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Abstract - ~ e  semantic domain for object-oriented languages and systems outlined in this 
paper is an amalgamation of two approaches: the objects-as-sheaves approach of the second 
author published nearly two decades ago, and the more recent ideas of  the first and third 
authors on objects as processes endowed with observation. The basic insight is that objects in the 
latter sense correspond to object morphisms in the former sense. After an informal intro- 
duction into both approaches, we first elaborate on the sheaf  model, using the term "behaviour" 
for objects in this sense, and avoiding concepts from topology. Behaviours and behaviour 
morphisms are shown to form a complete category where parallel composition is reflected by 
limits. Objects are defined to be behaviour morphisms, giving rise to a cocompletc category of  
objects where colimits reflect object aggregation. Object morphisms reflect different forms of  
inheritance, and also object reifieation (implementing objects over objects) is conveniently 
expressed in this framework. 
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I. In t roduc t ion  

What is an object ? Although substantial agreement has been obtained on many basic intuitions, 

as yet there is no coherent theory which can cope with all aspects, including object interaction 

and aggregation, object inheritance, object types and classes, object specification and implement- 

ation, object correctness and verification, etc., and which can provide a sufficiently rich and 

reliable basis for designing, implementing and using object-oriented languages and systems. 

It is standard to view object-oriented systems as communities of interacting objects where all 

objects operate concurrently on data of various types. Accordingly, process theory and abstract 

data type theory provide relevant building blocks for object theory, but their integration is far 

from trivial. There are many different formalisms, and it is difficult to compare, combine or 

apply them. In particular, logics and models are often not clearly distinguished, and are rarely 

combined. Moreover, there are many different levels of abstraction. 

This paper combines two semantic approaches to object theory. It restructures the objects-as- 

observed-processes approach developed mainly by the first and third authors in view of the 

objects-as-sheaves approach of the second author, first published nearly two decades ago. 

Sheaf theory developed in mathematics for studying relationships between local and global 

phenomena, and has been applied in algebraic geometry, differential geometry, analysis, and 

even logic. It has also been developed in an abstract form using category theory (Gra65, Gro71). 

Section 2.2 gives an informal overview of this approach, and full information can be found in 

( Go71, Go75, Gog0a). 

Section 2.1 reviews the basic ideas of the objects-as-observed-processes approach. Its development 

can be traced in (SSE87, SFSE89a, SFSE89b, ESS89, ESS90, ES90). The main difference from 

previous papers is the uniform treatment of processes and observations influenced by the sheaf 

approach: both the process part and the observation part appear as "objects" in the latter sense, 

called "behaviours" here in order to avoid confusion. These parts are related by a behavivur 

morphism which tells how the process "triggers" observations. 

The mathematics of behaviours and behaviour morphisms is developed in chapter 3 in a purely 

categorial framework, establishing the category BHV of behaviours. BHV is shown to be complete, 

and limits are shown to reflect parallel composition of behaviours. 

In chapter 4, we introduce objects as behaviour morphisms, and object morphisms as commutative 

squares in BHV. This way, the category OB of objects is constructed from BHV by a well 

known categorial construction, namely as a "comma category". OB is shown to be cocomplete, 

with colimits reflecting object aggregation. Our very general notion of object mvrphism is shown 

to cover different kinds of inheritance relationships between objects as special eases. Finally, we 

briefly describe how object reification (implementing objects over objects, el. ES90) is conveniently 

expressed in this framework. 
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Z Motivation 

2.1 Objects as Observed Processes 

Following the argument in SEg0, a computer system as a whole is a symbolic machine which is 

able to receive,  manipulate, store,  produce and transmit data. As such, the computer system is 

composed of two basic kinds of parts. On one hand, we have the storage components such as 

flies, records,  databases and, of  course, working areas in central  memory. These storage com- 

ponents are able to memorize lexical  things like integers, names and so on, in general  known as 

data. On the other hand, we have the process components such as running application programs, 

transactions, operating systems programs and so on. These process components are responsible 

for the activity of the computer system. They receive,  manipulate and produce all  sorts of data 

using, whenever necessary, the storage components. 

In spite of their apparent diversity, we can recognise some important common features among 

all  these parts of the computer system. Forgetting data for the moment, both the storage and 

the process components have a distinct temporal and spatial existence. Any instance of either one 

of them is created and evolves through time (i.e. changes its state), possibly moving from one 

place to another, until it is finally destroyed (if ever). Any such instance is able to retain data, 

is able to replace the data it retains, and may be either persistent (with a long life) or transient 

(with a short life). 

The only intrinsic difference be tween a so cal led storage component and a process component is 

in its liveness. The former is passive whereas the lat ter  is active. That is to say, the la t ter  has 

liveness requirements and initiative in the sense that it has the ability to reach desired goals by 

i tself  (e.g. termination of program execution), whereas the former waits passively for interactions 

with the surrounding active components. In traditional jargon, the lat ter  is given CPU resources, 

the former is not. Thus, we should look at all  those components of the computer system as 

examples of the same concept - the object - with varying degrees of liveness and persistence.  

In conclusion, barring the liveness and initiative issues, an object (or actor as some authors 

prefer  to cal l  it when a community of full concurrent objects is involved) is a process endowed 

with t race-dependent  attributes. That is, an object is an observed process: when we look at it 

we are able to observe the sequence of events in its life, as wel l  as the corresponding sequence 

of attribute values. 

As an i l lustration,  consider a stack of integers as a (passive) object. When we look at it we 

might observe the following sequences: 

events attribute values  

new empty=true 

push(3) top=3 empty=false 

push(7) top=7 empty=false 

pop top=3 empty=false 

pop empty=true 
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In a sense, the object stack when observed displays two kinds of behaviour: (1) its traditional 

trace of atomic operations made upon it (possibly initiated by some other agent, which we ignore 

here since we are not interested in initiative issues); (2) its corresponding trace of attribute values. 

More formally, an object can be defined as a map between behaviours: from the operations 

behaviour into the attributes behaviour. We adopt the standard terminology within the process 

community and use the word event instead of "atomic operation". Clearly,  events and attributes 

correspond to "atomic methods" and "slots", respectively, in the terminology of the object-oriented 

community. 

Returning to the stack example,  we have to consider the following alphabets of atomic observ- 

ations (of events and attribute values, respectively): 

Estack = {new, pop, drop} v {push(n): n~o} 

Vstack = {(top,n) I n~o} u {(empty,false), (empty,true)} 

The former contains all  possible events which we may observe in the stack. The tat ter  contains 

all  possible attribute values which we also may observe in that object. (Please note that we 

previously used tile notation " top=n" for tile pair (top,n).) 

But what are the possible behaviours of the stack? With respect to its traces of events, almost 

anything is possible: as long as its life starts with the birth operation new, we may subsequently 

see any sequence of puslfs and pop's (with the proviso that a pop is not possible when the stack 

is empty), possibly ending with the death operation drop. With respect to traces of attribute 

values, we may see sets of pairs (attribute, value) following some rule making them dependent 

on the observed trace of events. 

Actually, as we shall discuss later  on, an essential part of an object is precisely this mechanism 

linking the two observations. We might even argue that this mechanism is the object (cf. section 

4.1 below). 

It is interesting to note how easily we accepted traces of sets of a t t r ibute-value pairs for 

describing the attribute observation behaviour. For instance at a given instant if we observe 

(top, 7), (empty, false) 

we say that top = 7 and empty = false. Moreover, if we observe 

(empty, false) 

we say that top is undefined and empty = false. Finally.  if we observe 

{top, 7),  ( top,9) ,  (empty, false) 

we would say that top is either 7 or 9 (nondeterminism !) and empty = false. 

That is, from the side of the attributes, we natural ly  adopt a mathematical model supporting 

both part ial ly defined and nondeterministic attributes: it is enough for that purpose to consider 

traces of sets of at t r ibute-value pairs. 

It is now reasonable to ask if traces of sets of events might also be useful. Indeed, they are: 

they solve the problem of considering composite objects and their behaviours. As an i l lustration, 

consider two isomorphic copies stackl and stack2 of our original stack. The question is: what is 

the "joint behaviour" of the composite object stackl Ilstaek2 ? 

