
A Categorial Theory of Objects as Observed Processes

H . - D . Eh r i ch

Abteilung Datenbanken, Technische Universit~t Braunschweig, D-3300 Braunsehweig, FR. GERMANY

J . A . Go g u en

Programming Research Group. Oxford University Computing Lab. Oxford OXI 3QD. GREAT BRITAIN

A. Sc rnadas

Departamento de Matematica, Instituto Superior T6cnico. 1096 Lisboa Codex, PORTUGAL

Abstract - ~ e semantic domain for object-oriented languages and systems outlined in this
paper is an amalgamation of two approaches: the objects-as-sheaves approach of the second
author published nearly two decades ago, and the more recent ideas of the first and third
authors on objects as processes endowed with observation. The basic insight is that objects in the
latter sense correspond to object morphisms in the former sense. After an informal intro-
duction into both approaches, we first elaborate on the sheaf model, using the term "behaviour"
for objects in this sense, and avoiding concepts from topology. Behaviours and behaviour
morphisms are shown to form a complete category where parallel composition is reflected by
limits. Objects are defined to be behaviour morphisms, giving rise to a cocompletc category of
objects where colimits reflect object aggregation. Object morphisms reflect different forms of
inheritance, and also object reifieation (implementing objects over objects) is conveniently
expressed in this framework.

Key words - o b j e c t - o r i e n t e d s y s t e m ; objec t ; ob jec t morph i sm ; p r o c e s s ; behaviour ; ob jec t
agg rega t ion : p a r a l l e l compos i t ion ; ob jec t inher i t ance ; ob jec t r e i f i ca t ion .

204

I. In t roduc t ion

What is an object ? Although substantial agreement has been obtained on many basic intuitions,

as yet there is no coherent theory which can cope with all aspects, including object interaction

and aggregation, object inheritance, object types and classes, object specification and implement-

ation, object correctness and verification, etc., and which can provide a sufficiently rich and

reliable basis for designing, implementing and using object-oriented languages and systems.

It is standard to view object-oriented systems as communities of interacting objects where all

objects operate concurrently on data of various types. Accordingly, process theory and abstract

data type theory provide relevant building blocks for object theory, but their integration is far

from trivial. There are many different formalisms, and it is difficult to compare, combine or

apply them. In particular, logics and models are often not clearly distinguished, and are rarely

combined. Moreover, there are many different levels of abstraction.

This paper combines two semantic approaches to object theory. It restructures the objects-as-

observed-processes approach developed mainly by the first and third authors in view of the

objects-as-sheaves approach of the second author, first published nearly two decades ago.

Sheaf theory developed in mathematics for studying relationships between local and global

phenomena, and has been applied in algebraic geometry, differential geometry, analysis, and

even logic. It has also been developed in an abstract form using category theory (Gra65, Gro71).

Section 2.2 gives an informal overview of this approach, and full information can be found in

(Go71, Go75, Gog0a).

Section 2.1 reviews the basic ideas of the objects-as-observed-processes approach. Its development

can be traced in (SSE87, SFSE89a, SFSE89b, ESS89, ESS90, ES90). The main difference from

previous papers is the uniform treatment of processes and observations influenced by the sheaf

approach: both the process part and the observation part appear as "objects" in the latter sense,

called "behaviours" here in order to avoid confusion. These parts are related by a behavivur

morphism which tells how the process "triggers" observations.

The mathematics of behaviours and behaviour morphisms is developed in chapter 3 in a purely

categorial framework, establishing the category BHV of behaviours. BHV is shown to be complete,

and limits are shown to reflect parallel composition of behaviours.

In chapter 4, we introduce objects as behaviour morphisms, and object morphisms as commutative

squares in BHV. This way, the category OB of objects is constructed from BHV by a well

known categorial construction, namely as a "comma category". OB is shown to be cocomplete,

with colimits reflecting object aggregation. Our very general notion of object mvrphism is shown

to cover different kinds of inheritance relationships between objects as special eases. Finally, we

briefly describe how object reification (implementing objects over objects, el. ES90) is conveniently

expressed in this framework.

205

Z Motivation

2.1 Objects as Observed Processes

Following the argument in SEg0, a computer system as a whole is a symbolic machine which is

able to receive, manipulate, store, produce and transmit data. As such, the computer system is

composed of two basic kinds of parts. On one hand, we have the storage components such as

flies, records, databases and, of course, working areas in central memory. These storage com-

ponents are able to memorize lexical things like integers, names and so on, in general known as

data. On the other hand, we have the process components such as running application programs,

transactions, operating systems programs and so on. These process components are responsible

for the activity of the computer system. They receive, manipulate and produce all sorts of data

using, whenever necessary, the storage components.

In spite of their apparent diversity, we can recognise some important common features among

all these parts of the computer system. Forgetting data for the moment, both the storage and

the process components have a distinct temporal and spatial existence. Any instance of either one

of them is created and evolves through time (i.e. changes its state), possibly moving from one

place to another, until it is finally destroyed (if ever). Any such instance is able to retain data,

is able to replace the data it retains, and may be either persistent (with a long life) or transient

(with a short life).

The only intrinsic difference be tween a so cal led storage component and a process component is

in its liveness. The former is passive whereas the lat ter is active. That is to say, the la t ter has

liveness requirements and initiative in the sense that it has the ability to reach desired goals by

i tself (e.g. termination of program execution), whereas the former waits passively for interactions

with the surrounding active components. In traditional jargon, the lat ter is given CPU resources,

the former is not. Thus, we should look at all those components of the computer system as

examples of the same concept - the object - with varying degrees of liveness and persistence.

In conclusion, barring the liveness and initiative issues, an object (or actor as some authors

prefer to cal l it when a community of full concurrent objects is involved) is a process endowed

with t race-dependent attributes. That is, an object is an observed process: when we look at it

we are able to observe the sequence of events in its life, as wel l as the corresponding sequence

of attribute values.

As an i l lustration, consider a stack of integers as a (passive) object. When we look at it we

might observe the following sequences:

events attribute values

new empty=true

push(3) top=3 empty=false

push(7) top=7 empty=false

pop top=3 empty=false

pop empty=true

206

In a sense, the object stack when observed displays two kinds of behaviour: (1) its traditional

trace of atomic operations made upon it (possibly initiated by some other agent, which we ignore

here since we are not interested in initiative issues); (2) its corresponding trace of attribute values.

More formally, an object can be defined as a map between behaviours: from the operations

behaviour into the attributes behaviour. We adopt the standard terminology within the process

community and use the word event instead of "atomic operation". Clearly, events and attributes

correspond to "atomic methods" and "slots", respectively, in the terminology of the object-oriented

community.

Returning to the stack example, we have to consider the following alphabets of atomic observ-

ations (of events and attribute values, respectively):

Estack = {new, pop, drop} v {push(n): n~o}

Vstack = {(top,n) I n~o} u {(empty,false), (empty,true)}

The former contains all possible events which we may observe in the stack. The tat ter contains

all possible attribute values which we also may observe in that object. (Please note that we

previously used tile notation " top=n" for tile pair (top,n).)

But what are the possible behaviours of the stack? With respect to its traces of events, almost

anything is possible: as long as its life starts with the birth operation new, we may subsequently

see any sequence of puslfs and pop's (with the proviso that a pop is not possible when the stack

is empty), possibly ending with the death operation drop. With respect to traces of attribute

values, we may see sets of pairs (attribute, value) following some rule making them dependent

on the observed trace of events.

Actually, as we shall discuss later on, an essential part of an object is precisely this mechanism

linking the two observations. We might even argue that this mechanism is the object (cf. section

4.1 below).

It is interesting to note how easily we accepted traces of sets of a t t r ibute-value pairs for

describing the attribute observation behaviour. For instance at a given instant if we observe

(top, 7), (empty, false)

we say that top = 7 and empty = false. Moreover, if we observe

(empty, false)

we say that top is undefined and empty = false. Finally. if we observe

{top, 7), (top,9) , (empty, false)

we would say that top is either 7 or 9 (nondeterminism !) and empty = false.

That is, from the side of the attributes, we natural ly adopt a mathematical model supporting

both part ial ly defined and nondeterministic attributes: it is enough for that purpose to consider

traces of sets of at t r ibute-value pairs.

It is now reasonable to ask if traces of sets of events might also be useful. Indeed, they are:

they solve the problem of considering composite objects and their behaviours. As an i l lustration,

consider two isomorphic copies stackl and stack2 of our original stack. The question is: what is

the "joint behaviour" of the composite object stackl Ilstaek2 ?

