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Abstract

When combining logics while imposing the sharing of connectives, the
result is frequently inconsistent. In fact, in fibring, fusion and other forms
of combination reported in the literature, each shared connective inherits
the logical properties of each of its components. A new form of combining
logics (meet-combination) is proposed where such a connective inherits
only the common logical properties of its components. The conservative
nature of the proposed combination is shown to hold without provisos.
Preservation of soundness and completeness is also proved. Illustrations
are provided involving classical, intuitionistic and modal logics.

Keywords: combined logics, combined connectives.

1 Introduction

When combining logics one frequently wants to impose some interaction be-
tween connectives1. For instance, in the logic L resulting from the fibring [5]
of any two given logics L1 and L2 (where one finds all the inference rules from
those two logics), if one wants the sharing of two constructors c1 and c2 with
the same arity, the shared constructor 〈c1c2〉 in L enjoys the logical properties
inherited from c1 together with those inherited from c2. More concretely, if one
shares a classical negation ¬1 and an intuitionistic negation ¬2, the resulting
shared negation 〈¬1 ¬2〉 is classical. As expected, such a sharing may easily lead
to inconsistency. For example, if one shares conjunction ∧1 and disjunction ∨2,
since the resulting shared connective 〈∧1∨2〉 inherits the logical properties of
conjunction and those of disjunction, we can infer ϕ from ψ for any formulas
ϕ, ψ in L:

1 ψ Hypothesis;

2 ψ 〈∧1∨2〉ϕ Disjunction introduction;

3 ϕ Conjunction elimination.

One may wonder if it would not be better instead to endow the combined
constructor only with the common logical properties of the component con-
structors. For instance, since both conjunction and disjunction are associative

1In a general sense, including, besides the propositional connectives, also modal operators

and other language constructors.
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their combination should also be associative. On the other hand, since strong
elimination holds for conjunction but not for disjunction, it should not hold for
their combination.

As we conjectured in [7], we expect in this way to be led to a different
way of combining logics, at least with respect to the behavior of the combined
constructors, hopefully avoiding inconsistency in more situations.

Following this idea, we explain herein how to meet-combine logics and es-
tablish key transference results (preservation of completeness and soundness).
We also show that, as envisaged, meet-combination is always a conservative
extension of the combined logics and, so, that it preserves consistency. The
proposed construction is illustrated with the combination of classical logic and
intuitionistic logic, and with the combination of two modal logics.

For the sake of simplicity, we assume that the logics to be combined have
a propositional nature2, are endowed with a Hilbert calculus and matrix se-
mantics, and contain verum and falsum. Such suitable logics are described in
Section 2.

The means for meet-combining (language, calculus and semantics) any two
given suitable logics are presented in Section 3. Every constructor of the result-
ing language is a pair of constructors of the same arity, one from each of the two
original logics being combined. Moreover, each constructor of each original logic
is embedded in the resulting signature by pairing (meet-combining) it with the
verum from the other original logic. In the resulting calculus one finds the rules
ported from the two given logics (via the embeddings mentioned above), rules
imposing that the meet-combined constructors inherit the common properties
of their components and only those common properties, and rules imposing the
propagation of falsum. Every matrix of the resulting logic is just the product
of a matrix from one of the original logics with a matrix of the other. In this
way, the resulting logic is an enrichment of each of the original logics (via the
relevant embedding).

In Section 4 we show the preservation of soundness and completeness, as well
as the conservative nature of the enrichments and, as an immediate corollary,
the preservation of consistency.

Examples of meet-combination are presented, analyzed and compared with
fibring in Section 5. Finally, in Section 6 we assess what was achieved and
speculate on future work.

2 Suitable logics

For the purposes of this paper, by a logic we mean a triple L = (Σ,∆,M)
where:

• The signature Σ is a family {Σn}n∈N with each Σn being a finite set
of n-ary language constructors. Formulas are built as usual with these
constructors and the schema variables in Ξ = {ξk | k ∈ N}. We use L
and L(Ξ) for denoting the set of concrete formulas3 and the set of all

2That is, with no binding operators.
3Formulas without schema variables.
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formulas, respectively. If a formula contains schema variables we may
emphasize the fact by saying that it is a schema formula.

