϕ1Ka(A′)α, . . . , JϕkKa(A′)α)〉 ∈≤A′

iff 〈α′(hX(x)), h(c)A′(Jh(ϕ1)KA′α′ , . . . , Jh(ϕk)KA′α′)〉 ∈≤A′

iff 〈Jh(x)KA′α′β′ , Jh(c)(h(ϕ1), . . . , h(ϕk))KA′α′〉 ∈≤A′

iff 〈Jh(x)KA′α′β′ , Jh(c(ϕ1, . . . , ϕk))KA′α′〉 ∈≤A′

QED

The next proposition shows that logic system morphisms preserve satis-
faction of assertions. That is, the semantics of the source logic system is kept
by the morphism.

Proposition 4.10 (Preservation of satisfaction) Givenm : L → L′ and
A′ ∈ A′, a(A′)αβ 
L γ iff A′α′β′ 
L′ h(γ) where α′ and β′ are as in the Def-
inition 4.5.
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Proof: The proof is by induction on γ.
(i) a(A′)αβ 
 Ωθ iff JθKa(A′)αβ ∈ Ωa(A′) iff (by Lemma 4.7) Jh(θ)KA′α′β′

∈ ΩA′ iff A′α′β′ 
 Ωh(θ) iff A′α′β′ 
 h(Ωθ).
(ii) a(A′)αβ 
 0θ iff JθKa(A′)αβ 6∈Ωa(A′) iff (by a variant of Lemma 4.7)

Jh(θ)KA′α′β′ 6∈ΩA′ iff A′α′β′ 
 0h(θ) iff A′α′β′ 
 h(0θ).
(iii) a(A′)αβ 
 θ v θ′ iff 〈JθKa(A′)αβ, Jθ′Ka(A′)αβ〉 ∈va(A′) iff (by Lemma

4.8) 〈Jh(θ)KA′α′β′ , Jh(θ′)KA′α′β′〉 ∈vA′ iff A′α′β′ 
 h(θ) v h(θ′) iff A′α′β′ 

h(θ v θ′).

(iv) a(A′)αβ 
 θ 6v θ′ iff 〈JθKa(A′)αβ, JθKa(A′)αβ〉 6∈ va(A′) iff (by a variant
of Lemma 4.8) 〈Jh(θ)KA′α′β′ , Jh(θ′)KA′α′β′〉 6∈ vA′ iff A′α′β′ 
 h(θ) 6vh(θ′) iff
A′α′β′ 
 h(θ 6v θ′).

(v) a(A′)αβ 
 θ ≤ ϕ iff 〈JθKa(A′)αβ, JϕKa(A′)αβ〉 ∈≤a(A′) iff (by Lemma 4.9)
〈Jh(θ)KA′α′β′ , Jh(ϕ)KA′α′β′〉 ∈≤A′ iff A′α′β′ 
 h(θ) ≤ h(ϕ) iff A′α′β′ 
 h(θ ≤
ϕ).

(vi) a(A′)αβ 
 θ � ϕ iff 〈JθKa(A′)αβ, JϕKa(A′)αβ〉 6∈ ≤a(A′) iff (by a variant
of Lemma 4.9) 〈Jh(θ)KA′α′β′ , Jh(ϕ)KA′α′β′〉 6∈ ≤A′ iff A′α′β′ 
 h(θ) � h(ϕ) iff
A′α′β′ 
 h(θ � ϕ).

(vii) a(A′)αβ 
 ∆′ → ∆′′ iff a(A′)αβ 
 δ for some δ ∈ ∆′′ ∪ ∆′. So δ
is an assertion that is proved in (i)-(vi) and so A′α′β′ 
 h(δ) with h(δ) ∈
h(∆′′ ∪∆′), then A′α′β′ 
 h(∆′ → ∆′′). The other side is analogous. QED

It is possible to establish results that do not seem obvious using the
previous proposition as showed in the following corollary.