We would expect joint traces like the following one:

207

events a t t r~u te values

newl emptyl=true

pushl(3) topl=3 emptyl=false

new2 topl=3 emptyl=false

pushl (7) topl=7 emptyl=false

popl topl=3 emptyl=false

popl push2(9) emptyl=true top2=9

pop2 emptyl=true

empty2=true

empty2=true

empty2=true

empty2=false

empty2=true

This corresponds to the combination of possible traces of the components, assuming that we

accept that two events may happen at the same time: for instance popl and push2(9) happen at

the same time in the t race above. Thus, we are not restricting ourselves to the pure model of

interleaving; although such models of processes are simpler, they are not as powerful as models

supporting full concurrency (our model is somewhere in between).

In conclusion, with respect to event behaviour, in order to deal with composition of objects, we

also want to consider traces of sets of events. Please note that, as far as processes are con-

cerned, this composition corresponds to para l le l composition.

It is useful to introduce here the metaphor of the "blinking observer". Assume that you are an

observer who is always blinking (opening and closing your eyes forever). Assume further that

you open your eyes for very short periods of time, but that the rate of blinking is as high as

needed (you are a very effective observer). Then when you look at an object, you will see its

traces of events and of attribute values as follows: Each time you open your eyes you take note

of the events happening at that time; and you also take note of the values of the attributes at that

time. (This assumes that events always fit into one of your open eyed periods. Naturally, if your

rate is not fast enough you may loose some events.)

But assuming that you are a perfect observer, you will see al l the traces of al l the objects

around you. You will notice which events happen at the same time (synehronised) and what are

the attribute values at each time. Events of different objects may appear inter leaved and/or at

the same time.

This metaphor is also useful when understanding object interaction. In general two objects which

we want to put together may interact (e .g. , by sharing events). As an i l lustration, consider that

stackl and stack?, above are independent (do not interact) except with respect to creation: they

are to be created at the same time. In that case, whenever you observe them when you open

your eyes , either newl and new2 are happening (at the same time) or neither of them is happening.

Thus, when two events are shared by two objects , they are always observed together.

Tile mathematical development of this metaphor is carried out in chapter 3. But it should be

noted that already in Go75 a similar view (reviewed in section 2.2) was proposed, but without

considering the mechanism for relating event behaviour and at t r ibute-value behaviour. The lat ter

has been under active research in the IS-CORE project (ESS89, ESS90, ES90, SFSE89a+b, SSE87).

The two views are brought together in this paper.

It is perhaps useful to take one last insight from the blinking observer metaphor. The observer

introduces a fixed time frame which is independent of the "local times" of the observed objects.

208

As we shal l see, this makes life much easier when combining objects. In this respec t , the

p resen t paper is far away from previous IS-CORE papers which took the posit ion that each

object has its own local t ime s t ruc ture (namely the s t ruc tu re implied by the t race of events

which have a l ready happened).

2.2 Objects as Sheaves

Let 's consider the case of an object 0 which is " t r anspa ren t " in the sense that it has no hidden

events , i.e., all of its behaviour is observable; in the language of sof tware engineering, we could

say that none of it is hidden, pr ivate , or encapsulated. For such an object, its events are its

bellaviour.

Let us also assume an ideal observer, who sees everything that he can, subject to his par t i cu la r

l imitat ions, during his par t i cu la r l ifetime; and let us assume that he leaves behind a data record

which fai thfully records al l of his observat ions, carefu l ly indexed by the t ime at which they

were made. However , it is possible that different observers have different l i fet imes, and that

observers with the same l i fet ime observe different things. Le t TIME denote the set of al l

possible l i fe t imes of ideal observers (la ter we will give TIME the s t ruc tu re of a category) .

For the moment, let 's r es t r i c t a t ten t ion to discrete l inear time, so that we can assume each

observer ' s l i fet ime is of the form {1,2 }, and that the object he is observing comes into

exis tence at t ime t = l . Thus, an observer sees some "snapshot")`(t)cS at each moment of t ime t ,

where S is the set of al l possible instantaneous observat ions of O, and each observer ' s data

record of a behaviour of O is a (total) function X: I-----> S, where I is some in terval of the form

{1 n} and n is the t ime when he stops watching O. In general , a given object O cannot

produce al l possible data records),: I - - > S over an in terva l I, but only ce r t a in "physical ly

rea l izab le" data records. Let O(I) denote the set of a l l such observable behaviours over I.

Now notice that if J is a subinterval of I, then there is a na tura l r e s t r i c t ion function O(I)'---->O(J)

which maps each function) , : I ------> S to the res t r ic t ion of), to J, denoted) .~. l : J-----> S ; for if the

snapshots),(1),),(2))`(n) can be observed over I = {1 n} and if J = {1 n'} with

n '~ n , then surely the snapshots X(1),),(2) X(n') can be observed over J. I f we let i : J e) I

denote the inclusion, then a reasonable notat ion for the res t r i c t ion function is O(i):O(I)----->O(J);

not ice tha t O(i) goes in the "opposite direct ion" f rom i.

Al l this has a simple ca tegor ia l formulation, which also suggests the right way to general ize .

Namely, let TIME be the subcategory of SET with in tervals of the form {1 " n} as objects

(including tile empty in terval , for n = 0) , and with only the inclusions as morphisms. Then O is

a eon t ravar ian t ~ n e t o r from TIME to SET, where O(i : JC- -~ I) is the function which res t r ic t s

functions on I to functions on J .

Clear ly , this works just as wel l if we let TIME be any subcategory of SET with inclusions as

morphisms; then O : T I M E °p ~ SET can be any functor such that each O{I) is a set of functions

I---->S, for some fixed set S of snapshots, and such that each O(i : JC--->I) is a res t r i c t ion

function. As in Go75 and Go90a, let us ca l l such a funetor a p re -ob jec t .

Of course, we can let the snapshots be sets of more primit ive observat ions in order to handle

non-de terminism, but let us not do so for the moment.

209

To i l lustrate, let us consider the stack example again, assuming that everything is visible and

deterministic. Then at any moment of time t , an ideal observer will be able to see all of the

values on the stack. Thus, the snapshots are finite sequences of natural numbers, i.e., S = ~*,

and each observer 's data record has the form of a function).: {1 n}--> to*. (Of course, not

al l such functions are possible, only those consistent with the "life cycle" of a stack; this can be

expressed succinctly as: either X(t) n X(t+1) = X(t) or X(t) n X(t+l) = X(t+t), whenever O ~ t ~ n).

Let us denote this object O S .

Another view of a stack involves observers who see "events" rather than states; their data

records are functions),:{1 n}---9 Estack*, as in Section 2.1 (but without non-determinism).

Let us denote this object O E-

A third view of stacks involves observers who can only see the tops of stacks. Their data records

are functions),:{1 n} ---~{(top,v) I v~to}*. Let us denote this object O T. (The observation

(empty, true) would arise at t ime t i f f X(t) is the empty string.)

What is the relationship among these three objects? It is easy to see that O E has the most

information, and O T has the least , while O S lies in between. Thus, there are systematic trans-
hl h2

tations O E " ' ~ O s ' ~ O T which compute tile state from the history, and the top from the

state. Following general intuitions about the basic concepts of category theory (Go89), because

each object is a functor, we should expect that these translations are natural transformations.

Indeed, pre-objec t morphisms are natural transformations, and in part icular , h 1 and h 2 as well as

their composite h = h l ; h 2 are natural transformations: the la t ter is what is ca l led an object in

this paper. It gives an "interpretat ion" or "view" of the events in terms of their observable

results. On the other hand, O S is what is usually cal led a stack in the l i terature on data types

and state machines, while O E corresponds to the notion of stack studied in the process algebra

l i terature.

¥¢e can give a somewhat more exotic version of the data type view of stack, in which the

underlying domains include space as well as time. For this purpose, let us define TIME to be

the category whose objects are subsets U of ~ * ~ satisfying the following two conditions:

1. {t I (t , h) c U } is an interval of the form {1 n}; let us denote this set t (U); and

2. for each t~ t (U) , {h I (t , h)~U } is also an interval of the form {1 h},

and whose morphisms are inclusions. We let the snapshots be natural numbers. Then a data record

is a function of the form X:U--->co for some U satisfying 1 and 2, as i l lustrated in the following

picture:

h'

3 3 3 "'3 3
1 1 '1

2 3 4 5 6 7 8 9 10 11 t

in which U : ({ 2 } * [I]) , , ({ 3) - * [2]) o ({ 4 } * [3 1) o ({S)-~[2]) o (T6} * [3]) o ({ 7 } * [2]) ,, ({ 8 } *
[I I) ~, ({ I o } * [I]) o ({11} * [2]) . where [n] denotes {I n}.

210

For the purposes of this paper, only pre-objects in the above sense are needed. But the reader

may wonder what al l this has to do with sheaves, or indeed, what a sheaf is. Let us assume that

TIME is closed under finite union and finite intersection. Then a pre-object 0 is a sheaf iff it

satisfies the following condition:

* if X 1 EO(U 1) and X 2 c O (V 2) , X l (t) = X 2 (t) for all t ~ V l n U 2, and V l n U 2 ¢ (3 , then

then there is some X c O (U 1 u U 2) such that X~UI=X 1 and ~.'1"U2=X 2.