• The Hilbert calculus ∆ is a set of finitary rules of the form

α1 . . . αm

β

where formulas α1, . . . , αm are said to be the premises of the rule and
formula β is said to be its conclusion. A rule without premises is said to
be axiomatic and its conclusion is said to be an axiom. Derivations are
defined as usual for Hilbert calculi. We write

Γ ⊢ ϕ

for stating that there is a derivation of formula ϕ from set Γ of hypotheses.
When ∅ ⊢ ϕ we say that ϕ is a theorem and write simply ⊢ ϕ.

• The matrix semantics M is a non-empty class of matrices over Σ. Recall
that a matrix over Σ is a pair M = (A, D) where

A = (A, {c : An → A | c ∈ Σn}n∈N)

is an algebra over Σ and D ⊆ A. The elements of A are known as truth

values and those ofD are the distinguished or designated ones. Denotation,
satisfaction and entailment are as expected for matrix semantics. We
write

[[ϕ]]Aρ

for the denotation of formula ϕ by algebra A for assignment ρ : Ξ → A.
Furthermore, when ϕ is concrete we may write [[ϕ]]A for [[ϕ]]Aρ since the
denotation is independent of the assignment. Matrix M and assignment
ρ satisfy formula ϕ, written

M,ρ 
 ϕ,

if [[ϕ]]Aρ ∈ D. Set Γ of formulas entails formula ϕ, written

Γ � ϕ,

if M,ρ 
 ϕ whenever M,ρ 
 Γ. When ∅ � ϕ we say that ϕ is valid and
write simply � ϕ.

The following result which relates satisfaction with substitution is needed
in order to establish that entailment is closed for substitution.

Proposition 2.1 Let ϕ ∈ L(Ξ), σ : Ξ → L(Ξ) be a substitution, M ∈ M and
ρ an assignment over M . Then

[[ϕ]]Aρσ = [[σ(ϕ)]]Aρ

and
M,ρσ 
 ϕ if and only if M,ρ 
 σ(ϕ),

where ρσ(ξ) = [[σ(ξ)]]Aρ for each ξ ∈ Ξ.
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We omit the proof since the first statement follows straightforwardly by induc-
tion and the latter is a direct consequence of the former.

Proposition 2.2 (Closure for substitution)
Let Γ ∪ {ϕ} ⊂ L(Ξ) and σ : Ξ → L(Ξ). Then

σ(Γ) � σ(ϕ) whenever Γ � ϕ.

Proof: Assume that Γ � ϕ and M,ρ 
 σ(γ) for each γ ∈ Γ where M ∈
M and ρ is an assignment over M . Then M,ρσ 
 γ for each γ ∈ Γ by
Proposition 2.1. Hence, by the hypothesis, M,ρσ 
 ϕ and, so, M,ρ 
 σ(ϕ)
by the same proposition. QED

We need to work with logics fulfilling some additional assumptions. By a
suitable logic we mean a logic such that:

(i) there is a concrete formula which is both a theorem and valid.

(ii) there is a concrete formula which is unsatisfiable (that is, no matrix
satisfies it) and from which every formula is derivable.

Assumption (i) is fulfilled by every sound logic with at least an axiom. Assump-
tion (ii) is a bit more restrictive. For instance, leaves out positive implicational
logic. From now on, in each suitable logic, we assume chosen once and for all a
formula fulfilling (i) that we call verum and denote by tt. Furthermore, we also
assume chosen once and for all a formula fulfilling (ii) that we call falsum and
denote by ff.

In the context of a suitable logic, for each n ≥ 1, we introduce by abbrevi-
ation the n-ary connective tt(n) as follows:

tt
(n)(ϕ1, . . . , ϕn) = tt.

Moreover, we may write tt(0) for tt.
Given a suitable logic L = (Σ,∆,M), we assume without loss of generality

that Σ contains the constructors tt, ff and tt(n) for each n ∈ N
+, as introduced

above.

3 Meet combination of suitable logics

Given two suitable logics L1 = (Σ1,∆1,M1) and L2 = (Σ2,∆2,M2), the ob-
jective now is to define a logic

⌈L1L2⌉ = (Σ⌈12⌉,∆⌈12⌉,M⌈12⌉)

where one can also reason with and about the constructors inherited from L1

and L2 as well as their combinations.
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Language

The signature Σ⌈12⌉ is composed of all possible pairs of constructors in Σ1 and
Σ2. More concretely,

Σ⌈12⌉ = {Σ⌈12⌉n}n∈N

with
Σ⌈12⌉n = {⌈c1c2⌉ | c1 ∈ Σ1n, c2 ∈ Σ2n}.

