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Abstract - The semantic domain for object-oriented languages and systems outlined in this
paper is an amalgamation of two approaches: the objecis-as-sheaves approach of the second
author published nearly two decades ago, and the more recent ideas of the first and third
authors on objects as processes endowed with observation. The basic insight is that objects in the
latter sense correspond to object morphisms in the former sense. After an informal intro-
duction into both approaches, we first elaborate on the sheaf model, using the term "behaviour”
for objects in this sense, and avoiding concepts from fopology. Behaviours and behaviour
morphisms are shown to form a complete category where parallel composition is reflected by
limits. Objects are defined to be behaviour morphisms, giving rise to a cocomplete category of
objects where colimits reflect object aggregation. Object morphisms reflect different forms of
inheritance, and also object reification (implementing objects over objects) is conveniently
expressed in this framework.
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L Introduction

What is an object ? Although substantial agreement has been obtained on many basic intuitions,
as yet there is no coherent theory which can cope with all aspects, including object interaction
and aggregation, object inheritance, object types and classes, object specification and implement-
ation, object correctness and verification, etc., and which can provide a sufficiently rich and
reliable basis for designing, implementing and using object-oriented languages and systems.

It is standard to view object-oriented systems as communities of interacting objects where all
objects operate concurrently on data of various types. Accordingly, process theory and abstract
data type theory provide relevant building blocks for object theory, but their integration is far
from trivial. There are many different formalisms, and it is difficult to compare, combine or
apply them. In particular, logics and models are often not clearly distinguished, and are rarely
combined. Moreover, there are many different levels of abstraction.

This paper combines two semantic approaches to object theory. It restructures the objects-as-
observed-processes approach developed mainly by the first and third authors in view of the
objects-as-sheaves approach of the second author, first published nearly two decades ago.

Sheaf theory developed in mathematics for studying relationships between local and global
phenomena, and has been applied in algebraic geometry, differential geometry, analysis, and
even logic. It has also been developed in an abstract form using category theory (Gra65, Gro7l).
Section 2.2 gives an informal overview of this approach, and full information can be found in
{ Go71, Go75, Go90a).

Section 2.1 reviews the basic ideas of the objects-as-observed-processes approach. Its development
can be traced in (SSE87, SFSE89a, SFSE89b, ESS89, ESS90, ES90). The main difference from
previous papers is the uniform treatment of processes and observations influenced by the sheafl
approach: both the process part and the cbservation part appear as "objects” in the latter sense,
called "behaviours” here in order to avoid confusion. These parts are related by a behaviour
morphism which tells how the process "triggers” observations.

The mathematics of behaviours and behaviour morphisms is developed in chapter 3 in a purely
categorial framework, establishing the category BHV of behaviours. BHV is shown to be complete,
and limits are shown to reflect parallel composition of behaviours.

In chapter 4, we introduce objects as behaviour morphisms, and object morphisms as commutative
squares in BHV. This way, the category OB of objects is constructed from BHV by a well
known categorial construction, namely as a "comma category”. OB is shown to be cocomplete,
with colimits reflecting object aggregation. Our very general notion of object morphism is shown
to cover different kinds of inheritance relationships between objects as special cases. Finally, we
briefly describe how object reification (implementing objects over objects, ¢f. ES90) is conveniently
expreseed in this framework.
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2. Motivation
2.1 Objects as Observed Processes

Following the argument in SE90, 2 computer system as a whole is a symbolic machine which is
able to receive, manipulate, store, produce and transmit data. As such, the computer system is
composed of two basic kinds of parts. On one hand, we have the storage components such as
files, records, databases and, of course, working areas in central memory. These storage com-
ponents are able to memorize lexical things like integers, names and so on, in general known as
data. On the other hand, we have the process components such as running application programs,
transactions, operating systems programs and so on. These process components are responsible
for the activity of the computer system. They receive, manipulate and produce all sorts of data
using, whenever necessary, the storage components.

In spite of their apparent diversity, we can recognise some important common features among
all these parts of the computer system. Porgetting data for the moment, both the storage and
the process components have a distinct temporal and spatial existence. Any instance of either one
of them is created and evolves through time (i.e. changes its state), possibly moving from one
place to another, until it is finally destroyed (if ever). Any such instance is able to retain data,
is able to replace the data it retains, and may be either persistent (with a long life) or transient
{with a short life).

The only intrinsic difference between a so called storage component and a process component is
in its liveness. The former is passive whereas the latter is active. That is to say, the latter has
liveness requirements and initiative in the sense that it has the ability to reach desired goals by
itself {e.g. termination of program execution), whereas the former waits passively for interactions
with the surrounding active components. In traditional jargon, the latter is given CPU resources,
the former is not. Thus, we should look at all those components of the computer system as
examples of the same concept - the object - with varying degrees of liveness and persistence.

In conclusion, barring the liveness and initiative issues, an object {or actor as some authors
prefer to call it when a community of full concurrent objects is involved} is a process endowed
with trace-dependent atiributes. That is, an object is an observed process: when we look at it
we are able to observe the sequence of events in its life, as well as the corresponding sequence
of attribute values.

As an illustration, consider a stack of integers as a (passive) object. When we look at it we
might observe the following sequences:

events attribute values
new empty=true
push(3) top=3 empty=false
push(7) top=7 empty=false
pop top=3 empty=false

pop empty=true
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In a sense, the object stack when observed displays two kinds of behaviour: {1} its traditional
trace of atomic operations made upon it (possibly initiated by some other agent, which we ignore

here since we are not interested in initiative issues); {2) its corresponding trace of attribute values.

More formally, an object can be defined as a map between behaviours: from the operations
behaviour into the attributes behaviour. We adopt the standard terminology within the process
community and use the word event instead of "atomic operation”. Clearly, events and attributes
correspond to "atomic methods” and "slots”, respectively, in the terminology of the object-oriented
community.

Returning to the stack example, we have to consider the following alphabets of atomic observ-
ations {of events and attribute values, respectively):

Estack = {new, pop, drop} u {push(n): ncw}
Vstack = {(top,n) | ncw} v {{empty,false), (empty, true)}
The former contains all possible events which we may observe in the stack. The latter contains

all possible attribute values which we also may observe in that object. (Please note that we
previously used the notation "top=n" for the pair (top,n).)
But what are the possible behaviours of the stack? With respect to its traces of events, almost
anything is possible: as long as its life starts with the birth operation new, we may subsequently
see any sequence of push’s and pop’s (with the proviso that a pop is not possible when the stack
is empty), possibly ending with the death operation drop. With respect to traces of attribute
values, we may see sets of pairs (attribute, value) following some rule making them dependent
on the observed trace of events.
Actually, as we shall discuss later on, an essential part of an object is precisely this mechanism
linking the two observations. We might even argue that this mechanism is the object {cf. section
4.1 below).
It is interesting to note how easily we accepted traces of sets of attribute-value pairs for
describing the attribute observation behaviour. For instance at a given instant if we observe
{top.7), (empty, false)
we say that top=7 and empty = false. Moreover, if we observe
{empty, false)
we say that top is undefined and emptly = false. Finally, if we observe
{top. 7). (top.9). (empty,false)
we would say that top is either 7 or 9 (nondeterminism!) and empty = false.
That is, from the side of the attributes, we naturally adopt a mathematical model supporting

both partially defined and nondeterministic attributes: it is enough for that purpose to consider
traces of sets of attribute-value pairs.