This says that bits of " local" behaviour can be "glued together" if they agree on their overlap,

to form larger bits of behaviour. In terms of state machine intuition, this condition says that,

re lat ive to the given notion of observation, we have enough information to character ize states

(please note that this definition does not presume determinism). In G075, a pre-ohjeet that

satisfies this condition is ca l led an object, contrary to usage in the present paper.

We conclude this section with some history of the approach it describes. In 1968, Joseph Gogucn

moved to the University of Chicago to work with Sounders Mac Lane, and began thinking about

how to formulate a so-ca l led General Systems Theory in the language of category theory. The

basic ideas were that a system is a diagram, its behaviour is its limit, and systems can be

interconnected by taking co-limits in the category of systems~ see Go71, G073, GG78. This

motivated the approach to specifications in joint work with Rod Burstall on the Clear language

and its semantics, which involves taking co-l imits in the category of theories (BG77, BGS0), and

also motivated an examination of the objects that appear in the diagrams representing various

kinds of system, which then led to the formulation of objects as sheaves in Go75.

3. Behaviours

This section views an object as an observed process. Thus, an object consists of a process, i.e.

of events happening in time, triggering observations which vary in time. According to the object-

as-sheaves approach, these are two s-objects (i.e. two objects in the sense of the lat ter approach)

re la ted by an s-object morphism: events happening in time constitute one s-object , observations

varying in time constitute another s-object , and "triggering" is expressed as an s-object morphism.

In order to avoid confusion, we adopt the term behaviour as a synonym for s-object . We also

general ize the objects-as-sheaves approach to a purely categorial setting.

We have another terminological problem: the term "object" is used in category theory with quite

a different meaning. In order to avoid confusion and stay close to the established terminology,

we use the term "c-object" for objects in the categorial sense.

3.1 Atoms and Snapshots

In order to give a uniform treatment to events- in- t ime and observat ions-in-t ime as behaviours,

we assume that a universe U of behaviour atoms is given. U contains everything atomic for

which we might want to say that it may occur at some point in time. Examples are atomic

events like create, push(x) for all data elements x, pop and drop as atomic events of a stack

object, open, close, credit(m) and debit(m), for all amounts m of money, as atomic events of an

211

account object, as wel l as a t t r ibute-value pairs like top=0, top=l, empty=false as atomic

observations for the stack object, or balance=0, overdrawn=false as atomic observations for

the account object.

Each object will have its own alphabets of event and observation atoms which are subsets of U.

We will assume that the subsets of U are the appropriate alphabets of behaviour atoms.

As a basic tool for studying interaction between objects, maps between alphabets of behaviour

atoms are needed. This way we can express, say, that an object is embedded in another one (the

"environment"), that certain events are shared between different objects, etc.

Assumption 3.1: Let ALPH be a full subcategory of SET such that

(1) its urelements (singleton e-objects whose element has no elements) are the elements

of U;

(2) its c-objects include U and all subsets of U;

(3) it is complete and cocomplete (i .e . , it has all (small) limits and eolimits).

Hereaf te r , our theoret ical developments assume a fixed category ALPH with its "universe" U of

urelements. For example, we can either imagine that ALPH has initially been chosen large

enough, or that an appropriate "smaller" ALPH has been chosen for that example, to include the

necessary atomic behaviours.

Typically, more than one event atom may happen at a given moment in time simultaneously, for

example, an entering and a leaving of a nonempty queue. Similarly, we usually do not see single

observation atoms at a given moment in time, but rather several of them simultaneously, for

example the front element of a queue and its length. Abstracting from events and observations

to behaviour atoms, we usually have a snapshot SC-A at a given moment in time, where Ac-U.

The power set 2 A is the family of possible snapshots over A; it will be referred to as the

snapshot alphabet over A.

Behaviour atom alphabets A and B are related by mappings f : A - - ~ B . A relationship naturally

induced between the snapshot alphabets over B and A, respectively, is the (set-valued) inverse

mapping f- l :2B ---)2 A . In part icular , it expresses the appropriate restr ict ion to a subalphabet in

case f is an inclusion, a situation which occurs frequently when dealing with objects and sub-

objects. For example, if A c - B and if Sc2 B is a snapshot over B, then f- l (s) = {aEAI f (a) , S } is

the restr ict ion of S to A.

Definition 3.2: Let SNAP denote the category of snapshot alphabets and inverse mappings given

by ALPH: its c-objects are the sets 2 A of all subsets of an atom alphabet A, and its morphisms

are the inverse mappings f - I :2B--~2A given by f :A--->B.

There is an obvious functor F :ALPH°P- ->SNAP sending A to 2 A and f to f-1 Clear ly , F is an

isomorphism of categories, and SNAP is complete as well as eoeomplete since ALPH is. As an

isomorphism, F preserves limits and colimits. For i l lustrat ive purposes as wel l as for later use,

we show how limits in SNAP look, in part icular products and equalizers.

Products in SNAP are given by 77" 2Aj = 211Aj where j ranges over a given index set J, and II

denotes disjoint union (coproduct in ALPH). The product morphisms Prk:TT 2Aj ----) 2 Ak, k c J, are

given by P rk : l lB jb - -)B k, where Bj~Aj for j , J , i .e. Prk=in ~ where ink: Bk---->ilB j is the

injection going with the coproduet. We let * denote the binary (infix) product in SNAP.

212

Example 3 .3 :2{0 ' l }*2{a 'b}=2 {0'l 'a'b}, and the projections of, say, {0,1,a} are {0,1} and {a},

respectively, i.e. the corresponding restrictions.

As for equalizers in SNAP, let f ,g :A2-- -)A t be maps in ALPH, and let h:A1--->A 0 he their

coequalizer in ALPH. It is standard to view <f ,g> as a relat ion on A 1 (namely {<f(a),g(a)> [

a eA2}), and to look at h as representing the equivalence relat ion generated by <f,g> (namely

h(a)= h (h) i f f a and b are equivalent). By duality and isomorphism, h'l : 2A0---)2 At is an equalizer

of f-l, g-l: 2AI__)zA2 in SNAP: each subset C ~ A 0 denotes a set of equivalence classes, and

h ' l (c) denotes their union U C ~ A 1. The unions of equivalence classes obtained this way are

precisely those subsets of A 1 which are mapped to the same subset of A 2 by f-1 and g-l.

Example 3.4: Let A 1 ={0,I,2} and A 2 ={a,b,c}, and let f , g : A 2 - - -) A 1 be given by

f : a~->0 , b~-->0 , c~->l ,

g : a~->0 , b~---)2 , c ~ l .

Then a coequal izer of f and g in ALPH is h : A 1 ---)A 0 ={x,y} given by

h : 0 ~-)x , 1 ~-->y , 2 ~->x .

In SNAP, the equalizer of f-I g-l: 2{0,1,2}_._>2{a,b,c} is given by h-l:2{x'Y}-->2 {0'1'2} sending ~3 to

~3, {x} to {0,2}, {y} to {1}, and {x,y} to {0,1,2}. In fact, these four target sets are precisely those

where f-1 and g-I coincide: f'l(~b)=g-t(o)=~3 , f'l({0,Z})--g'1({0,Z})={a.b}, f'l({1})=g'l({1})={c}, and
f'1 ({O,l,2})=g'l ({O,l,2})={a,b,c}).

3.2 Time Domains and Trajectories

Dynamic behaviour is modelled by attaching behaviour snapshots to points in time. In this section,

we discuss suitable models for "points in t ime" and how they are structured, and how snapshots

are "at tached" to these points in time.

We note in passing that our approach is in fact more general: we can equally wel l deal with

"points in t ime-space", i.e. behaviours which do not only extend over time but also - or only -

over space. However, the predominant intuition with objects in computing is that they have a

temporal but no spatial dimension. So we stick to the usual temporal terminology.

Most general ly, our assumption about time is that there are "time domains" which may be related

by "morphisms" which are inclusions of one time domain in another.

DeFinition 3.5: Let TIME be a subcategory of SET with only inclusions as morphisms.

Amazingly enough, we do not need any additional assumptions about the time category. Rather,

the restr ict ion to inclusions as morphisms can be dropped without affecting the results presented

in this paper. However , we do not have reasonable examples of such general time (- space)

structures, and we do not want to strain the reader more than necessary.

Our approach to time covers a wide variety of time models, including discrete and continuous

time, linear, branching and par t ia l -order time, as wel l as finitary and infinitary time. We give

two examples of simple and widely used time categories for objects in computing.

Example 3.6: DLF denotes the discrete linear finitary time category. Its c-objects are intervals

[n]={1,2 n} for n~(o, and its morphisms are ['n] ~ >[m] whenever n:~m. The time domains

213

are finite intervals, and morphisms ref lec t prefixing. Natural ly, [0]=~5.