Corollary 4.11 Given a morphism m : L → L′ and a rule r = 〈{γ1, . . . , γk},
γ, π〉 ∈ R, if A′ 
 h∗(r) then a(A′) 
 r, for any A′ ∈ A′.

Proof: Let α be an unbound variable assignment over a(A′). Suppose that
a(A′)α 
 γn for n = 1, . . . , k. Then by Proposition 4.10 A′α′ 
 h∗(γn) for
n = 1, . . . , k. By hypothesis, A′α′ 
 h∗(γ) and so, applying again Proposition
4.10, a(A′)α 
 γ. QED

An interesting property is the preservation of the satisfaction of the rules
of a logic system. The next proposition shows that the rules are preserved
by logic system morphisms.

Proposition 4.12 Given a sound logic system L and a logic system mor-
phism m : L → L′, if r = 〈{γ1, . . . , γn}, ϕ, π〉 ∈ R then h(γ1), . . . , h(γn) �L′

h(ϕ).

27



Proof: Taking r = 〈{γ1, . . . , γn}, ϕ, π〉 ∈ R then γ1, . . . , γn `L ϕ. Since
L is sound, then γ1, . . . , γn �L ϕ and so, by the definition of entailment, if
Aα 
L γi for i = 1, . . . , n then Aα 
L ϕ for any algebra A in A and any
unbound variable assignment α over A.

Let A′ ∈ A′ and α′ be an unbound variable assignment over A′. Suppose
A′α′ 
 h(γi) for i = 1, . . . , n. So, by Proposition 4.10, a(A′)α 
 γi for
i = 1, . . . , n where α = α′ ◦ h. By satisfaction of r, a(A′)α 
 ϕ and so again
by Proposition 4.10, A′α′ 
 h(ϕ). Thus, h(γ1), . . . , h(γn) �L′ h(ϕ). QED

4.2 Fusion as a pushout

In this subsection a categorical description of fusion is given by showing that
it is a pushout in Log. In a general way, fusion is obtained as a colimit as
illustrated by the diagram in Figure 2 where the morphisms are inclusions.
Herein the emphasis is on the case where both logic systems are modal.

Common Logic System
G g

ttiiiiiiiiiiiiiiiii � w

**UUUUUUUUUUUUUUUUU

Logic System A
x�

**VVVVVVVVVVVVVVVVVV
Logic System B

fF

tthhhhhhhhhhhhhhhhhh

Fusion

Figure 2: General diagram of fusion

For this purpose, the concept of reduct of an algebra by a morphism is
introduced.

Definition 4.13 Given a Σ-algebra A = 〈F, T, ·A〉 and a signature map
h : Σ′ → Σ, the reduct of A by h is a Σ′-algebra A|h = 〈F, T, ·A|h〉 where:

• for each connective c ∈ Σ′, cA|h = h(c)A;

• for each operator o ∈ Σ′, oA|h = h(o)A;

• #A|h = #A, ΩA|h = ΩA, vA|h=vA and ≤A|h=≤A.

The categorical definition of fusion is given by the next definition: it is
the pushout in Log of the diagram of Figure 3.

Definition 4.14 Let L1 = 〈Σ1,R1,A1〉 and L2 = 〈Σ2,R2,A2〉 be two modal
logic systems. The fusion of these logic systems is the object of the pushout
in Log of the diagram of Figure 3, where LC = 〈ΣC ,RC ,AC〉 is such that
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• ΣC ⊇ ΣP where ΣP is the signature of propositional logic;

• RC ⊇ StructuralRules ∪ OrderRules ∪ {I,ΩI, lb1, lb2,Lf ,Rf ,Lt,Rt,
L∧,R∧,L∨,R∨,L⊃,R⊃,L¬,R¬};

• AC = 〈F, T, ·AC
〉 is the class of all ΣC-algebras;

and the morphisms inci = 〈inci h, inci a〉 with i = 1, 2 are inclusions and
inci a(Ai) = Ai|inci h.