For any constructors c1 ∈ Σ1 and c2 ∈ Σ2 of the same arity, ⌈c1c2⌉ is said
to be their meet-combination. Moreover, c1 and c2 are said to be the first
component and the second component of ⌈c1c2⌉, respectively. Since this paper
addresses only such meet-combined constructors, from now on we may refer to
them simply as combined constructors. As expected, we use L⌈12⌉ and L⌈12⌉(Ξ)
for denoting the set of concrete formulas and the set of all formulas over Σ⌈12⌉,
respectively.

We look at signature Σ⌈12⌉ as an enrichment of Σ1 via the embedding

η1 : c1 7→ ⌈c1tt
(n)
2 ⌉ for each c1 ∈ Σ1n.

Similarly, for Σ2 we use the embedding

η2 : c2 7→ ⌈tt
(n)
1 c2⌉ for each c2 ∈ Σ2n.

Suitability assumption (i) is needed in order to ensure that these embeddings
are logically faithful, as we shall prove in due course (at the end of Section 4).
For the sake of lightness of notation, in the context of Σ⌈12⌉, from now on, we
write

c1 for ⌈c1tt
(n)
2 ⌉ when c1 ∈ Σ1n

and
c2 for ⌈tt

(n)
1 c2⌉ when c2 ∈ Σ2n.

We refer to these constructors as the inherited constructors and refer to the
other constructors in Σ⌈12⌉ as the proper combined constructors.

In this vein, for k = 1, 2, we look at Lk as a subset of L⌈12⌉ and at Lk(Ξ) as
a subset of L⌈12⌉(Ξ).

Given a formula ϕ over Σ⌈12⌉ and k ∈ {1, 2}, we denote by

ϕ|k

the formula obtained from ϕ by replacing every occurrence of each combined
constructor (proper and inherited) by its k-th component.

Calculus

The calculus ∆⌈12⌉ should be composed of the rules inherited from ∆1 (via
the implicit embedding η1) and the rules inherited from ∆2 (via the implicit
embedding η2), plus the rules imposing that each combined connective enjoys
the common properties of its components and the rules for propagating falsum.
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At first sight one might be tempted to include in ∆⌈12⌉ every rule in ∆1∪∆2.
For instance, if modus ponens (MP) is a rule in ∆1 one would expect to find in
∆⌈12⌉ the rule

ξ1 (ξ1 ⊃1 ξ2)

ξ2
.

However, as we shall see in Section 5, this rule would not be sound for the
semantics of meet-combination that we have in mind. Instead, we tag such
a liberal rule (with a schema variable as conclusion), including in ∆⌈12⌉ the
following rule (MPc)

ξ1 (ξ1 ⊃1 c(ξ3, . . . , ξ2+n))

c(ξ3, . . . , ξ2+n)
for each n ∈ N and c ∈ Σ1n.

Accordingly, ∆⌈12⌉ contains the following rules:

• for k = 1, 2, the inherited rules from ∆k:

– every non-liberal rule in ∆k;

– every tagging of every liberal rule r of the form

α1 . . . αm

ξ

in ∆k, that is, the rule rc of the form

α1|
ξ
βc

. . . αm|ξβc

βc
for each n ∈ N and c ∈ Σkn

where βc = c(ξj+1, . . . , ξj+n) with j being the maximum of the in-
dexes of the schema variables occurring in r;

• the lifting rule (in short LFT)

ϕ|1 ϕ|2
ϕ

,

for each formula ϕ ∈ L⌈12⌉(Ξ);

• the co-lifting rule (in short cLFT)

ϕ

ϕ|k
,

for each formula ϕ ∈ L⌈12⌉(Ξ) and k = 1, 2;

• the falsum propagation rules (in short FX) of the form

ff1

ff2
and

ff2

ff1
.
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The lifting rule is motivated by the idea that ⌈c1c2⌉ inherits the common
properties of c1 and c2. For instance,

(ξ1 ∧1 ξ2)≡1 (ξ2 ∧1 ξ1) (ξ1 ∨2 ξ2)≡2 (ξ2 ∨2 ξ1)