Example 3.7: DLI denotes tile discrete linear infinitary time category. Its c-objects arc those of

DLF augmented by ~, and its morphisms are those of DLF plus [n]C---->o for each n~m. This

adds tile infinite time domain co to DLF, having each finite one as a prefix.

Let ScSNAP be a snapshot alphabet, and let TIME be a given category of time domains.

Deirmition 3.8: A trajectory over S with respect to TIME is a map ?`:t----)S for some time domain

t ~ TIME.

A trajectory describes precisely which snapshots occur along the points of its time domain.

Example 3.9: With respect to the DLF time category, a t rajectory is a map x:[n]----->S which

corresponds to a finite sequence <Sl,S 2 Sn> where siES for t < i < n , i .e . t rajectories are the

usual traces. With respect to the DLI time category, we have infinite trajectories k:e0--->S in

addition, corresponding to infinite sequences <Sl,S 2 > where siES for late.

Please note that our notion of trajectory general izes the notion of t race in three respects: we

have general ized time domains, we have snapshots (sets of atoms) at each point in time, and we

abstract from what occurs along time domains: events or observations - or something else.

Motivated by the event ease, we say that a t rajectory k:t----->S "makes a pause" at point pe t iff

k(p)=(3, i.e. nothing happens at point 'p in time domain t.

Trajector ies over the same snapshot alphabet S are naturally re la ted via TIME morphisms, giving

rise to a category of t rajectories over S and TIME.

Definition 3.10: Let Xl : t l - - - ->S and k 2 : t 2 - - > S be trajectories. A trajectory morphism h:X1--->X 2

is a TIME morphism b: t l - - -) t 2 such that X 1 = h;X 2 .

TRJ(TIME,S) denotes the category of trajectories over S with respect to TIME, with trajectory

morphisms as defined above. We will also write TR.I(S) or simply TILT if the rest is c lear from

context.

The construction of TRJ(TIME,S) from TIME and S is an instance of the well known "comma

category" construction (el. GB84).

The situation is depicted by the following commutative diagram.

t l ~ h) t 2

S

Notice that this means that X 1 is the restriction of)'2 to the subdomain t 1 of t 2. We will also

write ? '1<?'2 iff there is a morphism t'rom ?'1 to ?'2 (there is at most one).

Example 3.11.- In the DLF and DLI time models, t rajectories are maps [n]---~S (or ~ - - ~ S)

which correspond to finite (or infinite) sequences (S l , s2) . Trajectory morphisms correspond

to pref ixes:

I'n] c > I-n+m]

(s 1 s n)Nk,~ z / / (s 1 Sn, Sn+ 1 Sn+ m)
S

214

3.3 Category of Behaviours

A behaviour is defined as a set of trajectories. Intuitively, a behaviour displays the possible life

cycles (with respect to events or observations) an object can go through. In what follows, we

assume that the TIME category is fixed once and for all .

Definition 3.12: A behaviour over S is a subcategory inclusion

(S,A) : A ~ TRJ(S)

where S is a snapshot alphabet in SNAP, with the property that the constant map ~3t:t---~{~3} is

in A for each t~TIME.

The la t ter condition says that the "empty t rajectory" (permanent pause) over arty time domain is

always possible. This is needed later for teclmieal reasons, but it also has an intuitive appeal in

its own right. Moreover, we will most often assume in examples that behaviours are "closed with

respect to pauses", i .e. if)`1 is in A and)'2 can be obtained from) ' I by inserting and omitting

pauses, then also)'2 is in A. This is a natural condition in eases where we deal with "asynchron-

ous" behaviour, i .e . , where only the re la t ive ordering of nonempty snapshots in time matters, not

the absolute time points when they occur. Please note that)'1 and)'2 as defined above, i.e.

being "the same modulo pauses", will in general be trajectories over different time domains.

Definition 3.13: Let (S 1 ,A 1) and ($2 ,A2) be behaviours. A behm, iour morphi~m is a functor

:(Sl,A 1))(Sz,A z)
such that dom) ' = domo() ') for each trajectory) ' cA 1 . Moreover , if ~3t:t--->{~} is the "permanent

pause" trajectory over t, then o(¢5t)=~3 t.

That is, k and o()') always have the same underlying time domain (they have "the same length"),

and permanent pauses are always sent to permanent pauses.

This is rather general and might look strange, one would perhaps expect a SNAP morphism

between S 1 and S 2 as part of a behaviour morphism. But the generality is needed. For example,

stack event hehaviours and corresponding stack observation behaviours should be related by a

behaviour morphism. While it is very well possible to associate the observation top=k with a

push(k) event at any point in time, there is no single observation which can be associated with a

pop event: any top value is possible, depending on context. Interesting special cases of behaviour

morphisms, however, do go with an underlying SNAP morphism, el. definition 3.17 below.

Example 3.14: In the DLF and DLI time categories, we have the following situation,

[n] c > [n+m]

(s l S n } / t ~ " ~ < (s l S n) (S l Sn s--~>//'°'"'(S;m~.," ~-~ -,~ , s n ' " ' S m)

S S" S S"

This means that o is "monotonic": prefixes are sent to prefixes. Thus, o acts as a "state function"

where tim snapshot at a given position depends on the "past" (snapshots at previous positions)

only. These time models thus exclude "prophecy" effects (which can, however, be achieved with

other time models, for instanee the discrete versions of DLF and DLI obtained by omitting al l

morphisms).

215

It is an easy exercise to verify that behaviours and behaviour morphisms as defined above do form

a category.

Definition 3.15: Given TIME and SNAP, the category BHV(TIME,SNAP) is the category of all

behaviours over some snapshot alphabet S~SNAP with respect to TIME, and all behaviour

morphisms among them, as defined above. We will also write BHV(SNAP) or simply BHV if the

rest is clear from context.

Behaviours (S 1 ,A)and (S I o S 2 ,A), with the same A, are isomorphic in BHV, i.e. behaviours do not

change essentially if we enlarge or restrict the underlying snapshot alphabet, as long as all

snapshots occurring in A are present. Therefore, we sometimes write just A instead of (S,A),

meaning that S is understood to be the set of all snapshots occurring in trajectories in A.

Remark 3.16: With the general approach presented here, there is no problem to handle "trans-

actions", i . e . elements), : t - - -> S of a behaviour which are given a status of "atomicity" by including

them into the set A of behaviour atoms underlying S (i.e. s : 2 A) . This way, transactions can be

nested arbitrarily. An example of transactions is given in section 4.3.

DeFinition 3.17: A behaviour morphism o : (S 1 , A 1)------> ($2 ,A2) is called oblivious iff it is of the

form o(),)=),:f for some fixed SNAP morphism f : S 1 --->S 2.

t

S i - - - - - ~ f S 2

If o is oblivious, then, at each point in time, o()`) depends on X at the same point in time only,

not on any), components "before" or "after" or "concurrently". Assuming the DLF or DLI time

model, o is oblivious iff o(z)`)=o(z)o(),) holds for any finite sequence z and any sequence X;

hence, O(SlS2 . . .)-- O(Sl)O(s 2)

Theorem 3.18: Given categories SNAP of behaviour snapshots and TIME of time domains, the

category BHV(SNAP,TIME) of behaviours over SNAP wit respect to TIME is complete.

P r o o f : We show that BHV has products and equalizers.

As for products, let (S j ,Aj) , j c J , be a family of behaviours. Let prj:S----)Sj, j~J, be the

product in SNAP (eL section 3.1) where S = - ~ - S j . Let Ac-->TRJ(S) be the full subcategory

consisting of all trajectories X~TRJ(S) such that X;prj~Aj for each j~J . Let rcj:A--->Aj, j~J, be

the oblivious behaviour morphism given by ~j (X)-X;pr j for each j cJ. Then the ~j, j ~J, constitute
a product in BHV.

In order to verify this, let oj: (S',A') - -~ (S j ,A j) , j eJ , be a family of behaviour morphisms (not

necessarily oblivious !). Then each trajectory),'~ A" is sent to a trajectory),j = o j()`') c Aj for each

jcJ . Let X be the trajectory X~A defined by Xj=~zj(X) for each jeJ (it is clear that there is

exactly one),cA satisfying this condition). Let o: A'---)A be the map defined this way. o pre-

serves the time structure so that it is a functor: if),'1 ~)`'2 , then oj()` 't) ~ oj(),'2) for each jcJ ,

from which we conclude by construction that o(X'I) g o(),'2). Clearly, o j = o : x j for each j c J , and

o is the only map satisfying this equation. Moreover, dom) , '=domoj(X ')=dom)` j=dom) , for each

j , J , and o(~3t)=0 t for each time domain t.