LCN n

inc1

}}||
||

||
||

� p

inc2

!!B
BB

BB
BB

B

L1 L2

Figure 3: Diagram for fusion

The algebraic fusion of L1 and L2 mentioned in Section 3 coincides with
the object of the pushout described in Definition 4.14 when the signature ΣC

coincides with ΣP and similarly for RC .
The following example illustrates the fusion of two modal systems: one for

deontic logic and the other for knowledge logic. One possible area of use of a
system that reasons about knowledge and obligation is for example in multi-
agent systems in computer science since it allows to talk about obligatory
behaviors and knowledge of the agents.

Example 4.15 The fusion of the deontic modal system D of Example 2.28
with the knowledge modal system K of Example 2.30 is obtained by tak-
ing the morphisms inc1 : LC → D and inc2 : LC → K, where inc1 =
〈inc1 h, inc1 a〉 and inc2 = 〈inc2 h, inc2 a〉, such that:

• ΣC coincides with ΣP where ΣP is the signature of propositional logic
and RC is such that the second item in Definition 4.14 is an equality;

• inc1 h : ΣC → ΣD and inc2 h : ΣC → ΣK are the inclusions of ΣC in
ΣD and ΣK respectively,

• inc1 a(AD) = AD|inc1 h and inc2 a(AK) = AK |inc2 h for AD ∈ AD and
AK ∈ AK (note that both reducts are ΣC-algebras and so, are in AC).

The object of the pushout of 〈inc1, inc2〉 is the fusion of D and K and is
such that:

• the signature is ΣC ∪ 〈{2D, K1, . . . , Kn}, {ND,N1, . . . ,Nn}, X, Y, Z〉;
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• the set of rules is RC ∪ {LNDΩ, LNiΩ, RNDΩ, RNiΩ, L2D, LKi,
R2D, RKi, D, Ti, 4i 5i} for i = 1, . . . , n;

• the class of algebras is the class of algebras induced by general Kripke
structures where there are n accessibility relations that are equivalence
relations together with a relation that is right-unbounded.

Note that, in the context of fusion, formulas as 2DK1ϕ mean that it is
obligatory that agent 1 knows ϕ.

It is now provided a more detailed characterization of the pushout, that
is, a description of the components of the objects and of the morphisms that
constitute the colimit of the diagram of Figure 3. Note that the object of
the pushout is the fusion of the logic systems.

Proposition 4.16 The triple 〈L,m1,m2〉 where L = 〈Σ,R,A〉 and mi =
〈mi h,mi a〉 : Li → L for i = 1, 2, are such that

• 〈Σ,m1 h,m2 h〉 is the pushout in Sig of the morphisms inc1 h and
inc2 h introduced in Definition 4.14;

• R = m1 h
∗(inc1 h

∗(RC)) ∪m1 h
∗(R1\RC) ∪m2 h

∗(R2\RC);

• A = {A1 A2 = 〈F, T, ·A1 A2〉 : inc1 a(A1) = inc2 a(A2) = 〈F, T, ·AC
〉 and

m1 h(c)A1 A2 = cA1 for c ∈ C1,m2 h(c)A1 A2 = cA2 for c ∈ C2;
m1 h(o)A1 A2 = oA1 for o ∈ O1,m2 h(o)A1 A2 = oA2 for o ∈ O2;
#A1 A2 = #A1 ,vA1 A2=vA1 ,≤A1 A2=≤A1 ,ΩA1 A2 = ΩA1};

• mi a(A1 A2) = Ai for i = 1, 2

is the pushout of the diagram of Figure 3. So, L is the fusion of L1 and L2.