It is now reasonable to ask if traces of sets of events might also be useful. Indeed, they are:
they solve the problem of considering composite objects and their behaviours. As an illustration,
consider two isomorphic copies stackl and stack2 of our original stack. The question is: what is
the "joint behaviour” of the composite object stackllistack2 ?

We would expect joint traces like the following one:



207

events attribute values

newl emptyl=true

pushi{3) topl=3 emptyl=false

new?2 topl=3 emptyl=false empty2=true

pushi{7) topl=7 emptyl=false empty2=true

popl topl=3 emptyl=false empty2=true

popl push2(9) emptyl=true top2=9 empty2=false
pop2 emptyl=true empty2=true

This corresponds to the combination of possible traces of the components, assuming that we
accept that two events may happen at the same time: for instance popl and push2{9) happen at
the same time in the trace above. Thus, we are not restricting ourselves to the pure model of
interleaving; although such models of processes are simpler, they are not as powerful as models
supporting full concurrency (our model is somewhere in between).

In conclusion, with respect to event behaviour, in order to deal with composition of cbjects, we
also want to consider traces of sets of events. Please note that, as far as processes are con-
cerned, this composition corresponds to parallel composition.

It is useful to introduce here the metaphor of the “blinking observer”. Assume that you are an
observer who is always blinking (opening and closing your eyes forever). Assume further that
you open your eyes for very short periods of time, but that the rate of blinking is as high as
needed (you are a very effective observer). Then when you look at an object, you will see its
traces of events and of attribute values as follows: Each time you open your eyes you take note
of the events happening at that time; and you also take note of the values of the attributes at that
time. (This assumes that events always fit into one of your open eyed periods. Naturally, if your
rate is not fast enough you may loose some events.)

But assuming that you are a perfect observer, you will see all the traces of all the objects
around you. You will notice which events happen at the same time (synchronised) and what are
the attribute values at each time. Events of different objects may appear interleaved and/or at
the same time.

This metaphor is also useful when understanding object interaction. In general two objects which
we want to put together may interact {e.g., by sharing events). As an illustration, consider that
stackl and stack? above are independent {do not interact) except with respect fo creation: they
are to be created at the same time. In that case, whenever you observe them when you open
your eyes, either newl and new?2 are happening {at the same time) or neither of them is happening.
Thus, when two events are shared by two objects, they are always observed together.

The mathematical development of this metaphor is carried out in chapter 3. But it should be
noted that already in Go75 a similar view {reviewed in section 2.2) was proposed, but without
considering the mechanism for relating event behaviour and attribute-value behaviour. The latter
has been under active research in the IS-CORE project (ESS89, ESS90, ES90, SFSE89a+b, SSE87).
The two views are brought together in this paper.

It is perhaps useful to take one last insight from the blinking observer metaphor. The observer
introduces a fixed time frame which is independent of the "local times” of the observed objects.



208

As we shall see, this makes life much easier when combining objects. In this respect, the
present paper is far away from previous IS-CORE papers which took the position that each
object has its own local time structure {namely the structure implied by the trace of events
which have already happened).

- 2.2 Objects as Sheaves

Let’s consider the case of an object O which is "transparent” in the sense that it has no hidden
events, i.e., all of its behaviour is observable; in the language of software engineering, we could
say that none of it is hidden, private, or encapsulated. For such an object, its events are its

behaviour.

Let us also assume an ideal observer, who sees everything that he can, subject to his particular
limitations, during his particular lifetime; and let us assume that he leaves behind a data record
which faithfully records all of his observations, carefully indexed by the time at which they
were made. However, it is possible that different observers have different lifetimes, and that
observers with the same lifetime observe different things. Let TIME denote the set of all
possible lifetimes of ideal observers (later we will give TIME the structure of a category).

For the moment, let’s restrict attention to discrete linear time, so that we can assume each
observer’s lifetime is of the form {1,2,...}, and that the object he is observing comes into
existence at time t=1. Thus, an observer sees some “snapshot” A{t)eS at each moment of time t,
where S is the set of all possible instantaneous observations of O, and each observer’s data
record of a behaviour of O is a (total) function X: I—> S, where I is some interval of the form
{1,....n} and n is the time when he stops watching O. In general, a given object O cannot
produce all possible data records A: I—>S over an interval I, but only certain "physically
realizable” data records. Let O(I) denote the set of all such observable behaviours over I.

Now notice that if J is a subinterval of I, then there is a natural restriction function O{I)— O(I)
which maps each function X:I — § to the restriction of A to J, denoted AMJ:J— 8 ; for if the
snapshots A{1), A(2),.... A(n) can be observed over I = {1,..., n} and if T = {1,..., n'} with
n’s n, then surely the snapshots A{1), A(2)...., A{n’) can be observed over J. If we let i:J—1I
denote the inclusion, then a reasonable notation for the restriction function is O(i}): 0(1)— 0{1):
notice that O{i) goes in the “opposite direction” from i.

All this has a simple categorial formulation, which also suggests the right way to generalize.
Namely, let TIME be the subcategory of SET with intervals of the form {1,..., n} as objects
(including the empty interval, for n=0), and with only the inclusions as morphisms. Then O is
a contravariant functor from TIME to SET, where O(i: J—>1} is the function which restricts
functions on I to functions on J.

Clearly, this works just as well if we let TIME be any subcategory of SET with inclusions as
morphisms; then O: TIME® — SET can be any functor such that each O(I) is a set of functions
I—S, for some fixed set S of snapshots, and such that each Ofi: T<—1I) is a restriction
function. As in Go75 and Go90a, let us call such a functor a pre-object.

Of course, we can let the snapshots be sets of more primitive observations in order to handle
non-determinism, but let us not do so for the moment.
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To illustrate, let us consider the stack example again, assuming that everything is visible and
deterministic. Then at any moment of time t, an ideal observer will be able to see all of the
values on the stack. Thus, the snapshots are finite sequences of natural numbers, ie., § = 0¥,
and each observer’s data record has the form of a function A:{1,..., n}—> o*. (Of course, not
all such functions are possible, only those consistent with the "life cycle” of a stack; this can be
expressed succinctly as: either A(t)a A(t+1)=a(t) or A{t)na{te1)=2{(t+1), whenever O<tsn).
Let us denote this object Og .

Another view of a stack involves observers who see "events” rather than states; their data
records are functions A:{l,....n}—> Estack®, as in Section 2.1 (but without non-determinism).
Let us denote this object Op.

A third view of stacks involves observers who can only see the tops of stacks. Their data records
are functions A:{1,...,n} —> {({top.v) | vew}*. Let us denote this object Or. (The observation
(empty, true) would arise at time t iff A(t) is the empty string.)