We would expect joint traces like the following one: 
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events a t t r~u te  values 

newl emptyl=true 

pushl(3) topl=3 emptyl=false 

new2 topl=3 emptyl=false 

pushl (7) topl=7 emptyl=false 

popl topl=3 emptyl=false 

popl push2(9) emptyl=true top2=9 

pop2 emptyl=true 

empty2=true 

empty2=true 

empty2=true 

empty2=false 

empty2=true 

This corresponds to the combination of possible traces of the components, assuming that we 

accept that two events may happen at the same time: for instance popl and push2(9) happen at 

the same time in the t race above. Thus, we are not restricting ourselves to the pure model of 

interleaving; although such models of processes are simpler, they are not as powerful as models 

supporting full concurrency (our model is somewhere in between).  

In conclusion, with respect to event behaviour, in order to deal with composition of objects, we 

also want to consider traces of sets of events. Please note that, as far as processes are con- 

cerned, this composition corresponds to para l le l  composition. 

It is useful to introduce here the metaphor of the "blinking observer".  Assume that you are an 

observer who is always blinking (opening and closing your eyes forever). Assume further that 

you open your eyes for very short periods of time, but that the rate of blinking is as high as 

needed (you are a very effective observer).  Then when you look at an object, you will  see its 

traces of events and of attribute values as follows: Each time you open your eyes you take note 

of the events happening at that time; and you also take note of the values of the attributes at that 

time. (This assumes that events always fit into one of your open eyed periods. Naturally,  if your 

rate is not fast enough you may loose some events.) 

But assuming that you are a perfect  observer,  you will see al l  the traces of  al l  the objects 

around you. You will  notice which events happen at the same time (synehronised) and what are 

the attribute values at each time. Events of different objects may appear inter leaved and/or  at 

the same time. 

This metaphor is also useful when understanding object interaction. In general  two objects which 

we want to put together may interact (e .g. ,  by sharing events). As an i l lustration, consider that 

stackl and stack?, above are independent (do not interact)  except  with respect  to creation: they 

are to be created at the same time. In that case, whenever you observe them when you open 

your eyes ,  either newl and new2 are  happening (at the same time) or neither of them is happening. 

Thus, when two events are shared by two objects ,  they are always observed together. 

Tile mathematical  development of this metaphor is carried out in chapter 3. But it should be 

noted that already in Go75 a similar view (reviewed in section 2.2) was proposed, but without 

considering the mechanism for relating event behaviour and at t r ibute-value behaviour. The lat ter  

has been under active research in the IS-CORE project (ESS89, ESS90, ES90, SFSE89a+b, SSE87). 

The two views are brought together in this paper. 

It is perhaps useful to take one last insight from the blinking observer metaphor. The observer 

introduces a fixed time frame which is independent of the "local times" of the observed objects. 
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As we shal l  see,  this makes life much easier  when combining objects.  In this respec t ,  the 

p resen t  paper  is far away from previous IS-CORE papers  which took the posit ion that  each  

object has its own local  t ime s t ruc ture  (namely the s t ruc tu re  implied by the t race  of events  

which have a l ready happened).  

2.2 Objects as Sheaves 

Let 's  consider the case of an object 0 which is " t r anspa ren t "  in the sense that  it has no hidden 

events ,  i.e., all  of  its behaviour  is observable;  in the language of sof tware  engineering,  we could 

say that  none of it is hidden, pr ivate ,  or encapsulated.  For such an  object,  its events  are its 

bellaviour. 

Let  us also assume an ideal observer,  who sees everything that he can, subject  to his par t i cu la r  

l imitat ions,  during his par t i cu la r  l ifetime; and let  us assume that  he leaves behind a data record 

which fai thfully records al l  of his observat ions,  carefu l ly  indexed by the t ime at which they 

were  made. However ,  it is possible  that  different  observers  have different  l i fet imes,  and that  

observers  with  the same l i fet ime observe different  things. Le t  TIME denote the set of al l  

possible l i fe t imes of ideal observers  ( la ter  we will  give TIME the s t ruc tu re  of a category) .  

For the moment,  let 's  r es t r i c t  a t ten t ion  to discrete  l inear  time, so that  we can assume each 

observer ' s  l i fet ime is of the form {1,2 . . . .  }, and that  the object he is observing comes into 

exis tence  at t ime t = l .  Thus, an observer  sees some "snapshot"  )`( t)cS at each moment  of t ime t ,  

where S is the set of al l  possible  instantaneous observat ions  of O, and each observer ' s  data 

record  of a behaviour  of O is a ( total)  function X: I-----> S,  where  I is some in terval  of the form 

{1 . . . . .  n} and n is the t ime when he stops watching O. In general ,  a given object  O cannot  

produce al l  possible data records  ),: I - - > S  over an  in terva l  I, but only ce r t a in  "physical ly 

rea l izab le"  data records.  Let  O(I) denote the set  of a l l  such observable  behaviours  over  I. 

Now notice that  if J is a subinterval  of I, then there  is a na tura l  r e s t r i c t ion  function O(I)'---->O(J) 

which maps each function ) , : I  ------> S to the res t r ic t ion  of ), to J, denoted ) .~. l :  J-----> S ;  for if the 

snapshots ),(1), ),(2) . . . . .  )`(n) can be observed over I = {1 . . . . .  n} and if J = {1 . . . . .  n'} with 

n '~  n ,  then surely the snapshots  X(1), ),(2) . . . . .  X(n') can be observed over  J.  I f  we let  i : J  e ) I  

denote the inclusion, then a reasonable  notat ion for the res t r i c t ion  function is O(i):O(I)----->O(J); 

not ice tha t  O(i) goes in the "opposite direct ion" f rom i. 

Al l  this has a simple ca tegor ia l  formulation,  which also suggests the right way to general ize .  

Namely,  let  TIME be the subcategory of SET with in tervals  of the form {1 . . . . .  " n} as objects 

(including tile empty in terval ,  for n = 0 ) ,  and with only the inclusions as morphisms. Then O is 

a eon t ravar ian t  ~ n e t o r  from TIME to SET, where  O(i :  JC- -~ I )  is the function which res t r ic t s  

functions on I to functions on J .  

Clear ly ,  this works just  as wel l  if we let  TIME be any subcategory of SET with inclusions as 

morphisms; then O : T I M E  °p ~ SET can  be any functor such that  each O{I) is a set  of  functions 

I---->S, for some fixed set  S of  snapshots,  and such that  each  O( i :  JC--->I) is a res t r i c t ion  

function. As in Go75 and Go90a,  let  us ca l l  such a funetor a p re -ob jec t .  

Of course,  we can let  the snapshots be sets of more primit ive observat ions in order  to handle  

non-de terminism,  but let  us not do so for the moment.  
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To i l lustrate,  let us consider the stack example  again, assuming that everything is visible and 

deterministic.  Then at any moment of time t ,  an ideal observer will be able to see all  of the 

values on the stack. Thus, the snapshots are finite sequences of natural numbers, i.e., S = ~*, 

and each observer 's  data record has the form of a function ).: {1 . . . . .  n}--> to*. (Of course, not 

al l  such functions are possible, only those consistent with the "life cycle" of a stack; this can be 

expressed succinctly as: either X(t) n X(t+1) = X(t) or X(t) n X(t+l) = X(t+t), whenever O ~ t ~ n). 

Let us denote this object O S . 

Another view of a stack involves observers who see "events" rather than states; their data 

records are  functions ),:{1 . . . . .  n}---9 Estack*, as in Section 2.1 (but without non-determinism). 

Let  us denote this object O E-  

A third view of stacks involves observers who can only see the tops of stacks. Their  data records 

are functions ),:{1 . . . . .  n} ---~{(top,v) I v~to}*. Let  us denote this object O T. (The observation 

(empty, true) would arise at t ime t i f f  X(t) is the empty string.) 

What is the relationship among these three objects? It is easy to see that O E has the most 

information, and O T has the least ,  while O S lies in between. Thus, there are systematic trans-  
hl h2 

tations O E " ' ~ O s ' ~ O T  which compute tile state from the history, and the top from the 

state. Following general  intuitions about the basic concepts of category theory (Go89), because 

each object is a functor, we should expect  that these translations are natural transformations. 

Indeed, pre-objec t  morphisms are natural transformations, and in part icular ,  h 1 and h 2 as well  as 

their composite h = h l ; h  2 are natural  transformations: the la t ter  is what is ca l led  an object in 

this paper. It gives an "interpretat ion" or "view" of the events in terms of their observable 

results. On the other hand, O S is what is usually cal led a stack in the l i terature on data types 

and state machines, while O E corresponds to the notion of stack studied in the process algebra 

l i terature.  