(ξ1 ⌈∧1∨2⌉ ξ2) ⌈≡1≡2⌉(ξ2 ⌈∧1∨2⌉ ξ1)

lifts commutativity of conjunction and disjunction to their combination.
The co-lifting rule is motivated by the idea that ⌈c1c2⌉ should enjoy only

the common properties of c1 and c2. In fact, this rule guarantees more. It
guarantees that ⌈c1c2⌉ enjoys only the common original properties of c1 and
c2 because, in due course, we show that L⌈12⌉ is a conservative extension of L1

and L2.
Observe that although we may write, for example, ⊃1 for ⌈⊃1tt

(2)
2 ⌉, the lift-

ing and co-lifting rules also apply to such inherited constructors. For example,
we do have in the calculus of the meet-combination

ξ1 ⊃1 ξ2 ξ1tt
(2)
2 ξ2

ξ1 ⊃1 ξ2

as an instance of LFT, as well as

ξ1 ⊃1 ξ2

ξ1 ⊃1 ξ2

ξ1 ⊃1 ξ2

ξ1tt
(2)
2 ξ2

as instances of cLFT. Clearly, in these examples the application of LFT and
cLFT to inherited formulas adds nothing to the calculus. However, in general, in
a formula also with proper combined constructors, these rules produce effects
and, so, when applying LFT and cLFT, the inherited constructors must be
treated as combined constructors. For instance,

¬1(ξ1 ⊃1 ξ2) �2(ξ1tt
(2)
2 ξ2)

⌈¬1�2⌉(ξ1 ⊃1 ξ2)

is a non-vacuous instance of LFT.

Semantics

The semantics M⌈12⌉ is the class of matrices over Σ⌈12⌉

{M1 ×M2 |M1 ∈ M1 andM2 ∈ M2}

such that each
M1 ×M2 = (A1 × A2, D1 ×D2)

where

A1 × A2 = (A1 ×A2, {⌈c1c2⌉ : (A1 ×A2)
n → A1 ×A2 | ⌈c1c2⌉ ∈ Σ⌈12⌉n}n∈N)

with
⌈c1c2⌉((a1, b1), . . . , (an, bn)) = (c1(a1, . . . , an), c2(b1, . . . , bn)).

We refer to M⌈12⌉ as being the product semantics for the meet-combination
of constructors of ⌈L1L2⌉. In the sequel, we use 
⌈12⌉ and �⌈12⌉ for satisfaction
and entailment in ⌈L1L2⌉. Furthermore, given M1 × M2 ∈ M⌈12⌉ and an
assignment ρ : Ξ → A1 ×A2 over M1 ×M2, we denote by ρ1 and ρ2 the unique
assignments over M1 and M2, respectively, such that ρ(ξ) = (ρ1(ξ), ρ2(ξ)).
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Forgetting constructors

In practice, when meet-combining two suitable logics L1 and L2 one may want to
restrict the language of the combination by dropping some constructors. More
concretely, instead of working with the full signature Σ⌈12⌉, one may want to
work with some Σ →֒ Σ⌈12⌉. The restricted language and calculus are obvious.
For semantics take the reduct of each matrix in M⌈12⌉.

In the next section, the results are stated and proved for the full meet-
combination. Forgetting some non-inherited constructors does not disturb any
of the results. In Section 5 we return to this issue.

4 Main results

Assuming that we are given two suitable logics L1 = (Σ1,∆1,M1) and L2 =
(Σ2,∆2,M2) we proceed to investigate which properties of those logics are
transferred to their meet-combination ⌈L1L2⌉ = (Σ⌈12⌉,∆⌈12⌉,M⌈12⌉).

Theorem 4.1 (Preservation of suitability)
The logic ⌈L1L2⌉ is suitable.

Proof: Clearly, ⌈tt1tt2⌉ fulfills assumption (i). Moreover, ⌈ff1ff2⌉ fulfills assump-
tion (ii). QED

This trivial result is nonetheless useful since it allows us to iterate the process
of meet-combining logics (required to be suitable). Towards establishing the
preservation of soundness we need several auxiliary results.