What is the relationship among these three objects? It is easy to see that Op has the most
information, and Ot has the least, while Og lies in between. Thus, there are systematic trans-

lations OE—E-I%OSB-BOT which compute the state from the history, and the top from the
state. Following general intuitions about the basic concepts of category theory (Go89), because
each object is a functor, we should expect that these translations are natural transformations.
Indeed, pre-object morphisms are natural transformations, and in particular, hyand hy as well as
their composite h=hy;h, are natural transformations: the latter is what is called an object in
this paper. It gives an "interpretation” or "view” of the events in terms of their observable
results. On the other hand, Og is what is usually called a stack in the literature on data types
and state machines, while Op corresponds to the notion of stack studied in the process algebra
literature.

We can give a somewhat more exotic version of the data type view of stack, in which the
underlying domains include space as well as time. For this purpose, let us deline TIME to be
the category whose objects are subsets U of w* o satisfying the following two conditions:

1. {t | (t,h}eU } is an interval of the form {1,...,n}; let us denote this set t{U); and
2. for each tet{U), {h | {t.h}<U } is also an interval of the form {1,..., h},

and whose morphisms are inclusions. We let the snapshots be natural numbers. Then a data record
is a function of the form A:U~>w for some U satisfying ! and 2, as illustrated in the following
picture:

5] [3]
3[3[3]3]3 5]
v ol o] [2]2
i 2 3 4 5 6 7 8 9 10 i ¢

in which U= ({2}*[1) v ({3} #[2]) v ({4} *[31) v ({5} =[2]) v ({6} #[3]) v ({7} *[2]) v ({8} x
[17) v ({10} *[11) u ({11} % [2]), where [n] denotes {1,...,n}.
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For the purposes of this paper, only pre-objects in the above sense are needed. But the reader
may wonder what all this has to do with sheaves, or indeed, what a sheaf is. Let us assume that
TIME is closed under finite union and finite intersection. Then a pre-object O is a sheal iff it
satisfies the following condition:

* if Ay eO(Up) and X5 €O(U,), A (t)= X5 (t) for all teUynU,, and UjnU,y # @, then
then there is some X ¢O(U;uU,) such that AU =Xq and MPUy=2,.
This says that bits of "local” behaviour can be "glued together” if they agree on their overlap,
to form larger bits of behaviour. In terms of state machine intuition, this condition says that,
relative to the given notion of observation, we have enough information to characterize states
{please note that this definition does not presume determinism). In Go75, a pre-cbject that
satisfies this condition is called an object, contrary to usage in the present paper.

We conclude this section with some history of the approach it describes. In 1968, Joseph Goguen
moved to the University of Chicago to work with Saunders Mac Lane, and began thinking about
how to formulate a so-called General Systems Theory in the language of category theory. The
basic ideas were that a system is a diagram, its behaviour is its limit, and systems can be
interconmected by taking co-limits in the category of systems; see Go7l, Go73, GG78. This
motivated the approach to specifications in joint work with Rod Burstall on the Clear language
and its semantics, which involves taking co-limits in the category of theories (BG77, BG80), and
also motivated an examination of the objects that appear in the diagrams representing various
kinds of system, which then led to the formulation of objects as sheaves in Go75.

3. Behaviours

This section views an object as an observed process. Thus, an object consists of a process, i.e.
of events happening in time, triggering observations which vary in time. According to the object-
as-sheaves approach, these are two s-objects (i.e. two objects in the sense of the latter approach)
related by an s-object morphism: events happening in time constitute one s-object, observations
varying in time constitute another s-object, and "triggering” is expressed as an s-object morphism.
In order to avoid confusion, we adopt the term behaviour as a synonym for s-object. We also
generalize the objects—as-sheaves approach to a purely categorial setting. '

We have another terminological problem: the term “object” is used in category theory with quite
a different meaning. In order to avoid confusion and stay close to the established terminology,
we use the term "c-object” for objects in the categorial sense.

31 Atoms and Snapshots

In order to give a uniform treatment to events-in-time and observations-in-time as behaviours,
we assume that a universe U of behaviour atoms is given. U contains everything atomic for
which we might want to say that it may occur at some point in time. Examples are atomic
events like create, push(x) for all data elements x, pop and drop as atomic events of a stack
object, apen, close, credit(m) and debit(m), for all amounts m of money, as atomic events of an
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account cobject, as well as attribute-value pairs like top=0, top=l, empty=false,... as atomic
observations for the stack object, or balance=0, overdrawn=false,... as atomic observations for
the account object.

Each object will have its own alphabets of event and observation atoms which are subsets of U,
We will assume that the subsets of U are the appropriate alphabets of behaviour atoms.

As a basic tool for studying interaction between objects, maps between alphabets of behaviour
atoms are needed. This way we can express, say, that an object is embedded in another one (the
“environment"), that certain events are shared between different objects, etc.

Assumption 3.1: Let ALPH be a full subcategory of SET such that

{1} its urelements {singleton c-objects whose element has no elements) are the elements
of U;

{2) its c-objects include U and all subsets of U;
(3) it is complete and cocomplete (i.e., it has all (small) limits and colimits).

Hereafter, our theoretical developments assume a fixed category ALPH with its "universe” U of
urelements. For example, we can either imagine that ALPH has initially been chosen large
enough, or that an appropriate "smaller” ALPH has been chosen for that example, to include the
necessary atomic behaviours.

Typically, more than one event atom may happen at a given moment in time simultaneously, for
example, an entering and a leaving of a nonempty queue. Similarly, we usually do not see single
observation atoms at a given moment in time, but rather several of them simultanecusly, for
example the front element of a queue and its length. Abstracting from events and observations
to behaviour atoms, we usually have a snapshot SCA at a given moment in time, where ASU.
The power set 22 is the family of possible snapshots over A; it will be referred to as the
snapshol alphabet over A.

Behaviour atom alphabets A and B are related by mappings :tA—>B. A relationship naturally
induced between the snapshot alphabets over B and A, respectively, is the {set-valued) inverse
mapping t1.2B 528 1 particular, it expresses the appropriate restriction to a subalphabet in
case [ is an inclusion, a situation which occurs frequently when dealing with objects and sub-
objects. For example, if AS B and if S<2B is a snapshot over B, then 'S} = {acAa|f(a)eS} is
the restriction of S to A.

Definition 3.2: Let SNAP denote the category of snapshot alphabets and inverse mappings given
by ALPH: its c-objects are the sets 22 of all subsets of an atom alphabet A, and its morphisms
are the inverse mappings 128504 given by f:A—>B.

There is an obvious functor F: ALPH%—>SNAP sending A to 22 and f to L. Clearly, F is an
isomorphism of categories, and SNAP is complete as well as cocomplete since ALPH is. As an
isomorphism, F preserves limits and colimits. For illustrative purposes as well as for later use,
we show how limits in SNAP look, in particular products and equalizers.

Products in SNAP are given by "I'T2AJ'=2*LLA3 where j ranges over a given index set J, and LL
denotes disjoint union (coproduct in ALPH). The product morphisms prk:TTZAi% 28k, keJ, are
given by ptk:.LLBj'—}Bk, where BjGAj for jel, Le. prk=ini<1 where ing: Bk—é.L.LBj is the
injection going with the coproduct. We let * denote the binary (infix)} product in SNAP.
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Example 3.3: 2{0,1}*2{a,b}=2{0,1,a,b}, and the projections of, say, {0,1,a} are {0,1} and {a},
respectively, i.e. the corresponding restrictions.