¥¢e can give a somewhat more exotic version of the data type view of stack, in which the 

underlying domains include space as well  as time. For this purpose, let us define TIME to be 

the category whose objects are subsets U of ~ * ~  satisfying the following two conditions: 

1. {t I ( t , h ) c U  } is an interval  of the form {1 . . . . .  n}; let us denote this set t (U);  and 

2. for each t~ t (U) ,  {h I ( t , h )~U } is also an interval of the form {1 . . . . .  h},  

and whose morphisms are  inclusions. We let the snapshots be natural numbers. Then a data record 

is a function of the form X:U--->co for some U satisfying 1 and 2, as i l lustrated in the following 

picture: 

h' 

3 3 3 "'3 3 
1 1 '1 

2 3 4 5 6 7 8 9 10 11 t 

in which U :  ( { 2 } * [ I ] ) , ,  ( { 3 ) - * [ 2 ] ) o  ( { 4 } * [ 3 1 ) o  ({S)-~[2]) o (T6} * [3 ] )  o ( { 7 } * [ 2 ] )  ,, ( { 8 } *  
[ I I )  ~, ( { I o } * [ I ] )  o ( {11} * [2 ] ) .  where [n] denotes {I . . . . .  n}. 
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For the purposes of this paper, only pre-objects  in the above sense are needed. But the reader  

may wonder what al l  this has to do with sheaves, or indeed, what a sheaf is. Let  us assume that 

TIME is closed under finite union and finite intersection. Then a pre-object  0 is a sheaf iff it 

satisfies the following condition: 

* if X 1 EO(U 1) and X 2 c O ( V 2 ) ,  X l ( t ) = X 2 ( t )  for all t ~ V l n U  2, and V l n U 2 ¢ ( 3 ,  then 

then there is some X c O ( U 1 u U 2 )  such that X~UI=X 1 and ~.'1"U2=X 2. 

This says that bits of " local"  behaviour can be "glued together" if they agree on their overlap, 

to form larger  bits of behaviour. In terms of state machine intuition, this condition says that, 

re lat ive to the given notion of observation, we have enough information to character ize  states 

(please note that this definition does not presume determinism). In G075, a pre-ohjeet  that 

satisfies this condition is ca l led  an object,  contrary to usage in the present paper. 

We conclude this section with some history of the approach it describes. In 1968, Joseph Gogucn 

moved to the University of Chicago to work with Sounders Mac Lane, and began thinking about 

how to formulate a so-ca l led  General  Systems Theory in the language of category theory. The 

basic ideas were that a system is a diagram, its behaviour is its limit, and systems can be 

interconnected by taking co-limits in the category of systems~ see Go71, G073, GG78. This 

motivated the approach to specifications in joint work with Rod Burstall  on the Clear  language 

and its semantics, which involves taking co-l imits  in the category of theories (BG77, BGS0), and 

also motivated an examination of the objects that appear in the diagrams representing various 

kinds of system, which then led to the formulation of objects as sheaves in Go75. 

3. Behaviours 

This section views an object as an observed process. Thus, an object consists of a process, i.e. 

of events happening in time, triggering observations which vary in time. According to the object-  

as-sheaves approach, these are  two s-objects (i.e. two objects in the sense of the lat ter  approach) 

re la ted by an s-object morphism: events happening in time constitute one s-object ,  observations 

varying in time constitute another s-object ,  and "triggering" is expressed as an s-object  morphism. 

In order to avoid confusion, we adopt the term behaviour  as a synonym for s-object .  We also 

general ize the objects-as-sheaves  approach to a purely categorial  setting. 

We have another terminological problem: the term "object" is used in category theory with quite 

a different meaning. In order to avoid confusion and stay close to the established terminology, 

we use the term "c-object"  for objects in the categorial  sense. 

3.1 Atoms and Snapshots 

In order to give a uniform treatment  to events- in- t ime and observat ions-in-t ime as behaviours, 

we assume that a universe U of behaviour atoms is given. U contains everything atomic for 

which we might want to say that it may occur at some point in time. Examples  are atomic 

events like create,  push(x) for all data elements x, pop and drop as atomic events of  a stack 

object, open, close, credit(m) and debit(m), for all amounts m of money, as atomic events of an 
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account object, as wel l  as a t t r ibute-value pairs like top=0, top=l, empty=false . . . .  as atomic 

observations for the stack object, or balance=0, overdrawn=false . . . .  as atomic observations for 

the account object. 

Each object will  have its own alphabets of event and observation atoms which are subsets of U. 

We will  assume that the subsets of U are the appropriate alphabets of behaviour atoms. 

As a basic tool for studying interaction between objects, maps between alphabets of behaviour 

atoms are  needed. This way we can express, say, that an object is embedded in another one (the 

"environment"),  that certain events are shared between different objects, etc. 

Assumption 3.1: Let  ALPH be a full subcategory of SET such that 

(1) its urelements  (singleton e-objects  whose element  has no elements)  are the elements 

of U; 

(2) its c-objects  include U and all subsets of U; 

(3) it is complete and cocomplete  ( i .e . ,  it has all  (small) limits and eolimits). 

Hereaf te r ,  our theoret ical  developments assume a fixed category ALPH with its "universe" U of 

urelements.  For example,  we can either imagine that ALPH has initially been chosen large 

enough, or that an appropriate "smaller"  ALPH has been chosen for that example,  to include the 

necessary atomic behaviours. 

Typically,  more than one event atom may happen at a given moment in time simultaneously, for 

example,  an entering and a leaving of a nonempty queue. Similarly, we usually do not see single 

observation atoms at a given moment in time, but rather several  of them simultaneously, for 

example the front element  of a queue and its length. Abstracting from events and observations 

to behaviour atoms, we usually have a snapshot SC-A at a given moment in time, where Ac-U. 

The power set 2 A is the family of possible snapshots over A; it will be referred to as the 

snapshot alphabet over A. 

Behaviour atom alphabets A and B are related by mappings f : A - - ~ B .  A relationship naturally 

induced between the snapshot alphabets over B and A, respectively,  is the (set-valued) inverse 

mapping f- l :2B ---)2 A .  In part icular ,  it expresses the appropriate restr ict ion to a subalphabet in 

case f is an inclusion, a situation which occurs frequently when dealing with objects and sub- 

objects. For example,  if A c - B and if Sc2 B is a snapshot over B, then f- l (s)  = {aEAI  f ( a ) , S }  is 

the restr ict ion of  S to A.  

Definition 3.2: Let SNAP denote the category of snapshot alphabets and inverse mappings given 

by ALPH:  its c-objects  are the sets 2 A of all subsets of an atom alphabet A, and its morphisms 

are the inverse mappings f - I :2B--~2A given by f :A--->B. 

There is an obvious functor F :ALPH°P- ->SNAP sending A to 2 A and f to f-1 Clear ly ,  F is an 

isomorphism of categories,  and SNAP is complete as well  as eoeomplete  since ALPH is. As an 

isomorphism, F preserves limits and colimits. For i l lustrat ive purposes as wel l  as for later  use, 

we show how limits in SNAP look, in part icular  products and equalizers.  

Products in SNAP are given by 77" 2Aj = 211Aj where j ranges over a given index set J, and II 

denotes disjoint union (coproduct in ALPH). The product morphisms Prk:TT 2Aj ----) 2 Ak, k c J, are 

given by P rk : l lB jb - - )B  k, where Bj~Aj for j , J ,  i .e. Prk=in ~ where ink: Bk---->ilB j is the 

injection going with the coproduet. We let * denote the binary (infix) product in SNAP. 
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Example  3 .3 :2{0 ' l }*2{a 'b}=2  {0'l 'a'b}, and the projections of, say, {0,1,a} are {0,1} and {a}, 

respectively,  i.e. the corresponding restrictions.  