Thus, o is a behaviour morphism, and it is the only one from (S;A') to (S,A) satisfying o;rc j=oj

for all jeff. This verifies that the rrj, j cJ , constitute a product in BHV.

216

Essentially, the product is taken eomponentwise along time domains.

As for equalizers, let o , p : (S 1 , A 1)-----~($2,A2) be two behaviour morphisms. An equalizer of

o and p is constructed as in SET: it is given by the inclusion ~: (S0,A0) c------> (S 1,A 1) where S O

is some subset of S 1 containing all snapshots oecuring in A 0 (different choices lead to isomorphic

behaviours), and A0={).,A 1 [o().)=p(X)}.

In order to verify this, let ~':(S',A')---)(SI,AI)be a bchaviour morphism satisfying ,';o=,';p.

By construction, z'(A')¢ A 0 so that there is exactly one map ~:A'---+A 0 satisfying ~;~=~'. Since

essentially is ~" (with the range restricted to AO), it is obvious that z is a behaviour morphism,

and it is the only one from (S' ,A') to (S1,A1) satisfying z;~=x' . This verifies that ~ constitutes

an equalizer of o and p. []

3.4 Parallel Composition

Limits in a behaviour category reflect paral lel composition of behaviours. From the proof

of theorem 3.17, we see that products are constructed "pointwise" along a common time domain

by taking the disjoint unions of snapshots.

Example 3.19: Assuming the DLF time category, let A 1 and A 2 be given as follows.

A 1 = { ({ 2 . 4 } . { 5 } . {I} ~, . ({4}. {1.3} > } n

A 2 = { < {a} . {d}.{b.c}~> . ({a .c} .{b.d}~>} u

where # denotes closure with respect to pauses. That is, al l trajectories which can be obtained

from the two in A 1 shown above, by inserting pauses, are also in A 1, and correspondingly for A 2.

Let A 0 = { ({ x } , { y }) }n .

Let f l : x ~---> 4 , y ~-->1

and f2 : xt---Ya , y~--Yd ,

indicating that we want to synchronize on 4---a and 1-=d. Let f ~ : A 1 ------> A 0 and f~ :A 2----yA 0 be

those oblivious behaviour morphisms obtained by applying fi l or f~l, respectively, to each point

in time along each trajectory. Then a pullback object A 3 of f~ and f~ is an equalizer object of

pr 1 ; f~ and pr 2; f2, as shown in the following diagram.

A3 eq) A 1 , A 2 A0

The pullback object A 3 is given by all "interleavings" of behaviours in A 1 and A 2, appropriately

synchronized, appearing as componentwise "union" of behaviours interspersed with ~ {and made

equal in length this way):

({x.2} . {5} . {y} . {b .e i ~>

< {x,2,e}, {5}, {y,b} >

< {x}, {y,3}, {b,c} >

< {x,e}, {y,3,b} >

from ({ 2 . 4 } . { 5 } . { 1 } . ~ b) ' and < { a } . { b . { d } . { b . c }) .

from ({2.4}.{5}.{1}~> and ({ a . e } . ~ . { b . d } ~ > .

from < { 4 } . { 1 . 3 } . { b) and <{a},{d},{b,c}> ,

from ({ 4 } . { 1 . 3 }) and ({ a . c } . { b . d }) .

217

plus all behaviours obtainable from these by inserting any number of pauses in any place.

Another (isomorphic) choice of the pullback object is obtained if we keep a and 4 distinct instead

of merging them into a single symbol x, and the same with d, 1 and y, respectively. The "identi-

fications" x-=a-=4 and y-=d=l are then reflected by the fact that a and 4 (or d and 1, respectively)

always appear together in a synchronization set: both are in the set, or neither of them is.

4. Objects

Objects are defined as behaviour morphisms, capturing the idea of "processes endowed with

observations". Object morphisms are pairs of behaviour morphisms between the process and

observation parts, respectively, satisfying a natural compatibility condition. The category of

objects established this way is shown to be coeomplete. This means, for instance, that aggregation

of objects is compositional. Various forms of object inheritance can be expressed as object

morphisms, and also object reification (sometimes called refinement) can be expressed this way.

4.1 Category of Objects

Let BHV be a complete behaviour category as described in the previous sections. Intuitively

speaking, an object tells how observations in time (and/or space) depend on events in time

(and/or space). This is appropriately modelled by a morphism in BHV.

Definition 4.1: An object is a behaviour morphism oh: (E, A)) (V, D) in BHV.

Intuitively, the first behaviour is the "active" part (process), and the second behaviour is the

"passive" part {observation). That is why we use E and V for the respective snapshot alphabets.

ob describes how the process "triggers" its observations.

We write ob:A---> O if E and V are clear from context. For illustration, we refer to the

examples in section 2.1.

There are two obvious ways to derive new objects from given ones, namely by "triggering" and

by "observing" via respective behaviour morphisms, as shown in the following diagrams.

hA
A 1 < A 2 A 2

° b l l hf 1 ~ oh2

f) l D1 (f)2

On the left hand side, object ob 1 is "triggered" v i a h A in the sense that the composed object

hA;ob 1 has A 2 as its process part and h A tells oh 1 how to "obey the commands" in A 2.

Analogously, on the right hand side, ob 2 is "observed via" hf) in the sense that hf) tells how to

"interpret" the observations of oh 2 in terms of behaviour O 1 . In the special case where h A and

h D are restrictions on snapshot alphabets going with inclusions on the respective atom alphabets,

"triggering" means disregarding the events in A 2 which are not in the scope of A 1, and "inter-

preting" observations means viewing only those in the scope of f)l (of, Definition 4.5 below).

218

An object morphism is a relationship between objects ob 1 and ob 2 where the process part of ob 2

triggers ob 1 via some behaviour morphism h A while, at the same time, the observation part of

ob 1 observes ob 2 via some other behaviour morphism

hA" is the same object as "ob 2 observed via hfl", i .e.

hA
A 1 (A 2

°b l~ l ° b 2

Q (hf) t)

h O, in such a way that "Obl triggered via
the following diagram commutes.

Definition 4.2: Let ob i :Ai - - - ->f) i , i = 1 , 2 , be objects. An object morphism h : o b 1 -----)ob 2 is a

pair (hA:A2---)A1 , ho:Q2--->tql) of bchaviour morphisms such that hA;Obl=ob2;hQ holds.

In the next subsection, we will explore special cases of object morphisms which model different

kinds of object inheritance. The "oblivious" object morphisms (cf, Definition 3.17) to be defined

next are a sort of standard case. They play an essential role for studying inheritance.

Definition 4.3: An object morphism h : o b 1 ----->ob 2 is called oblivious iff both h A and hQ are

oblivious behaviour morphisms.

A word is in order about the choice of direction for object morphisms. Basically, this is a matter

of taste and we could have defined them the other way around. Our choice is motivated by the

direction of maps on the underlying atom alphabets in the case of oblivious morphisms. If

h : o b l - - > o b 2 is such an object morphism, i . e . , if h A and hf) are oblivious, then hA:A2----->A I

comes from a map g~:S2---->S 1 on snapshot alphabets which in turn comes from a map gA:A1

--->A 2 between the underlying atom alphabets (Si=2AI for i=1,2). The same holds for the Q

part. If gA and gQ are inclusions, then the corresponding object morphism goes from the "part"

to the "whole", describing the embedding of an object into an environment (which is an object,

too). The argument that the arrows should go the other way is almost as compelling: this is the

way that the arrows actually go in the diagram above, and also, it leads to using limits to compute

the behaviours of systems, in accord with the general "dogmas" of Go89.

Of course, objects and object morphisms form a category. We denote this category by OB.

Theorem 4.4: OB is cocomplete.

Proof: Taking morphisms of a given category K as c-objects and commutative squares in K as

morphisms of a new category L is a well known categorial construction. We use the notation

L = Mor(K). L can be described as a comma category (cf. GB84), namely L = (K/K) (we identify

K with the identity functor on it). The category of objects is OB = Mor(BHV)°P=(BHV/BHV) °p.

Since BHV is complete (Theorem 3.18), we conclude from well-known theorems of category

theory that MQr(BHV) is complete; thus, OB is eocomplete. O

From the example in section 3.4, it is clear that colimits in OB can be utilized to model (parallel)

composition of objects. This theorem, therefore, gives a very general basis for compositional

semantics of object-oriented systems: we describe single objects as behaviour morphisms, inter-

action between objects by object morphisms, and we obtain the community of all interacting

objects as one composite object, the colimit object in OB, with the universal eocone describing

how the single objects are embedded in (or "part of") the community.

219

The above theorem holds for arbitrary time (and /o r space) categories TIME, covering quite a

variety of process models going far beyond mere interleaving. Please remember that "transactions"

are also included (of. Remark 3.16): we may very wel l decide to pick an element of a behaviour

over a set A of atomic events and put it into A so that it plays the role of an atomic event.