Proposition 4.2 Let ϕ ∈ L1(Ξ) ∪ L2(Ξ), M1 ∈ M1, M2 ∈ M2 and ρ an
assignment over M1 ×M2. Then

[[ϕ]]A1×A2,ρ
=















(ρ1(ξ), ρ2(ξ)) if ϕ is ξ

([[ϕ]]A1,ρ1
, [[tt2]]A2

) if ϕ is in L1(Ξ) \ Ξ

([[tt1]]A1
, [[ϕ]]A2,ρ2

) if ϕ is in L2(Ξ) \ Ξ.

Proof: For each k = 1, 2, the proof is carried out by a straightforward induction
on ϕ ∈ Lk(Ξ). QED

Proposition 4.3 Let ϕ ∈ L⌈12⌉(Ξ), M1 ∈ M1, M2 ∈ M2 and ρ an assignment
over M1 ×M2. Then

[[ϕ]]A1×A2,ρ
=

(

([[ϕ|1]]A1×A2,ρ
)1, ([[ϕ|2]]A1×A2,ρ

)2

)

.

Proof: The proof is straightforward by induction on ϕ. QED

Proposition 4.4 Let ϕ ∈ L⌈12⌉(Ξ), M1 ∈ M1, M2 ∈ M2 and ρ an assignment
over M1 ×M2. Then

M1 ×M2, ρ 
⌈12⌉ ϕ iff M1, ρ1 
1 ϕ|1 and M2, ρ2 
2 ϕ|2.
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Proof: Note thatM1×M2, ρ 
⌈12⌉ ϕ iff [[ϕ]]A1×A2,ρ
inD1×D2 iff ([[ϕ|1]]A1×A2,ρ

)1
in D1, ([[ϕ|2]]A1×A2,ρ

)2 in D2, by Proposition 4.3, iff [[ϕ|1]]A1,ρ1
in D1, [[ϕ|2]]A2,ρ2

in D2, by Proposition 4.2, iff M1, ρ1 
1 ϕ|1 and M2, ρ2 
2 ϕ|2. QED

Proposition 4.5 The lifting rule LFT is sound in ⌈L1L2⌉.

Proof: Assume that M1 × M2, ρ 
⌈12⌉ ϕ|1 and that M1 × M2, ρ 
⌈12⌉ ϕ|2.
That is, [[ϕ|1]]A1×A2,ρ

= [[ϕ|2]]A1×A2,ρ
in D1 × D2. Hence, by Proposition 4.3,

[[ϕ]]A1×A2,ρ
in D1 ×D2 and so M1 ×M2, ρ 
⌈12⌉ ϕ. QED

Proposition 4.6 The co-lifting rule cLFT is sound in ⌈L1L2⌉.

Proof: Assume that M1 ×M2, ρ 
⌈12⌉ ϕ. Then [[ϕ]]A1×A2,ρ
in D1 × D2 and

so, by Proposition 4.3, ([[ϕ|1]]A1×A2,ρ
)1 in D1 and ([[ϕ|2]]A1×A2,ρ

)2 in D2. On the
other hand, by Proposition 4.2, ([[ϕ|1]]A1×A2,ρ

)2 in D2 and ([[ϕ|2]]A1×A2,ρ
)1 in D1.

Thus, M1 ×M2, ρ 
⌈12⌉ ϕ|1 and that M1 ×M2, ρ 
⌈12⌉ ϕ|2. QED

Proposition 4.7 For each k = 1, 2, a sound rule in Lk is also sound in ⌈L1L2⌉
provided that its conclusion is not a schema variable.

Proof: Let r = ({α1, . . . , αm}, β) be a rule in L1. Assume thatM1×M2, ρ 
⌈12⌉

αj for j = 1, . . . ,m. Then [[αj ]]A1×A2,ρ
in D1 ×D2 for j = 1, . . . ,m. Hence, by

Proposition 4.2, [[αj ]]A1,ρ1
in D1 for j = 1, . . . ,m and so, by the soundness of r in

L1, we conclude that [[β]]A1,ρ1
inD1. Observe that β is not a schema variable and

so, by the same proposition, [[β]]A1×A2,ρ
in D1 ×D2. Thus M1 ×M2, ρ 
⌈12⌉ β.

The same holds when r in L2. QED

Proposition 4.8 For each k = 1, 2, if r is a sound rule in Lk whose conclusion
is a schema variable, then, for each c ∈ Σk, rc is also sound in ⌈L1L2⌉.