As for equalizers in SNAP, let f ,g :A2-- - )A t be maps in ALPH, and let h:A1--->A 0 he their 

coequalizer  in ALPH. It is standard to view <f ,g> as a relat ion on A 1 (namely {<f(a),g(a)> [ 

a eA2}  ), and to look at h as representing the equivalence relat ion generated by <f,g> (namely 

h(a)= h (h ) i f f  a and b are equivalent). By duality and isomorphism, h'l :  2A0---)2 At is an equalizer 

of f-l, g-l: 2AI__)zA2 in SNAP: each subset C ~ A  0 denotes a set of equivalence classes, and 

h ' l ( c )  denotes their union U C ~ A  1. The unions of equivalence classes obtained this way are 

precisely those subsets of A 1 which are mapped to the same subset of A 2 by f-1 and g-l. 

Example  3.4:  Let A 1 ={0,I,2} and A 2 ={a,b,c}, and let f , g : A 2 - - - ) A  1 be given by 

f : a~->0 , b~-->0 , c~->l  , 

g : a~->0 , b~---)2 , c ~ l  . 

Then a coequal izer  of f and g in ALPH is h : A  1 ---)A 0 ={x,y} given by 

h : 0 ~-)x , 1 ~-->y , 2 ~->x . 

In SNAP, the equalizer of f-I g-l: 2{0,1,2}_._>2{a,b,c} is given by h-l:2{x'Y}-->2 {0'1'2} sending ~3 to 

~3, {x} to {0,2}, {y} to {1}, and {x,y} to {0,1,2}. In fact, these four target sets are precisely those 

where f-1 and g-I coincide: f'l(~b)=g-t(o)=~3 , f'l({0,Z})--g'1({0,Z})={a.b}, f'l({1})=g'l({1})={c}, and 
f'1 ({O,l,2})=g'l ({O,l,2})={a,b,c}). 

3.2 Time Domains and Trajectories 

Dynamic behaviour is modelled by attaching behaviour snapshots to points in time. In this section, 

we discuss suitable models for "points in t ime" and how they are structured, and how snapshots 

are "at tached" to these points in time. 

We note in passing that our approach is in fact more general:  we can equally wel l  deal with 

"points in t ime-space",  i.e. behaviours which do not only extend over time but also - or only - 

over space. However,  the predominant intuition with objects in computing is that they have a 

temporal but no spatial dimension. So we stick to the usual temporal terminology. 

Most general ly,  our assumption about time is that there are "time domains" which may be related 

by "morphisms" which are inclusions of one time domain in another. 

DeFinition 3.5: Let  TIME be a subcategory of SET with only inclusions as morphisms. 

Amazingly enough, we do not need any additional assumptions about the time category. Rather, 

the restr ict ion to inclusions as morphisms can be dropped without affecting the results presented 

in this paper. However ,  we do not have reasonable examples of such general  time ( - space)  

structures, and we do not want to strain the reader more than necessary. 

Our approach to time covers a wide variety of time models, including discrete and continuous 

time, linear, branching and par t ia l -order  time, as wel l  as finitary and infinitary time. We give 

two examples of simple and widely used time categories for objects in computing. 

Example  3.6: DLF denotes the discrete linear finitary time category. Its c-objects  are intervals 

[n]={1,2  . . . .  n} for n~(o, and its morphisms are ['n] ~ >[m] whenever n:~m. The time domains 
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are finite intervals,  and morphisms ref lec t  prefixing. Natural ly,  [0]=~5. 

Example  3.7: DLI denotes tile discrete linear infinitary time category. Its c-objects  arc those of 

DLF augmented by ~, and its morphisms are those of DLF plus [n]C---->o for each n~m. This 

adds tile infinite time domain co to DLF, having each finite one as a prefix. 

Let ScSNAP be a snapshot alphabet, and let TIME be a given category of time domains. 

Deirmition 3.8:  A trajectory over S with respect to TIME is a map ?`:t----)S for some time domain 

t ~ TIME. 

A trajectory describes precisely which snapshots occur along the points of its time domain. 

Example  3.9: With respect to the DLF time category, a t rajectory is a map x:[n]----->S which 

corresponds to a finite sequence <Sl,S 2 . . . . .  Sn> where siES for t < i < n ,  i .e .  t rajectories are the 

usual traces.  With respect to the DLI time category,  we have infinite trajectories k:e0--->S in 

addition, corresponding to infinite sequences <Sl,S 2 . . . .  > where siES for late. 

Please note that our notion of trajectory general izes the notion of t race in three respects: we 

have general ized time domains, we have snapshots (sets of atoms) at each point in time, and we 

abstract from what occurs along time domains: events or observations - or something else. 

Motivated by the event ease, we say that a t rajectory k:t----->S "makes a pause" at point pe t  iff 

k(p)=(3, i.e. nothing happens at point 'p in time domain t. 

Trajector ies  over the same snapshot alphabet S are naturally re la ted via TIME morphisms, giving 

rise to a category of t rajectories  over S and TIME. 

Definition 3.10: Let  Xl : t l - - - ->S and k 2 : t 2 - - > S  be trajectories.  A trajectory morphism h:X1--->X 2 

is a TIME morphism b: t l - - - ) t  2 such that X 1 = h;X 2 . 

TRJ(TIME,S)  denotes the category of trajectories over S with respect to TIME, with trajectory 

morphisms as defined above. We will also write TR.I(S) or simply TILT if the rest is c lear  from 

context.  

The construction of TRJ(TIME,S)  from TIME and S is an instance of the well  known "comma 

category"  construction (el.  GB84). 

The situation is depicted by the following commutative diagram. 

t l  ~ h ) t  2 

S 

Notice that this means that X 1 is the restriction of )'2 to the subdomain t 1 of t 2. We will also 

write ? '1<?'2 iff there is a morphism t'rom ?'1 to ?'2 (there is at most one). 

Example  3.11.- In the DLF and DLI time models, t rajectories are maps [n]---~S (or ~ - - ~ S )  

which correspond to finite (or infinite) sequences ( S l ,  s2 . . . .  ) .  Trajectory morphisms correspond 

to pref ixes:  

I'n] c > I-n+m] 

(s  1 . . . . .  s n)Nk,~ z / / ( s  1 . . . . .  Sn, Sn+ 1 . . . . .  Sn+ m ) 
S 
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3.3 Category of Behaviours 

A behaviour is defined as a set of trajectories.  Intuitively, a behaviour displays the possible life 

cycles (with respect to events or observations) an object can go through. In what follows, we 

assume that the TIME category is fixed once and for all .  

Definition 3.12: A behaviour over S is a subcategory inclusion 

(S,A) : A ~ TRJ(S) 

where S is a snapshot alphabet in SNAP, with the property that the constant map ~3t:t---~{~3} is 

in A for each t~TIME.  

The la t ter  condition says that the "empty t rajectory" (permanent pause) over arty time domain is 

always possible. This is needed later for teclmieal reasons, but it also has an intuitive appeal in 

its own right. Moreover,  we will most often assume in examples that behaviours are "closed with 

respect to pauses", i .e.  if  )`1 is in A and )'2 can be obtained from ) ' I  by inserting and omitting 

pauses, then also )'2 is in A. This is a natural condition in eases where we deal with "asynchron- 

ous" behaviour, i .e . ,  where only the re la t ive  ordering of nonempty snapshots in time matters,  not 

the absolute time points when they occur. Please note that )'1 and )'2 as defined above, i.e. 

being "the same modulo pauses", will in general be trajectories over different time domains. 

Definition 3.13: Let  (S 1 ,A 1 ) and ($2 ,A2)  be behaviours. A behm, iour morphi~m is a functor 

:(Sl,A 1) )(Sz,A z) 
such that dom) '  = domo() ' )  for each trajectory ) ' cA 1 . Moreover ,  if ~3t:t--->{~} is the "permanent 

pause" trajectory over t, then o(¢5t)=~3 t. 

That is, k and o()') always have the same underlying time domain (they have "the same length"), 

and permanent pauses are always sent to permanent pauses. 

This is rather general  and might look strange, one would perhaps expect  a SNAP morphism 

between S 1 and S 2 as part of a behaviour morphism. But the generality is needed. For example,  

stack event hehaviours and corresponding stack observation behaviours should be related by a 

behaviour morphism. While it is very well  possible to associate the observation top=k with a 

push(k) event at any point in time, there is no single observation which can be associated with a 

pop event: any top value is possible, depending on context.  Interesting special cases of behaviour 

morphisms, however, do go with an underlying SNAP morphism, el. definition 3.17 below. 