Proof: Suppose there is 〈L′, l1, l2〉 such that l1 ◦ inc1 = l2 ◦ inc2. It has to be
shown that there is a unique morphism u : L → L′ such that u ◦m1 = l1 and
u◦m2 = l2. Let u h(inci h)) = li h◦mi h

−1 and u a(A′) = l1 a(A′) l2 a(A′).
Unicity of u: Suppose there is n : L → L′ such that n ◦ m1 = l1 and

n ◦ m2 = l2 and n 6= u. Then n h = u h since 〈Σ,m1 h,m2 h〉 is the
pushout in Sig. Let A′ ∈ A′ and n a(A′) = Ax Ay. So, m1 a ◦ n a(A′) =
m1 a(Ax Ay) = Ax = l1 a(A′) and m2 a ◦ n a(A′) = m2 a(Ax Ay) = Ay =
l2 a(A′). Thus, n a = u a. Therefore, n = u. QED

An interesting point about the categorical account of fusion is that is
possible to change the shared connectives and operators by simply changing
the “common logic system”, LC , of Definition 4.14. In fact, the definition
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assumes at least the propositional logic system as the common core, so it is
possible to consider extensions of that logic.

The possibility of sharing modalities is now illustrated with an example of
the fusion of two well known normal modal logics: a system with a reflexive
accessibility relation and other with a transitive accessibility relation.

Example 4.17 Let L4 = 〈ΣM ,RM ∪ {4},A4〉 be the modal logic system
where 4 is the rule 4i in Table 9 and A4 is a class of algebras induced by
general Kripke structures such that the accessibility relation is transitive,
and LT = 〈ΣM ,RM ∪ {T},AT 〉 be the modal logic system where T is the
rule Ti in Table 9 and AT is a class of algebras induced by general Kripke
structures such that the accessibility relation is reflexive.

Take LC = 〈ΣM ,RM ,AM〉, the “common logic system” in the fusion
according to Definition 4.14, such that ΣM is the signature described in
Definition 2.2, RM is the set of rules described in Definition 2.23, and AM is
a class of ΣM -algebras full for 〈ΣM ,RM〉. That is, LC is the normal modal
logic system known in the literature as K.

The system resulting from the fusion of L4 and LT sharing LC is LS4 =
〈ΣM ,RM ∪ {4, T},AS4〉 where AS4 is the class of algebras induced by gen-
eral Kripke structures such that the accessibility relation is transitive and
reflexive, commonly known as the S4 modal system.

5 Preservation of properties

The section starts by presenting results about preservation of soundness and
completeness by fusion and ends with an illustration of the application of
these results.

Theorem 5.1 (Soundness of the fusion) The fusion of sound logic sys-
tems is sound.

Proof: Consider the logic systems L1 and L2 and their fusion L using the
logic system LC for specifying the shared connectives as described in Defini-
tion 4.14.

The proof follows by applying Proposition 4.12 to each rule r=〈{s1, . . . , sn},
s, π〉 of R. Several cases have to be considered:

• r ∈ m1 h
∗(R1\RC), that is, it is a rule from L1. As L1 is sound,

by Proposition 4.12 m1 h
∗(s1), . . . ,m1 h

∗(sn) �L m1 h
∗(s) � π. The

reasoning is analogous if r ∈ m2 h
∗(R2\RC);
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• r ∈ RC . Then r = m1 h
∗(r′) = m2 h

∗(r′′) for some r′ ∈ R1 and
r′′ ∈ R2, so it is the same case as before.

Therefore, each rule in R is sound entailed in L. So the class of algebras
A is appropriate for 〈Σ,R〉. QED

The main goal is preservation of completeness. The idea is to show that
completeness is preserved through the preservation of sufficient conditions
for completeness.

Thus, first, sufficient conditions for a logic system to be complete are
established: to be full and with rules endowed with persistent provisos. This
result is proved by a Lindenbaum technique. For this purpose, it is now
defined what is a consistent set and a syntactical algebra.

Definition 5.2 A set S of closed sequents is said to be consistent if for no
closed assertion δ both S `→ δ and S `→ δ hold. And it is said to be
maximal consistent if for every closed assertion δ either→ δ ∈ S or→ δ ∈ S
but not both.