Transactions can be "synchronized" with other atomie events (thus with other transactions as

wel l) by putting them into the same snapshot. Please remember that, at each time instant of

a transaction, we may again have transactions within the snapshot, e t c . , i .e. transactions can be

nested.

From the dual of the object category, OB °p, into the behavior category BHV, we have two

obvious forgetful functors, giving the underlying event and observation behaviours, respectively:

A : OB °p - - ' -> BHV

"forgets" the observation parts: it sends each object ob:A---->f/ to its event behaviour A, and

each object morphism h : o b I --->ob 2 = (hA:A2---->A 1 , hf/:f/2----->f~l) to its event behaviour

morphism hA:A2-----~A1. Similarly,

f) : OB °p -----> BHV

"forgets" the event parts: it sends ob: A----->~ to f), and h:obl------>ob 2 to hf): f) 2-----> f) l .

Aceording to definitions 4.1 and 4.2, each object ob is the behaviour morphism

ob : A(ob) > ~(ob) ,

and each object morphism h:ob 1 - -~ob 2 is the commutative diagram

A(ob l) < A(h) A(ob2)

f~(ob 1) (~(h) f)(ob 2)

This means that the category OB of objects can be described as the dual of a comma category,

OB = (BHV/BHV) °p ,

where the category BHV is identified with the identity ftmctor on it (el. proof of theorem4.4) ,

and A and ~ are the two projection functors. The data given above can also be interpreted as

describing a natural transformation

o b : A ; , f) .

The following diagram shows how OB, BHV, A, ~ and o bb are re la ted:

OB°P

BHV

From general results in category theory, we conclude that A and ~ are coeontinuous.

220

4.2 Object Inheritance

In this section, we study some aspects of inheritance in object-oriented approaches. We show

that object morphisms can he used to formalize several kinds of inheritance as relationships

between objects. We avoid, however, the word "inheritance" as a technical te rm because of the

notorious confusion surrounding it. In particular, we discuss strict inclusion, weak inclusion and

enclosure.

4.2.1 S t r i c t I n c l u s i o n

In an intuitive sense, an inclusion morphism h : o b l C - - > ob 2 as defined below describes how the

"part" ob 1 is embedded in an "environment" or "complex object" ob 2 such that ob 1 is

"encapsulated within" ob 2 in the sense that no events outside ob I can affect observations within

ob 1. Typical examples are engine C---> car, memory c--9 computer, etc.

A specific application for this kind of object morphism is "object sharing", i .e . the inclusion of

one object into several other objects. The case that just single events a r e shared has been

utilized by the first and third authors as a means for synchronous and symmetric communication

between objects (ESSg0,ESg0, SFSE89a,SSE87).

Definition 4 .5: Let h :ob I --->ob 2 be an oblivious object morphism. If the underlying maps on

atomic events gA:AlC--->A2 and atomic observations gf): BiC > B 2 are inclusions, we call h an

inclusion morphism and write h : ob 1 c---) ob 2 .

Please note that, for an inclusion morphism h, h A and hf] are not inclusions themselves but

restrictions on snapshot alphabets resulting from inclusions on the underlying atom alphabets.

The following diagram il lustrates the situation,

ob 1
°bl A1 E1 A1) f l l V1 B1

f f lh T l ol I
oh 2 A 2 E 2 A2 '> fl 2 V 2 B 2

As for inheritance, the inclusion morphism says that ob 2 "inherits" the atomic events and observ-

ations from ob 1 such that oh 1 observations are "views" of oh 2 observations, and ob 2 event

behaviours (life cycles) are "enrichments" of Obl life cycles. The morphism condition says that

any permissible enrichment of an oh 1 life cycle)'1 ~AI' when observed in ob 2, gives rise to the

same observation in the view of ob 1.

For example, restricting a computer life cycle to memory events and observing the lat ter gives

the same as observing the entire computer life cycle and restricting attention to memory observ-

ations only. That is, only memory events can influence memory observations, there is no way

that non-memory computer events can have an effect on the observable behavior of the memory.

In this sense, the memory is an "encapsulated object within" the computer. This does not mean

that no communication is possible: the computer can "use" memory events - but only these - to

operate on its memory.

221

The standard application of inclusion morphisms is to describe the composition of complex objects,

i .e. the aggregation of objects, sharing encapsulated subobjects: if ini: ob 0 ---)ob i , i~{1,2 n),

then the aggregation Obl l lOb2l t . . . Ilob n synchronizing on ob 0 is tile colimit of the diagram

consisting of the in(s , and the universal cocone describes how each ob i is embedded into the

aggregation. The following diagram il lustrates this for the case n = 2 , where the colimit is a

pushout.

ob 0 p.o. ob 111 ob 2 synchronizing on ob 0

4.2.2 W e a k I n c l u s i o n

If we keep the inclusion idea just for the observation part and l iberalize the event part to arbitrary

behaviour morphisms, we arr ive at the concept of "observation inclusion morphism" which models

a weaker form of inheritance: environment events can affect local observations directly.

Definition 4.6: Let h :vb 1 --> °b2 be an object morphism. If the constituent observation behaviour

morphism hf) is oblivious and its underlying map on atomic events h O : B 1 c_._> B2 is an inclusion,

we cal l h an observation inclusion morphism and write h :ob I c - - -) o b 2.

The following diagram may help to understand this situation.

ob 1
°b l A1) f~l V1 B1

: lhol f
hA l ob 2

oh 2 A 2) fl 2 V 2 B 2

As in the case of inclusion morphisms, ob 1 observations are "views" of ob 2 observations, but ob 2

event life cycles may "tr igger" ob 1 in an arbitrary way. This can be ut i l ized to model "loose"

embeddings of a "part" ob! into an "environment" or "complex object" ob 2 where environment

events can affect local observations, but only in a way which can be simulated by some local

events: h A te l ls how the local effect of global life cycles is simulated locally,

In the linear discrete time models, this simulation of global life cycles by local ones must

preserve prefixes. Consequently, in cases where the life cycle set is p re f ix -c losed , this simulation

can only happen in an event -by-event way: global events "cal l" local events (of. SE90, SECg0).

In order to i l lustrate this, consider a user using a stack (which may be shared by other users).

We model this by including the stack object weakly into the user object:

s t a c k c____.> user .

For each stack event pop, push(k), e tc . , we assume that the user has a corresponding private

event cal l -pop, call-push(k), e tc . , "call ing" the corresponding stack event in the above sense.

We assume that a user uses only his private cal ls for operating on the stack, not the stack

events directly. The weak inclusion stack c_ - 3 user is then established by replacing stack calls

222

by the corresponding s tack events and forgett ing about all o ther user events , mapping each user

life cycle to a s tack life cycle this way.

The point in this const ruct ion is that a rb i t ra r i ly many users can be hooked to the same stack this

way, sharing it weakly in the sense that everybody can opera te on it, and everybody ean observe

al l the effects , also those caused by others . Eaeh user may, however, define additional a t t r ibutes

which are changed when he ca l l s the s tack (for local bookkeeping or so), and whieh cannot be

observed, let a lone changed, by the others .

The aggregate object - users sharing a stack - is obtained as a eolimit in OB, in much the same

way as in the s t r ic t inclusion ease.

4.2.3 E n c l o s u r e

The enclosure morphisms to he defined next are much more l iberal than s t r ic t and weak

inclusions: if ob 1 encloses ob 2, then event as wel l as observa t ion behaviours of oh 2 are included

in those of ob 1, respec t ive ly (please note that the inclusions are on behaviours and go in the

opposite direction), sueh that ob 2 in isolation works in exact ly the same way as it works in the

context of ob 1 - as long as ob 1 "doesn ' t in te r fe re" .

Defini t ion 4.7: Let ob i :A i - - ->Di , i = 1 , 2 , be objects, and let A 2 c_ A1 and 0 2 c_ f/1 such that the

inclusions form an object morphism h : o b t ----~ ob 2 . In this case, we cal l h an enclosure morphism
and use the nota t ion h : o b I 3) ob 2 .

An enclosure morphism is i l lus t ra ted by the following diagram.

oh 1 A 1 > t31

I J J
°b2 A2 ~ f)2

In general , enclosure morphisms are not oblivious, tha t is why we do not show the underlying

a lphabets in the diagram. Al l that can be said about the snapshot a lphabets is that each snapshot

oeeuring in A 2 must also occur in A 1, and the same for f)2 and f)1" P lease note that this does

not necessar i ly mean inclusion be tween the respect ive snapshot alphabets .

Intui t ively, if ob 1 encloses ob 2, ob 1 aets exact ly like ob 2 as long as only oh 2 events occur.

However , once a "new" ob 1 event happens, nothing is incurred for oh 1 any more (not even in

re t rospeet , opera t ional ly speaking). We have been exper iment ing with addit ional conditions

ensuring that "old" events mainta in their effects on observat ions also in case "new" events occur

(see also Gu90). This subject deserves fur ther study.