Example  3.14: In the DLF and DLI time categories, we have the following situation, 

[n] c > [n+m] 

( s l  . . . . .  S n } / t ~ " ~ < ( s l  . . . . .  S n )  ( S l  . . . .  Sn . . . .  s--~>//'°'"'(S;m~.," ~-~ -,~ , . . . .  s n ' " ' S m )  

S S" S S" 

This means that o is "monotonic": prefixes are sent to prefixes.  Thus, o acts as a "state function" 

where tim snapshot at a given position depends on the "past" (snapshots at previous positions) 

only. These time models thus exclude "prophecy" effects (which can, however, be achieved with 

other time models, for instanee the discrete versions of DLF and DLI obtained by omitting al l  

morphisms). 
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It is an easy exercise to verify that behaviours and behaviour morphisms as defined above do form 

a category. 

Definition 3.15: Given TIME and SNAP, the category BHV(TIME,SNAP) is the category of all  

behaviours over some snapshot alphabet S~SNAP with respect to TIME, and all behaviour 

morphisms among them, as defined above. We will also write BHV(SNAP) or simply BHV if the 

rest is clear from context. 

Behaviours (S 1 ,A)and (S I o S 2 ,A), with the same A, are isomorphic in BHV, i.e. behaviours do not 

change essentially if we enlarge or restrict  the underlying snapshot alphabet, as long as all  

snapshots occurring in A are present. Therefore, we sometimes write just A instead of (S,A), 

meaning that S is understood to be the set of all  snapshots occurring in trajectories in A. 

Remark 3.16: With the general approach presented here, there is no problem to handle "trans- 

actions", i . e .  elements ), : t - - ->  S of a behaviour which are given a status of "atomicity" by including 

them into the set A of behaviour atoms underlying S (i.e. s : 2 A ) .  This way, transactions can be 

nested arbitrarily.  An example of transactions is given in section 4.3. 

DeFinition 3.17: A behaviour morphism o : ( S  1 , A 1 )------> ($2 ,A2)  is called oblivious iff it is of the 

form o(),)=),:f  for some fixed SNAP morphism f :  S 1 --->S 2. 

t 

S i - - - - - ~  f S 2 

If o is oblivious, then, at each point in time, o()`) depends on X at the same point in time only, 

not on any ), components "before" or "after" or "concurrently". Assuming the DLF or DLI time 

model, o is oblivious iff o(z)`)=o(z)o(),) holds for any finite sequence z and any sequence X; 

hence, O(SlS2 . . .  )-- O(Sl)O(s 2) . . . .  

Theorem 3.18: Given categories SNAP of behaviour snapshots and TIME of time domains, the 

category BHV(SNAP,TIME) of behaviours over SNAP wit respect to TIME is complete. 

P r o o f :  We show that BHV has products and equalizers. 

As for products, let (S j ,Aj ) ,  j c J  , be a family of behaviours. Let prj:S----)Sj,  j~J,  be the 

product in SNAP (eL section 3.1) where S = - ~ - S j .  Let Ac-->TRJ(S)  be the full subcategory 

consisting of all  trajectories X~TRJ(S) such that X;prj~Aj for each j~J .  Let rcj:A--->Aj, j~J, be 

the oblivious behaviour morphism given by ~j (X)-X;pr j  for each j cJ. Then the ~j,  j ~J, constitute 
a product in BHV. 

In order to verify this, let oj:  (S',A') - -~ (S j ,A j ) ,  j eJ ,  be a family of behaviour morphisms (not 

necessarily oblivious ! ). Then each trajectory ),'~ A" is sent to a trajectory ),j = o j()`') c Aj for each 

jcJ .  Let X be the trajectory X~A defined by Xj=~zj(X) for each jeJ  (it is clear that there is 

exactly one ),cA satisfying this condition). Let o: A'---)A be the map defined this way. o pre-  

serves the time structure so that it is a functor: if ),'1 ~)`'2 , then oj()` 't) ~ oj(),'2) for each jcJ ,  

from which we conclude by construction that o(X'I) g o(),'2). Clearly,  o j = o : x j  for each j c J ,  and 

o is the only map satisfying this equation. Moreover, dom) , '=domoj(X ' )=dom)` j=dom) ,  for each 

j , J ,  and o(~3t)=0 t for each time domain t. 

Thus, o is a behaviour morphism, and it is the only one from (S;A') to (S,A) satisfying o;rc j=oj  

for all jeff. This verifies that the rrj, j cJ ,  constitute a product in BHV. 
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Essentially,  the product is taken eomponentwise along time domains. 

As for equalizers, let o , p : ( S 1 , A  1)-----~($2,A2) be two behaviour morphisms. An equalizer of 

o and p is constructed as in SET: it is given by the inclusion ~: (S0,A0)  c------> (S 1,A 1) where S O 

is some subset of S 1 containing all snapshots oecuring in A 0 (different choices lead to isomorphic 

behaviours), and A0={).,A 1 [ o().)=p(X)}. 

In order to verify this, let ~':(S',A')---)(SI,AI)be a bchaviour morphism satisfying ,';o=,';p. 

By construction, z'(A')¢ A 0 so that there is exactly one map ~:A'---+A 0 satisfying ~;~=~'. Since 

essentially is ~" (with the range restricted to AO), it is obvious that z is a behaviour morphism, 

and it is the only one from (S' ,A')  to (S1,A1) satisfying z;~=x' .  This verifies that ~ constitutes 

an equalizer of o and p. [] 

3.4 Parallel Composition 

Limits in a behaviour category reflect paral lel  composition of behaviours. From the proof 

of theorem 3.17, we see that products are constructed "pointwise" along a common time domain 

by taking the disjoint unions of snapshots. 

Example 3.19: Assuming the DLF time category, let A 1 and A 2 be given as follows. 

A 1 = { ( { 2 . 4 } . { 5 }  . {I} ~, . ( {4}.  {1.3} > } n  

A 2 = { < {a} . {d}.{b.c}~> . ({a .c} .{b.d}~>} u 

where # denotes closure with respect to pauses. That is, al l  trajectories which can be obtained 

from the two in A 1 shown above, by inserting pauses, are also in A 1, and correspondingly for A 2. 

Let A 0 = { ( { x } , { y } )  }n . 

Let f l  : x ~---> 4 , y ~-->1 

and f2 : xt---Ya , y~--Yd , 

indicating that we want to synchronize on 4---a and 1-=d. Let f ~ : A  1 ------> A 0 and f~ :A  2----yA 0 be 

those oblivious behaviour morphisms obtained by applying fi l  or f~l, respectively, to each point 

in time along each trajectory. Then a pullback object A 3 of f~ and f~ is an equalizer object of 

pr 1 ; f~ and pr 2; f2, as shown in the following diagram. 

A3 eq ) A 1 , A  2 A0 

The pullback object A 3 is given by all "interleavings" of behaviours in A 1 and A 2, appropriately 

synchronized, appearing as componentwise "union" of behaviours interspersed with ~ {and made 

equal in length this way): 

( {x.2} . {5} . {y} . {b .e i  ~> 

< {x,2,e}, {5}, {y,b} > 

< {x}, {y,3}, {b,c} > 

< {x,e}, {y,3,b} > 

from ( { 2 . 4 } . { 5 } . { 1 } . ~ b ) '  and < { a } . { b . { d } . { b . c } ) .  

from ({2.4}.{5}.{1}~> and ( { a . e } . ~ . { b . d } ~ >  . 

from < { 4 } . { 1 . 3 } . { b )  and <{a},{d},{b,c}> , 

from ( { 4 } . { 1 . 3 } )  and ( { a . c } . { b . d } )  . 
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plus all behaviours obtainable from these by inserting any number of pauses in any place. 

Another (isomorphic) choice of the pullback object is obtained if we keep a and 4 distinct instead 

of merging them into a single symbol x, and the same with d, 1 and y, respectively. The "identi- 

fications" x-=a-=4 and y-=d=l are then reflected by the fact that a and 4 (or d and 1, respectively) 

always appear together in a synchronization set: both are in the set, or neither of them is. 

4. Objects 

Objects are defined as behaviour morphisms, capturing the idea of "processes endowed with 

observations". Object morphisms are pairs of behaviour morphisms between the process and 

observation parts, respectively, satisfying a natural compatibility condition. The category of 

objects established this way is shown to be coeomplete. This means, for instance, that aggregation 

of objects is compositional. Various forms of object inheritance can be expressed as object 

morphisms, and also object reification (sometimes called refinement) can be expressed this way. 