As for equalizers in SNAP, let f,g:A,—>A, be maps in ALPH, and let h:A;—>A, be their
coequalizer in ALPH. It js standard to view <f,g> as a relation on Ay (namely {<f(a),g(a)> |
aeAz}), and to look at h as representing the equivalence relation generated by <f,g> (namely
hia)=h{b) iff a and b are equivalent). By duality and isomorphism, 11: 2405241 5 an equalizer
of 17, g'l: 2215242 i1 SNAP: each subset CsA( denotes a set of equivalence classes, and
h1{C) denotes their union UCGAl. The unions of equivalence classes obtained this way are
precisely those subsets of Ay which are mapped to the same subset of A,y by f-land g,

Example 3.4: Let A} ={0,1,2} and A, ={a,b,c}, and let f,g:Ay—>A; be given by

f:atk>0,b20,cH>1,
g:ak¥0 , b2 ,¢c>1 .

Then a coequalizer of f and g in ALPH is h:A{—>Ag={x,y} given by

h:0=x ,1y,2Hx .
In SNAP, the equalizer of gk 20,12} o{ab.ch 5 given by w2yt {012} sending © to
@, {x} to {0,2}, {y} to {1}, and {x,y} to {0,1,2}. In fact, these four target sets are precisely those
where ! and ¢! coincide: 1(P)=g"H@)=0 . 171({0.2)=g1({0.2})={a.b} , t71({1})=g ({1})={c}, and
1-1({0,1,2})=g71({0,1,2})={a b.c}).

32 Time Domains and Trajectories

Dynamic behaviour is modelled by attaching behaviour snapshots to points in time. In this section,
we discuss suitable models for "points in time” and how they are structured, and how snapshots

are "attached” to these points in time.

We note in passing that our approach is in fact more general: we can equally well deal with
"points in time-space”, i.e. behaviours which do not only extend over time but also - or only -
over space. However, the predominant intuition with objects in computing is that they have a
temporal but no spatial dimension. So we stick to the usual temporal terminology.

Most generally, our assumption about time is that there are "time domains” which may be related
by "morphisms” which are inclusions of one time domain in ancther.

Definition 3.5: Let TIME be a subcategory of SET with only inclusions as morphisms.

Amazingly enough, we do not need any additional assumptions about the time categery. Rather,
the restriction to inclusions as morphisms can be dropped without affecting the results presented
in this paper. However, we do not have reasonable cxamples of such general time (- space)
structures, and we do not want to strain the reader more than necessary.

Our approach to time covers a wide variety of time models, including discrete and continuous
time, linear, branching and partial-order time, as well as finitary and infinitary time. We give
two examples of simple and widely used time categories for objects in computing.

Example 3.6: DLF denotes the discrete linear finitary time category. Its c-objects are intervals
[n]={1.2,...n} for new, and its morphisms are [n]~>[m] whenever nxm. The time domains
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are finite intervals, and morphisms refiect prefixing. Naturally, [0]=0.

Example 3.7: DLI denotes the discrete linear infinitary time category. Its c-objects are those of
DLF augmented by ©, and its morphisms are those of DLF plus [n]<~>w for each new. This
adds the infinite time domain o to DLF, having each finite one as a prefix.

Let S¢SNAP be a snapshot alphabet, and let TIME be a given category of time domains.

Definition 3.8 : A trajectory over S with respect to TIME is a map A:t—>8 for some time domain
te TIME.

A trajectory describes precisely which snapshots occur along the points of its time domain.

Example 3.9: With respect to the DLF time category, a trajectory is a map t:[n]-—$ which
corresponds to a finite sequence <sy,s9, ... ,5,> where 5;¢S for 1<i<n, i.e. trajectories are the
usual fraces. With respect to the DLI time category, we have infinite trajectories A:0~>8 in
addition, corresponding to infinite sequences <s{.s,, ... > where ;8 for icw.

Please note that our notion of trajectory generalizes the notion of trace in three respects: we
have generalized time domains, we have snapshots {sets of atoms} at each point in time, and we
abstract from what occurs along time domains: events or observations - or something else.

Motivated by the event case, we say that a trajectory A:t—>S "makes a pause” at point pet iff
AMp)=0, i.e. nothing happens at point p in time domain .
Trajectories over the same snapshot alphabet S are naturally related via TIME morphisms, giving

rise to a category of trajectories over S and TIME.

Definition 3.10: Let X y:t;—>S and Aq:ty—> 5 be trajectories. A trajectory morphism Rk,
is a TIME morphism h:t{—>1, such that X, =hiX,.

TRI(TIME,S) denotes the category of trajectories over S with respect to TIME, with trajectory
morphisms as defined above. We will also write TRI(S) or simply TRI if the rest is clear from
context.

The construction of TRI{TIME,S) from TIME and S is an instance of the well known "comma
category” construction {cf. GB84).

The situation is depicted by the following commutative diagram.

i, e~y

AN / "

Notice that this means that A is the restriction of Ay to the subdomain ty of to. We will also
write X<\, iff there is a morphism from X to X, (there is at most one).

Example 3.11: In the DLF and DLI time models, trajectories are maps [n]— S (or ©—>8)
which correspond to finite {or infinite} sequences < $1.87,-. .>. Trajectory morphisms correspond
to prefixes:

[n] &> [n+m]

<sl,.. s >\ ‘/<sl,.. n'sml""'smm)
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3.3 Category of Behaviours

A behaviour is defined as a set of trajectories. Intuitively, a behaviour displays the possible life
cycles (with respect to events or observations) an object can go through. In what follows, we
assume that the TIME category is fixed once and for all.

Definition 3.12: A behaviour over S is a subcategory inclusion
(S,A) : A = TRI(S)

where S is a snapshot alphabet in SNAP, with the property that the constant map @;:t—>{@} is
in A for each t¢TIME.

The latter condition says that the "empty trajectory” {permanent pause) over any time domain is
always possible. This is needed later for technical reasons, but it also has an intuitive appeal in
its own right. Moreover, we will most often assume in examples that behaviours are "closed with
respect to pauses”, i.e. if Xy is in A and X, can be obtained from }; by inserting and omitting
pauses, then also A, is in A. This is a natural condition in cases where we deal with "asynchron-
ous” behaviour, i.e., where only the relative ordering of nonempty snapshots in time matters, not
the absolute time points when they occur. Please note that X and A, as defined above, i.e.
being "the same modulo pauses”, will in general be trajectories over different time domains.

Definition 3.13: Let (S;,A;) and (S,,A,) be behaviours. A behaviour morphism is a functor
Lo (31,1\1}—_> (SZ’AZ)

such that dom X = domo(X) for each trajectory A ¢Ay. Moreover, if @y:t—>{@} is the "permanent

pause” trajectory over t, then o(@)=@;.

That is, » and o()\)} always have the same underlying time domain (they have “the same length"),
and permanent pauses are always sent to permanent pauses.

This is rather general and might look strange, one would perhaps expect a SNAP morphism
between Sy and S as part of a behaviour morphism. But the generality is needed. For example,
stack event behaviours and corresponding stack observation behaviours should be related by a
behaviour morphism. While it is very well possible to associate the observation top=k with a
push{k) event at any point in time, there is no single observation which can be associated with a
pop event: any top value is possible, depending on context. Interesting special cases of behaviour
morphisms, however, do go with an underlying SNAP morphism, cf. definition 3.17 below.