Proof: Let r = ({α1, . . . , αm}, β) be a rule in L1 where β is a schema variable

and c is a constructor in Σ1. Assume that M1 × M2, ρ 
⌈12⌉ αj |
β
βc

for j =

1, . . . ,m. Then [[αj |
β
βc

]]
A1×A2,ρ

is in D1 × D2 for j = 1, . . . ,m. Hence, by

Proposition 4.2, [[αj |
β
βc

]]
A1,ρ1

is in D1 for j = 1, . . . ,m. On the other hand,

by the soundness of r in L1, {α1, . . . , αm} �1 β. Hence, by Proposition 2.2,

{α1|
β
βc

, . . . , αm|ββc

} �1 βc. Therefore, [[βc]]A1,ρ1
is in D1. Observe that βc is not

a schema variable and so, by Proposition 4.2, [[βc]]A1×A2,ρ
in D1 × D2. Thus

M1 ×M2, ρ 
⌈12⌉ βc. The same holds when r in L2. QED

Theorem 4.9 (Preservation of soundness)
If L1 and L2 are sound then ⌈L1L2⌉ is sound.

Proof: Assume that L1 and L2 are sound. Then, in particular, all the rules in
L1 and in L2 whose conclusion is not a schema variable are sound in ⌈L1L2⌉
by Proposition 4.7. Furthermore, rc is also sound, by Proposition 4.8, for each
rule r ∈ Lk whose conclusion is a schema variable and c is a constructor in Σk.
Moreover, the rules LFT and cLFT are sound thanks to Proposition 4.5 and
Proposition 4.6, respectively. Therefore, ⌈L1L2⌉ is sound taking into account
that �⌈12⌉ is closed for substitution. QED
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The task now is to show that if L1 and L2 are complete then so is ⌈L1L2⌉.
However, we are able to establish this result only for concrete formulas (The-
orem 4.15). Thus, it becomes handy to say that a logic is concretely complete

if it is complete with respect to concrete formulas. We start by proving the
relevant lemmas.

Proposition 4.10 For each k = 1, 2 and Γ∪{ϕ} ⊆ Lk, if Γ ⊢k ϕ then Γ ⊢⌈12⌉ ϕ.

Proof: We start by showing that if Γ ⊢k ϕ then there is a derivation of ϕ from
Γ composed by concrete formulas in Lk. The proof follows by induction on a
derivation of ϕ from Γ.

(1) ϕ ∈ Γ. Straightforward since ϕ is concrete.

(2) ϕ is an instance of an axiom. Straightforward since ϕ is concrete.

(3) ϕ is an instance of ({α1, . . . , αm}, β) using substitution σ. Then Γ ⊢k σ(αj)
for j = 1, . . . ,m and so Γ ⊢k σ

′(σ(αj)), with a derivation with the same number
of steps, where σ′ is such that σ′(ξ) is a concrete formula for every ξ. Therefore,
by the induction hypothesis, there is a derivation of σ′(σ(αj)) from Γ composed
by concrete formulas for j = 1, . . . ,m. Thus, using the same rule, we conclude
that Γ ⊢k σ(β) since σ

′(σ(β)) = σ(β).

The thesis follows since a derivation composed by concrete formulas in Lk is
also a derivation in ⌈L1L2⌉. QED

Proposition 4.11 If L1 and L2 are concretely complete then

if Γ 6⊢⌈12⌉ ϕ then Γ 6�⌈12⌉ ϕ

for every Γ ∪ {ϕ} ⊂ Lk with k = 1, 2.

Proof: Assume that k = 1 and that Γ 6⊢⌈12⌉ ϕ. Then, by Proposition 4.10,
Γ 6⊢1 ϕ and, since L1 is concretely complete then Γ 6�1 ϕ. That is, there is
M1 ∈ M1 such that M1 
1 γ for every γ ∈ Γ and M1 6
1 ϕ. Hence, M1 
1 γ|1
for every γ ∈ Γ and M1 6
1 ϕ|1. Choose M2 ∈ M2. Then M2 
2 γ|2 for every
γ ∈ Γ and M2 
2 ϕ|2. Hence, by Proposition 4.4, M1 ×M2 
⌈12⌉ γ for every
γ ∈ Γ and M1 ×M2 6
⌈12⌉ ϕ. Therefore, Γ 6�⌈12⌉ ϕ. QED

Proposition 4.12 For every ϕ ∈ L⌈12⌉, ffk ⊢⌈12⌉ ϕ.