4.1 Category of Objects 

Let BHV be a complete behaviour category as described in the previous sections. Intuitively 

speaking, an object tells how observations in time (and/or space) depend on events in time 

(and/or space). This is appropriately modelled by a morphism in BHV. 

Definition 4.1: An object is a behaviour morphism oh: (E, A) ) (V, D) in BHV. 

Intuitively, the first behaviour is the "active" part (process), and the second behaviour is the 

"passive" part {observation). That is why we use E and V for the respective snapshot alphabets. 

ob describes how the process "triggers" its observations. 

We write ob:A---> O if E and V are clear from context. For illustration, we refer to the 

examples in section 2.1. 

There are two obvious ways to derive new objects from given ones, namely by "triggering" and 

by "observing" via respective behaviour morphisms, as shown in the following diagrams. 

hA 
A 1 < A 2 A 2 

° b l l  hf 1 ~ oh2 

f) l D1 ( f)2 

On the left hand side, object ob 1 is "triggered" v i a h  A in the sense that the composed object 

hA;ob 1 has A 2 as its process part and h A tells oh 1 how to "obey the commands" in A 2. 

Analogously, on the right hand side, ob 2 is "observed via" hf) in the sense that hf) tells how to 

"interpret" the observations of oh 2 in terms of behaviour O 1 . In the special case where h A and 

h D are restrictions on snapshot alphabets going with inclusions on the respective atom alphabets, 

"triggering" means disregarding the events in A 2 which are not in the scope of A 1, and "inter- 

preting" observations means viewing only those in the scope of f)l (of, Definition 4.5 below). 
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An object morphism is a relationship between objects ob 1 and ob 2 where the process part of ob 2 

triggers ob 1 via some behaviour morphism h A while, at the same time, the observation part of 

ob 1 observes ob 2 via some other behaviour morphism 

hA" is the same object as "ob 2 observed via hfl", i .e.  

hA 
A 1 ( A 2 

°b l~  l ° b 2  

Q ( hf) t) 

h O, in such a way that "Obl triggered via 
the following diagram commutes. 

Definition 4.2: Let ob i :Ai - - - ->f )  i ,  i = 1 , 2 ,  be objects. An object morphism h : o b  1 -----)ob 2 is a 

pair ( hA:A2---)A1 , ho:Q2--->tql ) of bchaviour morphisms such that hA;Obl=ob2;hQ holds. 

In the next subsection, we will explore special cases of object morphisms which model different 

kinds of object inheritance. The "oblivious" object morphisms (cf, Definition 3.17) to be defined 

next are a sort of standard case. They play an essential role for studying inheritance. 

Definition 4.3: An object morphism h : o b  1 ----->ob 2 is called oblivious iff both h A and hQ are 

oblivious behaviour morphisms. 

A word is in order about the choice of direction for object morphisms. Basically, this is a matter 

of taste and we could have defined them the other way around. Our choice is motivated by the 

direction of maps on the underlying atom alphabets in the case of oblivious morphisms. If 

h : o b l - - > o b  2 is such an object morphism, i . e . ,  if h A and hf) are oblivious, then hA:A2----->A I 

comes from a map g~:S2---->S 1 on snapshot alphabets which in turn comes from a map gA:A1 

--->A 2 between the underlying atom alphabets (Si=2AI for i=1,2). The same holds for the Q 

part. If gA and gQ are inclusions, then the corresponding object morphism goes from the "part" 

to the "whole", describing the embedding of an object into an environment (which is an object, 

too). The argument that the arrows should go the other way is almost as compelling: this is the 

way that the arrows actually go in the diagram above, and also, it leads to using limits to compute 

the behaviours of systems, in accord with the general "dogmas" of Go89. 

Of course, objects and object morphisms form a category. We denote this category by OB. 

Theorem 4.4:  OB is cocomplete.  

Proof: Taking morphisms of a given category K as c-objects and commutative squares in K as 

morphisms of a new category L is a well known categorial construction. We use the notation 

L = Mor(K). L can be described as a comma category (cf. GB84), namely L = (K/K)  (we identify 

K with the identity functor on it). The category of objects is OB = Mor(BHV)°P=(BHV/BHV) °p. 

Since BHV is complete (Theorem 3.18), we conclude from well-known theorems of category 

theory that MQr(BHV) is complete; thus, OB is eocomplete. O 

From the example in section 3.4, it is clear that colimits in OB can be utilized to model (parallel) 

composition of objects. This theorem, therefore, gives a very general basis for compositional 

semantics of object-oriented systems: we describe single objects as behaviour morphisms, inter-  

action between objects by object morphisms, and we obtain the community of all  interacting 

objects as one composite object, the colimit object in OB, with the universal eocone describing 

how the single objects are embedded in (or "part of") the community. 
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The above theorem holds for arbitrary time (and /o r  space) categories TIME, covering quite a 

variety of process models going far beyond mere interleaving. Please remember that "transactions" 

are also included (of. Remark 3.16): we may very wel l  decide to pick an element  of a behaviour 

over a set A of atomic events and put it into A so that it plays the role of an atomic event. 

Transactions can be "synchronized" with other atomie events (thus with other transactions as 

wel l )  by putting them into the same snapshot. Please remember that, at each time instant of 

a transaction, we may again have transactions within the snapshot, e t c . ,  i .e. transactions can be 

nested. 

From the dual of the object category,  OB °p, into the behavior category BHV, we have two 

obvious forgetful functors, giving the underlying event and observation behaviours, respectively:  

A : OB °p - - ' ->  BHV 

"forgets" the observation parts: it sends each object ob:A---->f/ to its event behaviour A, and 

each object morphism h : o b  I --->ob 2 = (hA:A2---->A 1 , hf/:f/2----->f~l) to its event behaviour 

morphism hA:A2-----~A1. Similarly,  

f) : OB °p -----> BHV 

"forgets" the event parts: it sends ob: A----->~ to f),  and h:obl------>ob 2 to hf): f) 2-----> f) l . 

Aceording to definitions 4.1 and 4.2, each object ob is the behaviour morphism 

ob : A(ob) > ~(ob) , 

and each object morphism h:ob  1 - -~ob  2 is the commutative diagram 

A(ob l )  < ......... A(h) A(ob2) 

f~(ob 1 ) ( ~(h)  f)(ob 2 ) 

This means that the category OB of objects can be described as the dual of a comma category, 

OB = (BHV/BHV)  °p , 

where the category BHV is identified with the identity ftmctor on it (el. proof of theorem4.4) ,  

and A and ~ are the two projection functors. The data given above can also be interpreted as 

describing a natural transformation 

o b : A  ; , f ) .  

The following diagram shows how OB, BHV, A, ~ and o bb are re la ted:  

OB°P 

BHV 

From general  results in category theory, we conclude that A and ~ are coeontinuous. 
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4.2 Object Inheritance 

In this section, we study some aspects of inheritance in object-oriented approaches. We show 

that object morphisms can he used to formalize several  kinds of inheritance as relationships 

between objects. We avoid, however, the word "inheritance" as a technical te rm because of the 

notorious confusion surrounding it. In particular,  we discuss strict inclusion, weak inclusion and 

enclosure. 

4.2.1 S t r i c t  I n c l u s i o n  

In an intuitive sense, an inclusion morphism h : o b l C - - >  ob 2 as defined below describes how the 

"part" ob 1 is embedded in an "environment" or "complex object" ob 2 such that ob 1 is 

"encapsulated within" ob 2 in the sense that no events outside ob I can affect observations within 

ob 1. Typical examples are engine C---> car, memory c--9 computer, etc. 

A specific application for this kind of object morphism is "object sharing", i .e .  the inclusion of 

one object into several  other objects. The case that just single events a r e  shared has been 

utilized by the first and third authors as a means for synchronous and symmetric communication 

between objects (ESSg0,ESg0, SFSE89a,SSE87). 

Definition 4 .5:  Let h :ob I --->ob 2 be an oblivious object morphism. If the underlying maps on 

atomic events gA:AlC--->A2 and atomic observations gf): BiC > B 2 are inclusions, we call  h an 

inclusion morphism and write h :  ob 1 c---) ob 2 . 

Please note that, for an inclusion morphism h, h A and hf] are not inclusions themselves but 

restrictions on snapshot alphabets resulting from inclusions on the underlying atom alphabets. 