Example 3.14: In the DLF and DLI time categories, we have the following situation.
[n] < [n+m]

(sl,...,sn>/£,)\<si....,s’n> <si,..,sn,..,sm>/'%\<s’1,...s;f‘.,s’m>
S s S NS

This means that ¢ is "monotonic”: prefixes are sent to prefixes. Thus, ¢ acts as a "state function”
where the snapshot at a given position depends on the "past” {snapshots at previous positions)
only. These time models thus exclude "prophecy” effects {which can, however, be achieved with

other time models, for instance the discrete versions of DLF and DLI obtained by omitting all

morphisms ).
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It is an easy exercise to verify that behaviours and behaviour morphisms as defined above do form
a category.

Definition 3.15: Given TIME and SNAP, the category BHV(TIME,SNAP) is the category of all
behaviours over some snapshot alphabet S<SNAP with respect to TIME, and all behaviour
morphisms among them, as defined above. We will also write BHV(SNAP) or simply BHYV if the
rest is clear from context.

Behaviours (S ,A) and (S;uS, ,A), with the same A, are isomorphic in BHV, i.e. behaviours do not
change essentially if we enlarge or restrict the underlying snapshot alphabet, as long as all
snapshots occurring in A are present. Therefore, we sometimes write just A instead of {S,A),
meaning that S is understood to be the set of all snapshots occurring in trajectories in A.

Remark 3.16: With the general approach presented here, there is no problem to handle "trans-
actions”, i.e. elements X : t—> S of a behaviour which are given a status of "atomicity” by including
them into the set A of behaviour atoms underlying S (i.e. S=2A). This way, transactions can be
nested arbitrarily. An example of transactions is given in section 4.3.

Definition 3.17: A behaviour morphism o: (SI,AI}—> (Sz'Az) is called oblivious iff it is of the
form o{A)=X;f for some fixed SNAP morphism [:S 1S,

N

51‘“"—952

If ¢ is oblivious, then, at each point in time, 6{)) depends on X at the same point in time only,

not on any A components "before” or "after” or "concurrently”. Assuming the DLF or DLI time
model, o is oblivious iff o(tA)=s(t)o()) holds for any finite sequence t and any sequence X:
hence, o(sys, ... )=olsq)ols;) ... .

Theorem 3.18: Given categories SNAP of behaviour snapshots and TIME of time domains, the
category BHV(SNAP,TIME) of behaviours over SNAP wit respect to TIME is complete.

Proof: We show that BHV has products and equalizers.

As for products, let (S A) jeJ , be a family of behaviours. Let prj: S—S; It jeJ, be the
product in SNAP {cf. sectmn 3.1} where S= TTS;. Let A > TRI{S) be the fuli subcategory
consisting of all trajectories A<TRJ{S) such that l iPr; sA for each jeJ. Let T A—> AJ, jel, be
the oblivious behaviour morphism given by = (l) X prj for each jel. Then the JeJ constitute
a product in BHV.

In order to verify this, let o;: (s, A) %(Sj,Aj), jel. be a family of behaviour morphisms (not
necessarily oblivious!). Then each trajectory A e¢A’ is sent to a trajectory A; =oJ(1 )eA for each
jeI. Let X\ be the trajectory <A defined by lj=nj(k) for each jeJ (it is clear that there is
exactly one Ae¢A satisfying this condition). Let o: A~ A be the map defined this way. o pre-
serves the time structure so that i is a functor: if A1=Qy, then o; ()\ )< o; (12) for each jel,
from which we conclude by construction that s(3]) < o(d7). Clearly 6j=0;m; for each jeJ, and
o is the only map satisfying this equation. Moreover, dom ) =domo; (l) domX;=dom) for each
jeJ, and o((Z‘)t) @, for each time domain t.

Thus, ¢ is a behaviour morphism, and it is the only one from ($,A°) to (S,A) satisfying o;mj=0;
for all jeJ. This verifies that the LIt jeJ, constitute a product in BHV,
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Essentially, the product is taken componentwise along time domains.

As for equalizers, let o,0:(Sy,A;)—>(S;,A,) be two behaviour morphisms. An equalizer of
o and p is constructed as in SET: it is given by the inclusion £: (Sg,Ag) “—> (S;.A|) where S,
is some subget of Sy containing all snapshots occuring in Ag (different choices lead to isomorphic
behaviours), and Ag ={ke/\1 { o(n)=p(2)}.

In order to verify this, let t": (S,A}—>(S;,A) be a behaviour morphism satisfying t’;0=1"0.
By construction, t(A")S Aq so that there is exactly one map t:A’—> Ay satisfying t;E=1". Since
7 essentially is v {with the range restricted to Ag ). it is obvious that T is a behaviour morphism,
and it is the only one from (S’,A) to (Sy,A ) satisfying t;E=1". This verifies that £ constitutes
an equalizer of ¢ and o. n]

34 Parallel Composition

Limits in a behaviour category reflect parallel composition of behaviours. From the proof
of theorem 3.17, we see that products are constructed "pointwise” along a common time domain
by taking the disjoint unions of snapshots.

Example 3.19: Assuming the DLF time category, let A; and Ay be given as follows.
Ay = {<{2. 43,05} . {1} >, {4}, (1,30
Ay = {< {a}, {d}.{b,c}>, {a,c}.{b,d}>}"

where * denotes closure with respect to pauses. That is, all trajectories which can be obtained
from the two in Ay shown above, by inserting pauses, are also in Ay, and correspondingly for A,.

Let Mg = { Ax} {y)> 1 .
Let frex+=>4,y+>1
and fp:xkda ,yr>d

indicating that we want to synchronize on 4=a and I=d. Let ff:Al —Ag and f%:Az —Ag be
those oblivious behaviour morphisms obtained by applying fil or fil, respectively, to each point
in time along each trajectory. Then a pullback object Ay of fgf and f; is an equalizer object of
prl;f’f and prz;f;, as shown in the following diagram.

The pullback object Ay is given by all "interleavings” of behaviours in Ay and A,, appropriately
synchronized, appearing as componentwise “union” of behaviours interspersed with @ {and made
equal in length this way):

<{x,2}, {5} .y}, {be} > from  <{2,4}.{5}.{1}.0> and <{a}.@.{d}.{b.c}> .
<ix.2,0}. {5} . {y.b} > trom  <{2.4}.{5}.{1}>  and <{a,c},®,{b.d}>,
<Ax}, .3}, {boe} > from  <{4}.{1.3}.8>  and <{a}.{d}.{b.c}> .
<Ax,el, {y.3.b} > from <{{4},{1,3}> and {{a,c},{b,d}> ,
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plus all behaviours obtainable from these by inserting any number of pauses in any place.

Another (isomorphic) choice of the pullback object is obtained if we keep a and 4 distinct instead
of merging them into a single symbol x, and the same with d, 1 and y, respectively. The "identi~
fications” x=a=4 and y=d=1 are then reflected by the fact that a and 4 (or d and 1, respectively)
always appear together in a synchronization set: both are in the set, or neither of them is.