Enclosure morphisms seem to have their methodological v i r tue in modelling "roles" of objects , in

the sense in whieh patient , employee, ear driver, tax payer, ete. are roles of pe rson : pat ient

person, employee ~ person, ca r -d r ive r ~ person, t ax -payer 3---)person, etc. In fact, pat ients ,

employees, car drivers, tax payers , etc. , should bas ica l ly behave like persons .

P lease note that this s i tuat ion is very different from aggregat ion forming complex ob jee t s . A

person is not the complex object with par t s pat ient , employee, etc. , and the pat ient , employee,

etc. objects are not aggregat ions sharing the person object as a common par t e i ther . Indeed, the

223

la t ter would mean that patient, employee, etc. life cycles are proceeding concurrently all the

time. Rather, a person 's behaviour shows phases where, say, she is a patient, other phases where

she is an employee, and stil l other phases where she is both at the same time. The mathematics

of enclosure ref lects this appropriately: when taking colimits, several roles of the same object

have the lat ter as eolimit object and the enclosures as universal eoeone, so nothing new is

constructed.

A thorough treatment of all aspects of inheritance is outside the scope of this paper. Besides

inheritance between objects as discussed here, inheritance between object types and object classes

(which we do not treat in this paper) have to be taken into account, as well as inheritance between

specifications of objects, object types, and object classes (see also HC89). This area requires

further study.

4.3 Object Reification

Our approach is based on reification as an implementation relationship between objects as studied

in ES90. Intuitively, reification describes the relationship between an "abstract interface"

implemented on top of a "base interface". That is, we deal with reification as a relationship

between objects. This has to be distinguished from the relationship between specifications of

"describing in more detail", and also from the relationship between a specification and an object

which "complies with" the specification. Both are sometimes called "implementation", too.

Reification has been studied extensively in the field of abstract data types and their specification,

starting with the pioneering paper GTW78. Essential ideas can already be found in Ho72. The

following example is taken from ES90. It is t reated in Go90b from a specification point of view.

Example 4.8 : Let the stack object in section 2.1 be given, with the following behaviour atoms.

stack: event atoms new, drop, push(i) for i~int, pop

observation atoms top=i for i~int, empty?=b for b~bool

We want to implement this "abstract" stack object on top of an array with a top pointer nvar

(which is a variable over natural numbers), having the following behaviour atoms (of example 4.1

array: event atoms create , destroy, set(n, i) for ncnat and iEint

observation atoms conts(n)=i for ncnat and icint

nvar: event atoms open, c lose , asg(n) for n~nat

observation atoms v a l = n for n~nat

The intuitive meaning of these atoms should be clear . Intuitively, an implementation of stack over

array and nvar would do the following two things:

(1) encode each stack event by a "transaction" over the base, i.e. a sequence of array and

nvar events, for instance

new ~ < create ;open; asg(0)>

drop ~ <c lose :des t roy>

push(i) ~--> < set ([val], i) ; asg(Ival]+l) >

pop ~ < a s g ([v a l] - l) >

Here , Foal] denotes the current value of the attribute val of hoar.

in ES90).

224

(2) decode each observat ion over the base a t t r ibutes as an observat ion over the s tack

a t t r ibutes , for ins tance

top -- [con t s ([va l] - 1)]

empty? = equa l? ([va l] ,O)

Since events from severa l base objects are in te r leaved in the above encoding, we should look at

the composite object b a s = a r r a y [I n v a r as being the base, r a ther than some col lec t ion of base

objects. Thus, we may assume that the base is just a single object .

P lease note that the base " t ransact ion" by which a s tack event is encoded will lead to different

base t races for the same s tack event , depending on context . For instance, pop can mean <asg(O)>

or <asg(1)> or and push(l) can mean <set(0,1);asg(1)> or <set(1,1);asg(2)> or depending

on the value of val in the s ta te where pop or push(l) occurs, respect ively .

Each s tack life cycle, for ins tance

<new ; push(l) ; push(2) ; pop ; push(l) ; pop ; pop ; drop > ,

can be t r ans formed into a sequence of base t ransac t ions by means of the above encoding:

< <crea te ; o p e n ; asg(0) >; <set(0,1) ; a s g (l) > ; <set(I ,2) ; asg(2) >; <asg(1) >; <se t (I ,1) ; asg(2)>;

<asg(1) >* < asg(0) > ; <close ; destroy >>

Please note that the two sequences shown above have the same length, if we count each t r ans -

act ion in the second sequence as just one atomic step. The as te r i sk marks the same position in

both sequences. I f we "unfold" the l a t t e r t r ansac t ion sequence into a flat sequence of base events ,

we ar r ive at the following sequence. P lease note that it is longer than the above two sequences.

< c rea te ;open ; asg(0) ; se t (0 , t) ; asg(1); s e t (i , 2) ; asg(2) ; asg(1) ; se t (I ,1) ; asg(2) ; asg(1)

asg(0) ; close ; destroy >

Here , the as ter i sk marks a "corresponding" position, not the same one, because the underlying

time domains are different. Encoding amounts to "compiling" s tack life cycles into life cycles

over base t ransact ions of the same length, and the l a t t e r are obtained by "folding" base life

cycles into t ransact ions .

The resu l t of compiling a s tack life cycle shoutd be "executable" , i .e. i ts unfolded vers ion should

be a va l id base l ife cycle, and the observat ions along the corresponding folded version, when

decoded as s tack observat ions, should comply with the given s tack behaviour. For instance, at

the end of the initial t race of the above base life cycle ending at *, we have the following

observat ion snapshot:

va l= 1 conts (0)= 1 conts(1)= 1

This base observat ion snapshot decodes as the following stack observat ion snapshot:

top = [c o n t s ([v a l] - l)] = I 'conts(0)] = 1

empty? = e q u a l ? ([v a l] , 0) = e q u a l ? (1 , 0) = false

This is the cor rec t observa t ion snapshot at the end of the corresponding s tack t race , i.e. the

init ial t race of the above s tack life cycle ending at * I3

225

As the example illustrates, it is appropriate to assume that the base consists of a single object

bas. In practice, bas will most often be an aggregate object composed of a collection of objects

which may interact (i.e. bas is the colimit object of some diagram in OB).

So our problem is the following: given an abstract object ab and a base object has, what is an
implemetation of ab over has ? For notational convenience, we index each item of ab by ab
(Aab,f/ab etc.) , and similarly for bas and the other objects to follow.

Definition 4.9: Let bas and ab be objects. An implementation of ab over bas is given by

(1) a folding functor F : BHV~ BHV , and

(2) a pair (T:Aab--)AbasF, 8: f /basF--)f ' /ab) of behaviour morphisms such that
the following diagram in BHV commutes.

T
A bas A basF (A ab

b a s l , F) ~ b a s F ~ab

f/bas Obas F) Oab

That is, the observation ab(~.) associated with a life cycle), cAab can be "calculated" using the
*'encode" and '*decode" morphisms "~" and 8, respectively, defined on the folded base which has
the appropriate transactions in its life cycles.

The difference from the corresponding definition in ES90 is that T and 8 are required to be
behaviour morphisms here, not just mappings. As a consequence, ab life cycles are mapped to
has F life cycles "of equal length" (over the same time domain), and correspondingly for 8. That
is, an abstract event is mapped to a transaction (which counts as "one step"), and only the
observations after completed transactions are shown, not intermediate observations inside a
transaction.

The difference between the encode-decode part of an object implementation and an object

morphism is that, for the former, the pair of behavior morphisms (%8) is in opposite directions.
The question whether implementations can he expressed by morphisms can now be answered
easily from the following diagram where mid = T;bas.

Abas F< T , . Aa b ~--- Aa b

basF 1 > ~mid < lab

8
abasF ~ ObasF) f)ab

This diagram shows that the ('f,8) part of an implementation of ab over bas is the same as two

object morphisms, namely (% id) :bas F----> mid and (id, 8) : ab-----9 mid. These two object morphisms
deal with event encoding and observation decoding separately (in contrast to the extension/
encapsulation construction in ES90).

226

5. Concluding Remarks

We have outlined a general eategorial framework as a semantic basis for object-oriented

approaches. In this paper, we concentrate on single objects and how they are related via inter-

aetion, inheritance, etc., and how they are composed to form complex objects. An essential feature

of this approach is its generality, especially with respect to the underlying time (or even time-

space) domains. This leaves the possibility for incorporating powerful process models, including

nondeterminism and forms of concurrency more general than interleaving. So far, however, we

have used simple deterministic interleaving models in our examples, albeit with liveness and

initiative (SE90). The integration of more powerful models has still to be worked out in detail.

Clearly, the theory has to be extended to eover object types and object classes as well as the

various (inheritance) relationships between instances, types and classes.