Definition 5.3 Given a sequent calculus C = 〈Σ,R〉 and a maximal consis-
tent set S of closed sequents over Σ, the syntactic algebra induced by C and
S is the following Σ-algebra:

A(C, S) = 〈cgF (Σ), cgT (Σ), ·A(C,S)〉

where

• cA(C,S) = λf1 . . . fk.c(f1, . . . , fk);

• oA(C,S) = λt1 . . . tk.o(t1, . . . , tk);

• #A(C,S) = λf.#f ;

• τ ∈ ΩA(C,S) iff S `L→ Ωτ ;

• 〈τ1, τ2〉 ∈vA(C,S) iff S `C→ τ1 v τ2;

• 〈τ, ϕ〉 ∈≤A(C,S) iff S `C→ τ ≤ ϕ.

Let ϕ ∈ gF (Σ) and θ ∈ gT (Σ). Given an unbounded variable assignment
α and a bounded variable assignment β both over a syntactic algebra A(C, S),
ϕα denotes the closed simple formula obtained from ϕ by replacing each
variable z ∈ Z by α(z); and θαβ denotes the closed term obtained from θ
by replacing each variable x ∈ X by α(x) and each variable y ∈ Y by β(y).
This notation is extended to ground assertions and bags of ground assertions
by identifying ϕαβ with ϕα.
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Lemma 5.4 Let C be a structural calculus, S a maximal consistent set of
closed sequents, α an unbound variable assignment and β a bound variable
assignment (both over A(C, S)), ϕ a ground simple formula, θ a ground term,
δ a ground assertion and ∆′ → ∆′′ a ground sequent. Then:

• JϕKA(C,S)αβ = ϕα;

• JθKA(C,S)αβ = θαβ;

• A(C, S)αβ 
 δ iff S `C→ δαβ;

• A(C, S)αβ 
 ∆′ → ∆′′ iff S `C ∆′αβ → ∆′′αβ.

Proof: The first two items are proved from a straightforward induction on
the complexity of ϕ and θ, respectively.

The third item follows by using the previous results and the fact that S
is maximal consistent.

The last item follows from the third one, the metatheorem of conjugation
and the metatheorem of contradiction. QED

Taken a sequent calculus and a class of syntactical algebras induced by
it, it is now shown that these algebras are appropriate for this calculus.

Lemma 5.5 The class of all syntactic algebras induced by a sequent calculus
is appropriate for it.

Proof: The proof follows by using Lemma 5.4 for each rule of the sequent
calculus. QED

The next lemma is crucial to prove completeness. It makes possible to
consider the consistent extension of a consistent set of closed sequents.

Lemma 5.6 Let C be a structural sequent calculus with rules endowed with
persistent provisos. If S is a consistent set of closed sequents and S 6`C →
v1, . . . , vm for closed assertions v1, . . . , vm then the set S ∪{→ v1, . . . ,→ vm}
is still consistent.

Proof: Assuming that S ∪ {→ v1, . . . ,→ vm} is inconsistent and using the
metatheorem of contradiction, the metatheorem of deduction, the metatheo-
rem of conjugation and by right contraction, a contradiction is found. QED

Theorem 5.7 (Algebraic Completeness) Every full structural sequent
logic system with rules endowed with persistent provisos is complete.

33



Proof: Consider the logic L = 〈Σ,R,A〉 and let C = 〈Σ,R〉. Assume that
S 6`R∆′ → ∆′′ with S ∪ {∆′ → ∆′′} composed of closed sequents.

Given an enumeration vn with n ∈ N of the set of closed assertions, start
by extending S to a maximal consistent set S• as follows:

• S0 = S ∪ {→ δ : δ ∈ ∆′′ ∪∆′};

• Sn+1 =

{
S ∪ {→ vn} provided that Sn `R→ vn
S ∪ {→ vn} otherwise

;

• S• = ∪n∈NSn.