4. Objects

Objects are defined as behaviour morphisms, capturing the idea of "processes endowed with
observations™. Object morphisms are pairs of behaviour morphisms between the process and
observation parts, respectively, satisfying a natural compatibility condition. The category of
objects established this way is shown to be cocomplete. This means, for instance, that aggregation
of objects is compositional. Various forms of object inheritance can be expressed as object
morphisms, and also object reification {sometimes called refinement) can be expressed this way.

4.1 Category of Objects

Let BHV be a complete behaviour category as described in the previous sections. Intuitively
speaking, an abject tells how observations in time (and/or space) depend on events in time
{and/or space). This is appropriately modelled by a morphism in BHV.

Definition 4.1: An object is a behaviour morphism ob: {E,A}——(V,0}) in BHV.
Intuitively, the first behaviour is the “active” part (process), and the second behaviour is the

“passive” part (observation). That is why we use E and V for the respective snapshot alphabets.
ob describes how the process "triggers” its observations.

We write ob:A—> Q if E and V are clear from context. For illustration, we refer to the
examples in section 2.1.

There are two obvious ways to derive new objects from given ones, namely by “triggering” and
by "observing” via respective behaviour morphisms, as shown in the following diagrams.

h
Ay 2 Ay Ay
Ohli j/obz
h
Qy & 1 2

On the left hand side, object oby is “triggered” via’hA in the sense that the composed object
hpsoby has Ap as its process part and hy tells oby; how to "obey the commands” in Aqy.
Analogously, on the right hand side, ab, is "observed via” hg in the sense that hq tells how to
"interpret” the observations of oby in terms of behaviour (. In the special case where hy and
hpy are restrictions on snapshot alphabets going with inclusions on the respective atom alphabets,
"triggering” means disregarding the events in Ay which are not in the scope of Al- and "inter-
preting” observations means viewing only those in the scope of 0, (cf. Definition 4.5 below).
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An object morphism is a relationship between objects ob; and ob, where the process part of ob,
triggers oby via some behaviour morphism hy while, at the same time, the observation part of
ob; observes ob, via some other behaviour morphism hp, in such a way that "ob triggered via
hp" is the same object as "ob, observed via hp", i.e. the following diagram commutes.

h
Ay —A Ay

obll lobz
ho

0 —— 0

Definition 4.2: Let oby: A;—>(};, i=1,2, be objects. An object morphism h:oby~——0b, is a
pair { hatAy— Ay L hey Q0 ) of behaviour morphisms such that hypsoby=obyihpn holds.

In the next subsection, we will explore special cases of object morphisms which model different
kinds of object inheritance. The “"oblivious” object morphisms {cf. Definition 3.17) to be defined
next are a sort of standard case. They play an essential role for studying inheritance.

Definition 4.3: An objeci morphism h:oby —>ob, is called oblivious iff both hy and hg are
oblivious behaviour morphisms.

A word is in order about the choice of direction for gbject morphisms. Basically, this is a matter
of taste and we could have defined them the other way around. Qur choice is motivated by the
direction of maps on the underlying atom alphabets in the case of oblivious morphisms. If
h:oby—>ob, is such an object morphism, i.e., if hy and hp are oblivious, then hy:A;— Ay
comes from a map g}\l:82%81 on snapshot alphabets which in turn comes from a map gp: 4
—> A, between the underlying atom alphabets (Si=2Ai for i=1,2). The same holds for the Q
part. If g4 and g are inclusions, then the corresponding object morphism goes from the "part”
to the "whole”, describing the embedding of an object into an environment {which is an cbject,
too). The argument that the arrows should go the other way is almost as compelling: this is the
way that the arrows actually go in the diagram above, and also, it leads to using limits to compute
the behaviours of systems, in accord with the general "dogmas” of Go89.

Of course, objects and object morphisms form a category. We denote this category by OB.
Theorem 4.4: OB is cocomplete.

Proof: Taking morphisms of a given category K as c-objects and commutative squares in K as
morphisms of a new category L is a well known categorial construction. We use the notation
L =Mor(K). L can be described as a comma category (cf. GB84), namely L = (K/K) (we identify
K with the identity functor on it). The category of objects is OB = Mor{BHV )°P=(BHV/BHV)°P.
Since BHV is complete {Theorem 3.18), we conclude from well-known theorems of category
theory that Mor{BHV) is complete; thus, OB is cocomplete. o

From the example in section 3.4, it is clear that colimits in OB can be utilized to model (paralliel)
composition of objects. This theorem, therefore, gives a very general basis for compositional
semantics of object-oriented systems: we describe single objects as behaviour morphisms, inter-
action between objects by object morphisms, and we obtain the community of all interacting
objects as one composite object, the colimit object in OB, with the universal cocone describing
how the single objects are embedded in (or "part of") the community.
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The above theorem holds for arbitrary time {and/or space} categories TIME, covering quite a
variety of process models going far beyond mere interleaving. Please remember that "transactions”
are also included (cf. Remark 3.16): we may very well decide to pick an element of a behaviour
over a set A of atomic events and put it into A so that it plays the role of an atomic event.
Transactions can be "synchronized” with other atomic events (thus with other transactions as
well) by putting them into the same snapshot. Please remember that, at each time instant of
a transaction, we may again have transactions within the snapshot, etc., i.e. transactions can be
nested.

From the dual of the object category, OB°P, into the behavior category BHV, we have two
obvious forgetful functors, giving the underlying event and observation behaviours, respectively:

A : OB%? —— BHV

"forgets” the observation parts: it sends each object ob: A—>() to its event behaviour A, and
each object morphism h:obl->ob2=(hA:A2-~>Al. hQ:QZ—QQX} to its event behaviour
morphism hy:Ao—>A . Similarly,

Q : OB°? — BHV
"forgets” the event parts: it sends ob: A—>Q to (O, and h:oby—>ob; to hy: Q—0;.
According to definitions 4.1 and 4.2, each object ob is the behaviour morphism

ob : Afob) — 0fob) ,

and each object morphism h:obj ~>oby is the commutative diagram
A(Ubl) ¢ = A(sz)
0b1 Obz

afoby) 20— a(ep,)

This means that the category OB of objects can be described as the dual of a comma category,
OB = (BHV/BHV)? ,

where the category BHV is identified with the identity functor on it (cf. proof of theorem4.4)},

and A and () are the two projection functors. The data given above can also be interpreted as
describing a natural transformation

b A= 0.
The following diagram shows how OB, BHV, A, O and ob are related:
ORB%?
ob
Al=)Q

BHV
From general results in category theory, we conclude that A and () are cocontinuous.
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4.2 Object Inheritance

In this section, we study some aspects of inheritance in object-oriented approaches. We show
that object morphisms can be used to formalize several kinds of inheritance as relationships
between objects. We avoid, however, the word “inheritance” as a technical term because of the
notorious confusion surrounding it. In particular, we discuss strict inclusion, weak inclusion and
enclosure.

4.2.1 Strict Inclusion

In an intuitive sense, an inclusion morphism h:ob;“—>ob, as defined below describes how the
"part” ob; is embedded in an “"environment" or "complex object” ob, such that ob; is
"encapsulated within” ob, in the sense that no events outside ob; can affect observations within
oby. Typical examples are engine “—> car, memory —> computer, etc.