The development of the semantic domain is being synchronized within the IS-CORE project with

work on logic and proof theory for objects (FS90, FSMS90, FM90). It seems that the present

general framework is a major step forward towards bringing the semantics and logics of objects

together.

Eventually, semantic and logic foundations should prove their usefulness for designing and

implementing better languages and systems. Also within the IS-CORE project, work is being

carried out towards this end, i.e. developing a broad-spectrum language for object-oriented

system specification and development (JSS90, Sa90). A recent overview of object-oriented

system development is given in Ve90.

Acknowledgments

Part of this work has been carried out within the ESPRIT-2 BRA 3023 IS-CORE (Information

Systems - COrrectness and REusability). The authors are greatly indebted to the other members

of IS-CORE, especially Jose-Felix Costa, Cristina Sernadas, Jose Fiadeiro, Miguel Dionisio,

Tom Maibaum, Gunter Saake and Ralf Jungclaus for listening to and commenting on the ideas

described in this paper.

References

BG77

BG80

BT88

Di88

Burstall,R:Goguen,J.: Putting Theories Together to Make Specifications. Proc. Fifth
International Joint Conference on Artificial Intelligence, (R. Reddy, ed.), Dept of
Computer Science, Carnegie-Mellon University, 1977, 1045-1058

Burstall,R;Goguen, J.: The Semantics of Clear, a Specification Language. Proe. 1979
Copenhagen Winter School on Abstract Software Specification, (D. Bjorner, ed.),
LNCS 86, Springer Verlag, 1980, 292-332

Bergstra,J.A.;Tueker,J.V.: The Inescapable Stack: an Exercise in Algebraic Specifi-
cation with Total Functions. Report No. P8804, Programming Research Group,
University of Amsterdam 1988
Dittrieh,K.(ed.): Advances in Object-Oriented Database Systems. LNCS 334,
Springer-Verlag, Berlin 1988

227

ESS88

ESS89

E s s g 0

ES90

FM90

FS90

FSMS90

GB84

GBg0

GG78

GM82

GM87

Go71

Go73

Go75

Go79

Go89

Gog0 a

GogOb

Gra65

Gro71

Ehrieh,H.-D.;Sernadas,A.;Sernadas,C.: Abstract Object Types for Databases. In
Di88, 144-149

Ehrich,H.-D.;Sernadas,A.;Sernadas,C.: Objects, Object Types and Object Identity.
Categorical Methods in Computer Science with Aspects from Topology (H. Ehrig et
al (eds.), LNCS 393, Springer-Verlag, 142-156

Ehrieh,H.-D.;Sernadas,A.;Sernadas,C.: From Data Types to Object Types. Journal
of Information Processing and Cybernetics EIK 26 (t990) 1/2, 33-48
Ehrich,H.-D.;Sernadas,A.: Algebraic Implementation of Objects over Objects. Proc.
REX Workshop on Stepwise Refinement of Distributed Systems: Models, Formalism,
Correctness (J.W. deBakker, W.-P. deRoever, G. Rozenberg, eds.), LNCS 430, Sprin-
ger-Verlag, Berlin 1990, 239-266

Fiadeiro,J.;Maibaum,T.: Describing, Structuring and Implementing Objects. This
volume.
Fiadeiro,J.;Sernadas,A.: Logics of Modal Terms for Systems Specification. Journal
or Logics and Computation (to appear)
Fiadeiro,J.;Sernadas,C.;Maibaum,T.;Saake,G.: Proof-Theoretic Semantics of Object-
Oriented Specification Constructs. Proc. IFIP 2.6 Working Conference DS-4,
Windermere (UK) t990 (to be published by North Holland)
Goguen,J.A.;Burstall, R.: Some Fundamental Algebraic Tools for the Semantics of
Computation. Theor. Comp. So. 31 (1984), Part 1: 175-209, Part 2:263-295

Goguen,J.A.;Burstall, R.: Institutions, Abstract Model Theory for Specification and
Programming. Report ECS-LFCS-90-106, Edinburgh University, 1990 (to appear in
JACM)

Goguen, J.;Ginali, S.: A Categorical Approach to General Systems Theory. Applied
General Systems Research (G. Klir, ed.), Plenum, 1978, 257-270
Goguen,J.A.;Meseguer,$.: Universal Realization, Persistent Interconnection and
Implementation of Abstract Modules. Proc. 9th Int. Conf. on Automata, Languages
and Programming (M.Nielsen, E.M.Schmidt, eds.), LNCS 140, Springer-Verlag,
Berlin 1982, 265-281

Goguen,J.A.,Meseguer,J.: Unifying Functional, Object-Oriented and Relational
Programming with Logical Semantics. In SW87, 417-477

Goguen,J.: Mathematical Representation of Hierarchically Organized Systems.
Global Systems Dynamics (E. Attinger, ed.), S. Karger, 1971, 112-128
Goguen,J.: Categorical Foundations for General Systems Theory. Advances in
Cybernetics and Systems Research, Transcripta Books, 1973, 121-130

Goguen,J.. Objects. International Journal of General Systems, 1(4), 1975, 237-243

Goldblatt,R.: Topoi, the Categerial Analysis of Logic. North-Holland Pub1. Comp.,
Amsterdam 1979

Goguen,J.: A Categorical Manifesto. Teclmical Report PRG-72, Programming
Research Group, Oxford University, March 1989, To appear in Mathematical
Structures in Computer Science.

Goguen,J.: Sheaf Semantics of Concurrent Interacting Objects, 1990. To appear in
Mathematical Structures in Computer Science.
Goguen,J.: An Algebraic Approach to Refinement. Proc. VDM'90: VDM and Z -
Formal Methods in Software Development (D.Bjorner, C.A.R.Hoare, H.Langmaack,
eds.), LNCS 428, Springer-Verlag, Berlin 1990, 12-28
Gray,L: Sheaves with values in a category. Topology 3 (1965), 1-18

Grothendieck,A.: Categories fibrees et descente. Lecture Notes in Mathematics,
Volume 224, Springer-Verlag, Berlin 1971, 175-194

228

GTW78

Gu90

HC89

Ho72

JSSgO

Sa90

SE90

SEC90

SFSE89 a

SFSE89b

SW8 7

SSE87

Ve90

Goguen,LA.;Thatcher,J.W.;Wagner,E.G.: An Initial Algebra Approach to the Speci-
fication, Correctness, and Implementation of Abstract Data Types. Current Trends
in Programming Methodology IV: Data Structuring (R. Yeh, ed.), Prentice Hall,
Englewood Cliffs 1978, 80-149
Giindel,A.: Compatibility Conditions on Subclasses, Dortmund University (un-
published draft)

Hayes,F.;Coleman,D.: Objects and Inheritance: An Algebraic View. Technical Memo,
HP Labs, Information Management Lab, Bristol 1989
Hoare,C.A.R.: Proof of Correctness of Data Representations. Acta Informatiea I
(1972), 271-281
Jungclaus,R.;Saake,G.;Sernadas,C.: Using Active Objects for Query Processing.
Proc. IFIP 2.6 Working Conference DS-4, Windermere (UK) 1990 (to be published
by North Holland)
Saake,G.: Descriptive Specification of Database Object Behavior (to appear in
Data&Knowledge Engineering, North Holland)
Sernadas,A.;Ehrich,H.-D.: What is an object, after all ?. Proc. IFIP 2.6 Working
Conference DS-4, Windermere (UK) 1990 (to be published by North Holland)

Sernadas,A.;Ehrich,H.-D.;Costa,J.-F.: From Processes to Objects. The INESC
Journal of Research and Development 1 (1990) 1, 7-27

Sernadas,A.;Fiadeiro,J.;Sernadas,C.;Ehrich,H.-D.: The Basic Building Blocks of
Information Systems. Information Systems Concepts: An In-Depth Analysis,
E. Fatkenberg and P. Lindgreen (eds.), North-Holland 1989, 225-246
Sernadas,A.;Fiadeiro,J.;Sernadas,C.;Ehrich,H.-D.: Abstract Object Types: A Tem-
poral Perspective. Temporal Logic in Specification, B. Banieqbal, H. Barringer and
A. Pnueli (eds.), LNCS 398, Springer-Verlag 1989, 324-350

Shriver,B.;Wegner,P.(eds.): Research Directions in Object-Oriented Programming.
The MIT Press, Cambridge, Mass. 1987

Sernadas,A,;Sernadas,C.;Ehrieh,H.-D.: Object-Oriented Specification of Databases:
An Algebraic Approach. Proc. 13th VLDB, P.M.Stocker, W.Kent (eds.), Morgan-
Kaufmann Publ. Inc., Los Altos 1987, 107-116
Verharen,E.M.: Object-oriented System Development: An Overview. Technical
Report, Infolab, Tilburg University 1990