The following diagram il lustrates the situation, 

ob 1 
°bl A1 E1 A1 ) f l l  V1 B1 

f f lh T l ol I 
oh 2 A 2 E 2 A2 '> fl 2 V 2 B 2 

As for inheritance, the inclusion morphism says that ob 2 "inherits" the atomic events and observ-  

ations from ob 1 such that oh 1 observations are "views" of oh 2 observations, and ob 2 event 

behaviours (life cycles) are "enrichments" of Obl life cycles. The morphism condition says that 

any permissible enrichment of an oh 1 life cycle )'1 ~AI'  when observed in ob 2, gives rise to the 

same observation in the view of ob 1. 

For example,  restricting a computer life cycle to memory events and observing the lat ter  gives 

the same as observing the entire computer life cycle  and restricting attention to memory observ-  

ations only. That is, only memory events can influence memory observations, there is no way 

that non-memory computer events can have an effect on the observable behavior of the memory. 

In this sense, the memory is an "encapsulated object within" the computer. This does not mean 

that no communication is possible: the computer can "use" memory events - but only these - to 

operate on its memory. 
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The standard application of inclusion morphisms is to describe the composition of  complex objects, 

i .e. the aggregation of objects,  sharing encapsulated subobjects: if  ini: ob 0 ---)ob i ,  i~{1,2 . . . . .  n), 

then the aggregation Obl l lOb2l t . . .  Ilob n synchronizing on ob 0 is tile colimit of the diagram 

consisting of the in(s ,  and the universal cocone describes how each ob i is embedded into the 

aggregation. The following diagram il lustrates this for the case n = 2 ,  where the colimit is a 

pushout. 

ob 0 p.o. ob 111 ob 2 synchronizing on ob 0 

4.2.2 W e a k  I n c l u s i o n  

If we keep the inclusion idea just for the observation part and l iberalize the event part to arbitrary 

behaviour morphisms, we arr ive at the concept of "observation inclusion morphism" which models 

a weaker  form of inheritance: environment events can affect  local observations directly. 

Definition 4.6:  Let h :vb  1 --> °b2 be an object morphism. If the constituent observation behaviour 

morphism hf) is oblivious and its underlying map on atomic events h O : B 1 c_._> B2 is an inclusion, 

we cal l  h an observation inclusion morphism and write  h :ob  I c - - - ) o b  2. 

The following diagram may help to understand this situation. 

ob 1 
°b l  A1 ) f~l V1 B1 

: lhol f 
hA l ob 2 

oh 2 A 2 ) fl 2 V 2 B 2 

As in the case of inclusion morphisms, ob 1 observations are "views" of ob 2 observations, but ob 2 

event life cycles may "tr igger"  ob 1 in an arbitrary way. This can be ut i l ized to model "loose" 

embeddings of a "part" ob! into an "environment" or "complex object" ob 2 where environment 

events can affect local observations, but only in a way which can be simulated by some local 

events: h A te l ls  how the local  effect  of global life cycles is simulated locally,  

In the linear discrete time models, this simulation of global life cycles by local ones must 

preserve prefixes.  Consequently, in cases where the life cycle set is p re f ix -c losed ,  this simulation 

can only happen in an event -by-event  way: global events "cal l"  local events (of. SE90, SECg0). 

In order to i l lustrate this, consider a user using a stack (which may be shared by other users). 

We model this by including the stack object weakly into the user object: 

s t a c k  c____.> user . 

For each stack event pop, push(k), e tc . ,  we assume that the user has a corresponding private 

event cal l -pop,  call-push(k),  e tc . ,  "call ing" the corresponding stack event in the above sense. 

We assume that a user uses only his private cal ls  for operating on the stack, not the stack 

events directly. The weak inclusion stack c_  - 3  user is then established by replacing stack calls  
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by the corresponding s tack events and forgett ing about all  o ther  user  events ,  mapping each user 

life cycle to a s tack life cycle this way. 

The point in this const ruct ion is that a rb i t ra r i ly  many users  can be hooked to the same stack this 

way, sharing it weakly in the sense  that  everybody can  opera te  on it, and everybody ean  observe 

al l  the effects ,  also those caused by others .  Eaeh  user  may, however,  define additional a t t r ibutes  

which are  changed when he ca l l s  the s tack (for local  bookkeeping or so), and whieh cannot  be 

observed,  let  a lone changed, by the others .  

The aggregate  object - users  sharing a stack - is obtained as a eolimit in OB, in much the same 

way as in the s t r ic t  inclusion ease.  

4.2.3 E n c l o s u r e  

The enclosure  morphisms to he defined next  are  much more l iberal  than s t r ic t  and weak 

inclusions:  if ob 1 encloses ob 2, then event as wel l  as observa t ion  behaviours  of  oh 2 are included 

in those of ob 1, respec t ive ly  (please note that  the inclusions are on behaviours  and go in the 

opposite direction),  sueh that  ob 2 in isolation works in exact ly  the same way as it works in the 

context  of ob 1 - as long as ob 1 "doesn ' t  in te r fe re" .  

Defini t ion 4.7:  Let  ob i :A i - - ->Di ,  i = 1 , 2 ,  be objects,  and let  A 2 c_ A1 and 0 2 c_ f/1 such that the 

inclusions form an object  morphism h : o b  t ----~ ob 2 . In this case,  we cal l  h an enclosure morphism 
and use the nota t ion h : o b  I 3 ) ob 2 . 

An enclosure  morphism is i l lus t ra ted  by the following diagram. 

oh 1 A 1 > t31 

I J J 
°b2  A2 ~ f)2 

In general ,  enclosure  morphisms are  not oblivious, tha t  is why we do not show the underlying 

a lphabets  in the diagram. Al l  that  can be said about the snapshot a lphabets  is that  each  snapshot 

oeeuring in A 2 must also occur  in A 1, and the same for f)2 and f)1" P lease  note that  this does 

not necessar i ly  mean inclusion be tween  the respect ive  snapshot alphabets .  

Intui t ively,  if ob 1 encloses ob 2, ob 1 aets exact ly  like ob 2 as long as only oh 2 events occur. 

However ,  once a "new" ob 1 event  happens, nothing is incurred for oh 1 any more (not even in 

re t rospeet ,  opera t ional ly  speaking). We have been  exper iment ing  with addit ional  conditions 

ensuring that  "old" events  mainta in  their  effects  on observat ions also in case "new" events occur  

(see also Gu90). This subject deserves  fur ther  study. 

Enclosure  morphisms seem to have their  methodological  v i r tue  in modelling "roles"  of objects ,  in 

the sense in whieh patient ,  employee,  ear  driver,  tax payer,  ete.  are roles of pe rson :  pat ient  

person,  employee ~ person,  ca r -d r ive r  ~ person,  t ax -payer  3--- )person,  etc.  In fact,  pat ients ,  

employees,  car drivers,  tax payers ,  etc. ,  should bas ica l ly  behave like persons .  

P lease  note  that  this s i tuat ion is very  different  from aggregat ion forming complex  ob jee t s .  A 

person  is not the complex  object with  par t s  pat ient ,  employee,  etc. ,  and the pat ient ,  employee,  

etc.  objects  are  not aggregat ions sharing the person  object  as a common par t  e i ther .  Indeed, the 
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la t ter  would mean that patient, employee, etc. life cycles are proceeding concurrently all the 

time. Rather,  a person 's  behaviour shows phases where, say, she is a patient, other phases where 

she is an employee, and stil l  other phases where she is both at the same time. The mathematics 

of enclosure ref lects  this appropriately: when taking colimits, several roles of the same object 

have the lat ter  as eolimit object and the enclosures as universal eoeone, so nothing new is 

constructed. 

A thorough treatment  of all  aspects of inheritance is outside the scope of this paper. Besides 

inheritance between objects as discussed here, inheritance between object types and object classes 

(which we do not treat  in this paper) have to be taken into account, as well  as inheritance between 

specifications of objects, object types, and object classes (see also HC89). This area requires 

further study. 

4.3 Object Reification 

Our approach is based on reification as an implementation relationship between objects as studied 

in ES90. Intuitively, reification describes the relationship between an "abstract interface" 

implemented on top of a "base interface".  That is, we deal with reification as a relationship 

between objects. This has to be distinguished from the relationship between specifications of 

"describing in more detail", and also from the relationship between a specification and an object 

which "complies with" the specification. Both are sometimes called "implementation", too. 