A specific application for this kind of object morphism is "object sharing”, i.e. the inclusion of
one object into several other objects. The case that just single events are. shared has been
utilized by the first and third authors as a means for synchronous and symmetric communication
between objects (ESS90,ES90, SFSE89a,SSES7).

Definition 4.5: Let h:oby —>o0by be an oblivious object morphism. If the underlying maps on
atomic events ga: A;“—> A, and atomic observations gn: By ~> B, are inclusions, we call h an
inclusion morphism and write h:oby“—>ob, .
Please note that, for an inclusion morphism h, hy and hn are not inclusions themselves but
restrictions on snapshot alphabets resulting from inclusions on the underlying atom alphabets.
The following diagram illusirates the situation.

oby
hA hﬂ
Obz
RS S
Obz Az Ez Az 02 VZ Bz

As for inheritance, the inclusion morphism says that ob, “inherits” the atomic events and observ-
ations from oby such that ob; observations are "views” of ob, observations, and ob, event
behaviours (life cycles) are "enrichments” of obl life cycles. The morphism condition says that
any permissible enrichment of an obj life cycle A jeA;, when observed in ob,, gives rise to the
same observation in the view of ob;.

For example, restricting a computer life cycle to memory events and observing the latter gives
the same as observing the entire computer life cycle and restricting attention to memory observ-
ations only. That is, only memory events can influence memory observations, there is no way
that non-memory computer events can have an effect on the observable behavior of the memory.
In this sense, the memory is an "encapsulated object within” the computer. This does not mean
that no communication is possible: the computer can "use” memory events - but only these - to
operate on its memory.
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The standard application of inclusion morphisms is to describe the composition of complex objects,
i.e. the aggregation of objects, sharing encapsulated subobjects: if in;: oby —> ob;, i¢{1,2, ...,n},
then the aggregation obyllobyll...|lob, synchronizing on oby is the colimit of the diagram
consisting of the inJs, and the universal cocone describes how each ob; is embedded into the
aggregation. The following diagram illustrates this for the case n=2, where the colimit is a
pushout.

oby

/N

oby  p.o. ohlﬁ oby synchronizing on oby

N

oby

4.2.2 Weak Inclusion

If we keep the inclusion idea just for the observation part and liberalize the event part to arbitrary
behaviour morphisms, we arrive at the concept of "observation inclusion morphism” which models
a weaker form of inheritance: environment events can affect local observations directly.

Definition 4.6: Let h:ob) -——>ob, be an object morphism. If the constituent cbservation behaviour
morphism hgy is oblivious and its underlying map on atomic events hp :By <> B, is an inclusion,
we call h an observation inclusion morphism and write h:oby ©-~=ob,.

The following diagram may help to understand this situation.

ob

Obl Al ‘“—‘*'91 Ol Vl Bl
n

|

‘L Obz

ob, Ay —=— 0, V, B,

As in the case of inclusion morphisms, ob; observations are "views” of ob, observations, but ob,
event life cycles may "trigger” ob; in an arbitrary way. This can be utilized to model "loose”
embeddings of a "part” ob; into an "environment” or “"complex object" oby where environment
events can affect local observations, but only in a way which can be simulated by some local
events: hy tells how the local effect of global life cycles is simulated locally.

In the linear discrete time models, this simulation of global life cycles by local ones must
preserve prefixes. Consequently, in cases where the life cycle set is prefix-closed, this simulation
can only happen in an event-by-event way: global events "call” local events (cf. SE90, SEC90).
In order to illustrate this, consider a user using a stack (which may be shared by other users).
We model this by including the stack object weakly into the user object:

stack €~~--> user .
For each stack event pop, push(k), etc., we assume that the user has a corresponding private
event call-pop, call-push{k), etc., "calling” the corresponding stack event in the above sense.

We assume that a user uses only his private calls for operating on the stack, not the stack
events directly. The weak inclusion stack € - -- user is then established by replacing stack calls
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by the corresponding stack events and forgetting about all other user events, mapping each user
life cycle to a stack life cycle this way.

The point in this construction is that arbitrarily many users can be hooked to the same stack this
way, sharing it weakly in the sense that everybody can operate on it, and everybody can observe
all the effects, also those caused by others. Each user may, however, define additional attributes
which are changed when he calls the stack (for local bookkeeping or so), and which camnot be
observed, let alone changed, by the others,

The aggregate object - users sharing a stack - is obtained as a colimit in OB, in much the same
way as in the strict inclusion case.

4.2.3 Enclosure

The enclosure morphisms to be defined next are much more liberal than strict and weak
inclusions: if ob; encloses ob,, then event as well as observation behaviours of oby are included
in those of oby, respectively (please note that the inclusions are on behaviours and go in the
opposite direction), such that oby in isolation works in exactly the same way as it works in the
context of oby - as long as ob; "doesn’t interfere”.

Definition 4.7: Let ob;: A;—> (), i=1,2, be objects, and let Ay € Ay and Q) < 1y such that the
inclusions form an object morphism h:ob; —> oby . In this case, we call h an enclosure morphism
and use the notation h:obj >—> ob, .

An enclosure morphism is illustrated by the following diagram.

oby A—— 0

oby T —

In general, enclosure morphisms are not oblivious, that is why we do not show the underlying
alphabets in the diagram. All that can be said about the snapshot alphabets is that each snapshot
occuring in A, must also occur in Ay, and the same for Oy and ;. Please note that this does
not necessarily mean inclusion between the respective snapshot alphabets.

Intuitively, if ob; encloses oby, ob; acts exactly like oby as long as only nbz events occur.
However, once a "new” obl event happens, nothing is incurred for ob; any more (not even in
retrospect, operationally speaking). We have been experimenting with additional conditions
ensuring that "old” events maintain their effects on observations also in case "new” events occur
{see also Gu90). This subject deserves further study.

Enclosure morphisms seem to have their methodological virtue in modelling "roles” of objects, in
the sense in which patient, employee, car driver, tax payer, etc. are roles of person: patient >—>
person, employee D>—> person, car-driver >—> person, tax-payer O—> person, etc. In fact, patients,
employees, car drivers, tax payers, etc., should basically behave like persons.

Please note that this situation is very different from aggregation forming complex objects. A
person is not the complex object with parts patient, employee, etc., and the patient, employee,
etc. objects are not aggregations sharing the person object as a common part either. Indeed, the
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latter would mean that patient, employee, etc. life cycles are proceeding concurrently all the
time. Rather, a person’s behaviour shows phases where, say, she is a patient, other phases where
she is an employee, and still other phases where she is both at the same time. The mathematics
of enclosure reflects this appropriately: when taking colimits, several roles of the same object
have the latter as colimit object and the enclosures as universal cocone, so nothing new is
constructed.

A thorough treatment of all aspects of inheritance is outside the scope of this paper. Besides
inheritance between objects as discussed here, inheritance between object types and object classes
(which we do not treat in this paper) have to be taken into account, as well as inheritance between
specifications of objects, object types, and object classes (see also HC89). This area requires
further study.