Observe that S• is still consistent thanks to Lemma 5.6. Furthermore, by
construction, it is maximal consistent. Therefore, S• 6`R∆′ → ∆′′ because
otherwise S• `R δ for some δ ∈ ∆′′∪∆′ and, hence, S• would be inconsistent.
Thus, by Lemma 5.4 applied to a closed sequent, A(C, S•) 6
 ∆′ → ∆′′.

On the other hand, for every s ∈ S, S `R s holds, and thus, again thanks
to Lemma 5.4, A(C, S•) 
 s.

Since the logic is full and taking into account Lemma 5.5, A(C, S•) is in
A. Hence, S 6�A∆′ → ∆′′. QED

Using the result for completeness given in Theorem 5.7, it is possible to
show the preservation of completeness by the fusion under mild conditions.

Theorem 5.8 (Preservation of completeness by fusion) The fusion of
two full logic systems with rules endowed with persistent provisos is complete.

Proof: From Theorem 5.7 it can be concluded that if a logic system is full
with rules endowed with persistent provisos, then it is complete.

Let Li = 〈Σi,Ri,Ai〉 with i = 1, 2 be the component logic systems and
L = 〈Σ,R,A〉 the fusion of them.

As the rules of R comes only from R1 or R2 and both have only rules
endowed with persistent provisos, so it will have R.

Taking an appropriate Σ-algebra A it must be shown that A ∈ A.
Take A|Σ1 , it is appropriate for the calculus 〈Σ1,R1〉 since all rules r =

〈{s1, . . . , sp}, s, π〉 that belongs to R1 are also in R. Since s1, . . . , sp �A s�π
then s1, . . . , sp �A|Σ1

.
The same happens to A|Σ2 . So A = A|Σ1 A|Σ2 ∈ A. QED

The paper finishes with a conclusion about soundness and completeness
of the fusion of K and D logic systems presented in Example 4.15, and of the
fusion of D and GL logic systems showed in Section 3.
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Example 5.9 Consider the logic system resulting from the fusion of a knowl-
edge logic system and a deontic logic system as described in Example 4.15.
The knowledge and the deontic systems are sound, so the logic system re-
sulting from the fusion is also sound. Moreover it is complete since all the
rules of knowledge and deontic systems are endowed with persistent provisos
and their classes of algebras are full.

Now consider the logic system resulting from the fusion of the deontic
logic system and the provability logic system, presented in Example 3.2.
Both component logic systems are sound, so their fusion is also sound. The
logic system resulting from the fusion is complete since all the rules of deontic
and Löb provability systems are endowed with persistent provisos and both
classes of algebras are full.

6 Concluding remarks

Fusion was extended to sequent systems labelled with truth values and suf-
ficient conditions for preservation of completeness and soundness were ob-
tained. These conditions are fulfilled by a wide class of systems. The tech-
nique was applied to the fusion of a deontic logic system with a knowledge
logic system with n agents and to the fusion of a Löb provability modal logic
system with a deontic logic system. The extension of fusion to other types
of logic systems, like systems for non-normal modal logics, deserves further
investigation. In fact, our intuition is that these systems are naturally ex-
pressed in the context described herein.

Future work includes preservation by fusion of other logic properties (such
as interpolation), the generalization of the logic system morphism to the case
where algebras do not have the same values as well as the investigation of
fusion in this context. Moreover applications to combination of intuitionist,
relevance and many-valued logics are envisaged.
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over algebras of truth values. In A. Armando, editor, Frontiers of Com-
bining Systems 4, volume 2309 of Lecture Notes in Artificial Intelligence,
pages 222–238. Springer-Verlag, 2002.

[20] G. Restall. An Introduction to Substructural Logics. Routledge, New
York, 2000.

[21] A. Russo. Generalising propositional modal logic using labelled deduc-
tive systems. In Frontiers of Combining Systems (FroCos), pages 57–73,
1996.

[22] R. H. Thomason. Combinations of tense and modality. In D. Gabbay
and F. Guenthner, editors, Handbook of Philosophical Logic: Volume II:
Extensions of Classical Logic, pages 135–165. Reidel, Dordrecht, 1984.
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