Reification has been studied extensively in the field of abstract data types and their specification, 

starting with the pioneering paper GTW78. Essential ideas can already be found in Ho72. The 

following example is taken from ES90. It is t reated in Go90b from a specification point of view. 

Example  4.8 : Let the stack object in section 2.1 be given, with the following behaviour atoms. 

stack:  event atoms new, drop, push(i) for i~int, pop 

observation atoms top=i  for i~int,  empty?=b for b~bool 

We want to implement this "abstract" stack object on top of an array with a top pointer nvar 

(which is a variable over natural numbers), having the following behaviour atoms (of example 4.1 

array: event atoms create ,  destroy, set(n, i )  for ncnat  and iEint 

observation atoms conts(n)=i  for ncnat  and icint  

nvar: event atoms open, c lose ,  asg(n) for n~nat 

observation atoms v a l = n  for n~nat 

The intuitive meaning of these atoms should be clear .  Intuitively, an implementation of stack over 

array and nvar would do the following two things: 

(1) encode each stack event by a "transaction" over the base, i.e. a sequence of array and 

nvar events, for instance 

new ~ < create  ;open;  asg(0)> 

drop ~ <c lose :des t roy>  

push(i)  ~--> < set ([val ], i) ; asg( Ival]+l  ) > 

pop ~ < a s g ( [ v a l ] - l ) >  

Here ,  Foal] denotes the current value of the attribute val of hoar. 

in ES90). 
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(2) decode each  observat ion over the base  a t t r ibutes  as an  observat ion over the s tack  

a t t r ibutes ,  for ins tance  

top -- [ con t s ( [ va l ]  - 1)] 

empty? = equa l? ( [va l ] ,O)  

Since events  from severa l  base  objects  are in te r leaved  in the above encoding, we should look at 

the composite object b a s = a r r a y [ I n v a r  as being the base,  r a ther  than some col lec t ion  of base 

objects.  Thus, we may assume that  the base  is just  a single object .  

P lease  note that  the base  " t ransact ion"  by which a s tack  event is encoded will lead to different  

base  t races  for the same s tack  event ,  depending on context .  For instance,  pop can  mean  <asg(O)> 

or <asg(1)> or . . . .  and push( l )  can  mean  <set(0,1);asg(1)> or <set(1,1);asg(2)> or . . . .  depending 

on the value  of val  in the s ta te  where  pop or push( l )  occurs,  respect ively .  

Each  s tack life cycle,  for ins tance 

<new ; push( l )  ; push(2) ; pop ; push( l )  ; pop ; pop ; drop > , 

can be t r ans formed  into a sequence of base  t ransac t ions  by means of the above encoding: 

< <crea te  ; o p e n ;  asg(0) >; <set(0,1) ; a s g ( l ) > ;  <set(I ,2)  ; asg(2) >; <asg(1) >; <se t ( I ,1) ;  asg(2)>;  

<asg(1) >* < asg(0) > ; <close ; destroy >> 

Please  note that the two sequences shown above have the same length, if we count each  t r ans -  

act ion in the second sequence as just  one atomic step. The as te r i sk  marks the same position in 

both  sequences.  I f  we "unfold" the l a t t e r  t r ansac t ion  sequence into a flat  sequence of base  events ,  

we ar r ive  at the following sequence.  P lease  note that  it is longer than the above two sequences.  

< c rea te  ;open  ; asg(0) ; se t (0 , t )  ; asg(1);  s e t ( i , 2 ) ;  asg(2) ; asg(1) ; se t ( I ,1) ;  asg(2) ; asg(1) 

asg(0) ; close ; destroy > 

Here ,  the as ter i sk  marks a "corresponding" position, not the same one, because  the underlying 

time domains are different.  Encoding amounts to "compiling" s tack life cycles into life cycles 

over base t ransact ions  of the same length, and the l a t t e r  are obtained by "folding" base  life 

cycles into t ransact ions .  

The resu l t  of compiling a s tack life cycle shoutd be "executable" ,  i .e. i ts  unfolded vers ion should 

be a va l id  base  l ife cycle,  and the observat ions along the corresponding folded version,  when 

decoded as s tack observat ions,  should comply with the given s tack  behaviour.  For instance,  at 

the end of the initial t race  of the above base  life cycle ending at *,  we have the following 

observat ion snapshot:  

va l=  1 conts (0)= 1 conts(1)= 1 

This base  observat ion snapshot decodes as the following stack observat ion snapshot:  

top = [ c o n t s ( [ v a l ] - l ) ]  = I 'conts(0)]  = 1 

empty? = e q u a l ? ( [ v a l ] , 0 ) =  e q u a l ? ( 1 , 0 ) =  false 

This is the cor rec t  observa t ion  snapshot at the end of the corresponding s tack  t race ,  i.e. the 

init ial  t race  of the above s tack  life cycle  ending at * I3 
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As the example illustrates, it is appropriate to assume that the base consists of a single object 

bas. In practice, bas will most often be an aggregate object composed of a collection of objects 

which may interact (i.e. bas is the colimit object of some diagram in OB). 

So our problem is the following: given an abstract object ab and a base object has, what is an 
implemetation of ab over has ? For notational convenience, we index each item of ab by ab 
(Aab,f/ab etc.) ,  and similarly for bas and the other objects to follow. 

Definition 4.9: Let bas and ab be objects. An implementation of ab over bas is given by 

(1) a folding functor F :  BHV ......... .~ BHV , and 

(2) a pair (T:Aab--)AbasF,  8: f /basF--)f ' /ab) of behaviour morphisms such that 
the following diagram in BHV commutes. 

T 
A bas A basF ( A ab 

b a s l  , F ) ~ b a s F  ~ab 

f/bas Obas F ..... ) Oab 

That is, the observation ab(~.) associated with a life cycle ), cAab can be "calculated" using the 
*'encode" and '*decode" morphisms "~" and 8, respectively, defined on the folded base which has 
the appropriate transactions in its life cycles. 

The difference from the corresponding definition in ES90 is that T and 8 are required to be 
behaviour morphisms here, not just mappings. As a consequence, ab life cycles are mapped to 
has F life cycles "of equal length" (over the same time domain), and correspondingly for 8. That 
is, an abstract event is mapped to a transaction (which counts as "one step"), and only the 
observations after completed transactions are shown, not intermediate observations inside a 
transaction. 

The difference between the encode-decode part of an object implementation and an object 

morphism is that, for the former, the pair of behavior morphisms (%8) is in opposite directions. 
The question whether implementations can he expressed by morphisms can now be answered 
easily from the following diagram where mid = T;bas. 

Abas F< T , . Aa b ~--- Aa b 

basF 1 > ~mid < lab 

8 
abasF ~ ObasF ) f)ab 

This diagram shows that the ('f,8) part of an implementation of ab over bas is the same as two 

object morphisms, namely (% id) :bas F----> mid and (id, 8) : ab-----9 mid. These two object morphisms 
deal with event encoding and observation decoding separately (in contrast to the extension/ 
encapsulation construction in ES90). 
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5. Concluding Remarks 

We have outlined a general eategorial framework as a semantic basis for object-oriented 

approaches. In this paper, we concentrate on single objects and how they are related via inter- 

aetion, inheritance, etc., and how they are composed to form complex objects. An essential feature 

of this approach is its generality, especially with respect to the underlying time (or even time- 

space) domains. This leaves the possibility for incorporating powerful process models, including 

nondeterminism and forms of concurrency more general than interleaving. So far, however, we 

have used simple deterministic interleaving models in our examples, albeit with liveness and 

initiative (SE90). The integration of more powerful models has still to be worked out in detail. 

Clearly, the theory has to be extended to eover object types and object classes as well as the 

various (inheritance) relationships between instances, types and classes. 

The development of the semantic domain is being synchronized within the IS-CORE project with 

work on logic and proof theory for objects (FS90, FSMS90, FM90). It seems that the present 

general framework is a major step forward towards bringing the semantics and logics of objects 

together. 

Eventually, semantic and logic foundations should prove their usefulness for designing and 

implementing better languages and systems. Also within the IS-CORE project, work is being 

carried out towards this end, i.e. developing a broad-spectrum language for object-oriented 

system specification and development (JSS90, Sa90). A recent overview of object-oriented 

system development is given in Ve90. 
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