4.3 Object Reification

Our approach is based on reification as an implementation relationship between objects as studied
in ES90. Intuitively, reification describes the relationship between an "abstract interface”
implemented on top of a "base interface”. That is, we deal with reification as a relationship
between objects. This has to be distinguishéd from the relationship between specifications of
"describing in more detail”, and also from the relationship between a specification and an object
which "complies with” the specification. Both are sometimes called "implementation”, too.

Reification has been studied extensively in the field of abstract data types and their specification,
starting with the pioneering paper GTW78. Essential ideas can already be found in Ho72. The
following example is taken from ES90. It is treated in Go90b from a specification point of view.
Example 4.8: Let the stack object in section 2.1 be given, with the following behaviour atoms.
stack:  event atoms new, drop, push(i) for icint, pop
observation atoms top=i for icint, empty?=b for bebool
We want to implement this "abstract” stack object on top of an array with a top pointer nvar

(which is a variable over natural numbers), having the following behaviour atoms (cf example 4.1
in ES90).

array: event atoms create, destroy, set(n,i) for nenat and iecint
observation atoms conts{n)=1i for nenat and icint
nvar: event aloms open, close, asg(n) for nenat

observation atoms val=n for nenat

The intuitive meaning of these atoms should be clear. Intuitively, an implementation of stack over
array and nvar would do the following two things:

(1) encode each stack event by a "transaction” over the base, i.e. a sequence of array and
nvar events, for instance
new > <create;open;asg(0)>
drop > <close;destroy>
push(i)+> <set([vall,i);asg([vall+1)>
pop > <asg([vall-1)>

Here, [val] denotes the current value of the attribute val of nvar.
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{2) decode each observation over the base attributes as an observation over the stack
attributes, for instance
top = [conts([val]-1)}]
empty? = equal?([val],0)
Since events from several base objects are interleaved in the above encoding, we should look at
the composite object bas=arraylinvar as being the base, rather than some collection of base
objects. Thus, we may assume that the base is just a single object.
Please note that the base "transaction” by which a stack event is encoded will lead to different
base traces for the same stack event, depending on context. For instance, pop can mean <asg(0)>
or <asg(l)> or ..., and push{l) can mean <set{0,1);asg{1)}> or <set{1,1):asg(2)> or . . . , depending
on the value of val in the state where pop or push(l) occurs, respectively.
Each stack life cycle, for instance
*
<new ; push(1) ; push(2) ; pop ; push(1) ; pop ; pop ; drop> ,
can be transformed into a sequence of base transactions by means of the above encoding:
<<create sopen; asg(0)>; <set{0,1); asg(l) >; <set(1,2) ; asg(2) >; <asg(1) >; <set(1,1) ; asg(2) >;
<asg(1) > <asg(0)>; <close ; destroy >> .
Please note that the two sequences shown above have the same length, if we count each trans-
action in the second sequence as just one atomic step. The asterisk marks the same position in
both sequences. If we "unfold” the latter transaction sequence into a flat sequence of base events,
we arrive at the following sequence. Please note that it is longer than the above two sequences.
*
<create ; open ; asg(0) : set{0,1}; asg(1) ; set{1,2) ; asg(2) ; asg(l); set{1,1); asg{2) ; asgll});
asg(0) ; close ; destroy > .
Here, the asterisk marks a "corresponding” position, not the same one, because the underlying
time domains are different. Encoding amounts to "compiling” stack life cycles into life cycles
over base transactions of the same length, and the latter are obtained by "folding” base life
cycles into transactions.
The result of compiling a stack life cycle should be "executable”, i.e. its unfolded version should
be a valid base life cycle, and the observations along the corresponding folded version, when
decoded as stack observations, should comply with the given stack behaviour. For instance, at
the end of the initial trace of the above base life cycle ending at *, we have the following
observation snapshot:

val=1  conts{0)=1 conts(1)=1
This base observation snapshot decodes as the following stack observation snapshot:

top = [conts{[vall-1)] = [conts(0)] = 1

empty? = equal?{[vall,0) = equal?{1,0) = false
This is the correct observation snapshot at the end of the corresponding stack trace, i.e. the
initial trace of the above stack life cycle ending at * . o
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As the example illustrates, it is appropriate to assume that the base consists of a single object
bas. In practice, bas will most often be an aggregate object composed of a collection of objects
which may interact {i.e. bas is the colimit object of some diagram in OR),

So our problem is the following: given an abstract object ab and a base object bas, what is an
implemetation of ab over bas ? For notational convenience, we index each item of ab by ab
(Aab’ﬂab ete. ), and similarly for bas and the other objects to follow.

Definition 4.9: Let bas and ab be objects. An implementation of ab over bas is given by
(1) a folding functor F: BHV —> BHV , and

(2) apair (v:Ay—>Ay,F. 81 OpaF—> Q) of behaviour morphisms such that
the following diagram in BHYV commutes.

Y

A pas Apad < Aab

bas PF—) bas F ab
8

(g QbasF > Ogp

That is, the observation ab{}} associated with a life cycle Aehyy can be "calculated” using the
"encode” and “"decode” morphisms v and 3, respectively, defined on the folded base which has
the appropriate transactions in its life cycles.

The difference from the corresponding definition in ES90 is that v and § are required to be
behaviour morphisms here, not just mappings. As a consequence, ab life cycles are mapped to
bas F life cycles "of equal length” (over the same time domain), and correspondingly for 8. That
is, an abstract event is mapped to a transaction (which counts as "one step”), and only the
observations after completed transactions are shown, not intermediate observations inside a
transaction.

The difference between the encode-decode part of an object implementation and an object
morphism is that, for the former, the pair of behavior morphisms {v.8) is in opposite directions.
The question whether implementations can be expressed by morphisms can now be answered
easily from the following diagram where mid=v;bas.

X

Apasf € Aab = Aab
bas F Em— mid — ab
QyasF = OpasF — Qg

This diagram shows that the {v,5) part of an implementation of ab over bas is the same as two
object morphisms, namely {v,id}:bas F—> mid and (id,$):ab—> mid. These two object morphisms
deal with event encoding and observation decoding separately (in contrast to the extension/
encapsulation construction in ES90).
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5. Concluding Remarks

We have outlined a general categqrial framework as a semantic basis for object-oriented
approaches. In this paper, we concentrate on single objects and how they are related via inter-
action, inheritance, etc., and how they are composed to form complex objects. An essential feature
of this approach is its generality, especially with respect to the underlying time (or even time-
space) domains. This leaves the possibility for incorporating powerful process models, including
nondeterminism and forms of concurrency more general than interleaving. So far, however, we
have used simple deterministic interleaving models in our examples, albeit with liveness and
initiative {SE90). The integration of more powerful models has still to be worked out in detail.

Clearly, the theory has to be extended to cover object types and object classes as well as the
various (inheritance) relationships between instances, types and classes.

The development of the semantic domain is being synchronized within the IS-CORE project with
work on logic and proof theory for objects (FS90, FSMS90, FM90). It seems that the present
general framework is a major step forward towards bringing the semantics and logics of objects
together.

Eventually, semantic and logic foundations should prove their usefulness for designing and
implementing better languages and systems. Also within the IS-CORE project, work is being
carried out towards this end, i.e. developing a broad-spectrum language for object-oriented
system specification and development (JSS90, Sa90). A recent overview of object-oriented
system development is given in Ve90.
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