Proof: Indeed, using rule FX, ff1 ⊢⌈12⌉ ff2. On the other hand, ff1 ⊢⌈12⌉ ϕ|1
and ff2 ⊢⌈12⌉ ϕ|2. Hence, the thesis follows by the lifting rule LFT. QED

Proposition 4.13 Assume that

if Γ′ 6⊢⌈12⌉ ϕ
′ then Γ′ 6�⌈12⌉ ϕ

′

for every Γ′∪{ϕ′} ⊂ Lk for k = 1, 2. Then, for every Γ ⊂ L1∪L2 and ϕ ∈ L⌈12⌉,

if Γ 6⊢⌈12⌉ ϕ then Γ 6�⌈12⌉ ϕ.
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Proof: Let Γ = Γ1 ∪ Γ2 where Γ1 ⊆ L1 and Γ2 ⊆ L2. We consider three cases.

(1) Γ1 does not have a model in L1. Assume Γ �⌈12⌉ ϕ. Observe that Γ1 �1 ff1.
Hence, by completeness of L1, Γ1 ⊢1 ff1 and so Γ1 ⊢⌈12⌉ ff1, by Proposition 4.10.
Hence, by Proposition 4.12, Γ1 ⊢⌈12⌉ ϕ and so Γ ⊢⌈12⌉ ϕ.

(2) Γ2 does not have a model in L2. Similar to (1).

(3) Γ1 and Γ2 have models in L1 and L2, respectively. Assume that Γ 6⊢⌈12⌉ ϕ.
Then, taking into account the lifting rule LFT,

either Γ 6⊢⌈12⌉ ϕ|1 or Γ 6⊢⌈12⌉ ϕ|2.

Consider two cases.

(a) Assume that the main constructor in ϕ is in Σ1. Hence, Γ 6⊢⌈12⌉ ϕ|1 and so
Γ1 6⊢⌈12⌉ ϕ|1. Thus, by hypothesis, Γ1 6�⌈12⌉ ϕ|1. Hence, there is M1 such that
M1 
1 γ1 for every γ1 ∈ Γ1 and M1 6
1 ϕ|1. Let M2 be a model of Γ2 in L2.
Then M1 ×M2 
⌈12⌉ γ for every γ ∈ Γ1 ∪ Γ2 and M1 ×M2 6
⌈12⌉ ϕ. That is,
Γ 6�⌈12⌉ ϕ.

(b) Assume that the main constructor in ϕ is in Σ2. Similar to (a). QED

Proposition 4.14 Assume that

if Γ′ 6⊢⌈12⌉ ϕ
′ then Γ′ 6�⌈12⌉ ϕ

′

for every Γ′ ⊂ L1 ∪ L2 and ϕ′ ∈ L⌈12⌉. Then

if Γ 6⊢⌈12⌉ ϕ then Γ 6�⌈12⌉ ϕ

for every Γ ∪ {ϕ} ⊂ L⌈12⌉.

Proof: Assume that Γ ∪ {ϕ} ∈ L⌈12⌉ and Γ 6⊢⌈12⌉ ϕ. Then

Γ|1 ∪ Γ|2 6⊢⌈12⌉ ϕ

taking into account the co-lifting rule cLFT, where Γ|k = {γ|k : γ ∈ Γ} for
k = 1, 2. Since no combined constructors occur in both Γ|1 and Γ|2, we can use
the hypothesis to conclude that

Γ|1 ∪ Γ|2 6�⌈12⌉ ϕ.

That is, there are M1 ∈ M1 and M2 ∈ M2 such that

M1 ×M2 
⌈12⌉ γ
′, for every γ′ ∈ Γ|1 ∪ Γ|2 and M1 ×M2 6
⌈12⌉ ϕ.

Hence, [[γ′]]A1×A2
∈ D1 ×D2 for every γ′ ∈ Γ|1 ∪ Γ|2 and [[ϕ]]A1×A2

6∈ D1 ×D2.
Therefore,

([[γ′]]A1×A2
)1 ∈ D1 and ([[γ′]]A1×A2

)2 ∈ D2

for every γ′ ∈ Γ|1 ∪ Γ|2. Let γ ∈ Γ. By Proposition 4.3,

[[γ]]A1×A2
=

(

([[γ|1]]A1×A2
)1, ([[γ|2]]A1×A2

)2
)

.

Thus, [[γ]]A1×A2
∈ D1 ×D2 and so M1 ×M2 
 Γ. Therefore, Γ 6�⌈12⌉ ϕ. QED
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Theorem 4.15 (Preservation of concrete completeness)
If L1 and L2 are concretely complete then ⌈L1L2⌉ is concretely complete.

Proof: Assume that L1 and L2 are concretely complete. Then, by Proposi-
tion 4.11,

if Γ 6⊢⌈12⌉ ϕ then Γ 6�⌈12⌉ ϕ

for every Γ∪{ϕ} ⊂ Lk for k = 1, 2. Hence, for every Γ ⊂ L1∪L2 and ϕ ∈ L⌈12⌉,

if Γ 6⊢⌈12⌉ ϕ then Γ 6�⌈12⌉ ϕ

using Proposition 4.13. Thus, thanks to Proposition 4.14,

if Γ 6⊢⌈12⌉ ϕ then Γ 6�⌈12⌉ ϕ

for every Γ ∪ {ϕ} ∈ L⌈12⌉. QED

The completeness result was established only for concrete formulas since
it depends on Proposition 4.11 and, so, on Proposition 4.10. Recall that the
latter states that a concrete derivation in each Lk can be ported to ⌈L1L2⌉.
This result does not hold for schematic formulas because in ⌈L1L2⌉ we only
have the tagged versions of the liberal rules in Lk.

Finally, we turn our attention to the preservation of consistency. To this
end, we check first if ⌈L1L2⌉ is a conservative extension of L1 and L2.

Theorem 4.16 (Concrete extensiveness)
For each k = 1, 2 and Γ ∪ {ϕ} ⊂ Lk,

if Γ �k ϕ then Γ �⌈12⌉ ϕ.

Proof: Without loss of generality, let Γ ∪ {ϕ} ⊂ L1. Assume that Γ �1 ϕ. Let
M1 ∈ M1 and M2 ∈ M2 be such that M1 ×M2 
⌈12⌉ γ for each γ ∈ Γ. Then,
by Proposition 4.4, M1 
1 γ for each γ ∈ Γ. Then, by the hypothesis, M1 
1

ϕ. Moreover, M2 
2 tt(n) for each n ∈ N. Hence, by the same proposition,
M1 ×M2 
⌈12⌉ ϕ. QED

Remark that ⌈L1L2⌉ is an extension of L1 and L2 only for concrete formulas.
Indeed, fromM1, ρ1 
1 ξ we would not be able to inferM1×M2, ρ 
⌈12⌉ ξ, since
we would not know if M2, ρ2 
2 ξ or not. On the other hand, the conservative
nature of the two extensions holds also for schema formulas:

Theorem 4.17 (Conservativeness)
For each k = 1, 2 and Γ ∪ {ϕ} ⊂ Lk(Ξ),

if Γ �⌈12⌉ ϕ then Γ �k ϕ.

Proof: Without loss of generality, let Γ∪{ϕ} ⊂ L1(Ξ). Assume that Γ �⌈12⌉ ϕ

and let M1 ∈ M1 and ρ1 an assignment over M1 such that M1, ρ1 
1 Γ.
Hence [[γ]]A1ρ1

∈ D1 for every γ ∈ Γ. Let M2 ∈ M2. Denote by ρ the unique
assignment over M1 ×M2 such that (ρ)1 = ρ1 and (ρ)2(ξ) = [[tt]]A2

. Then, by
Proposition 4.2, [[γ]]A1×A2ρ

∈ D1 ×D2 for every γ ∈ Γ. Therefore, [[ϕ]]A1×A2ρ
∈

D1 × D2 and so by the same proposition, [[ϕ]]A1ρ1
∈ D1. That is, M1, ρ1 
 ϕ

and so Γ �1 ϕ. QED
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It is worthwhile to mention again that, thanks to the conservativeness result
above, cLFT guarantees that each meet-combined constructor enjoys only the
common properties of its components in the original logic. As an immediate
corollary, we obtain:

Theorem 4.18 (Preservation of consistency)
If L1 and L2 are consistent then so is ⌈L1L2⌉.

5 Worked examples

Our objective now is to illustrate the proposed way of meet-combining suitable
logics. We also provide a counter-example concerning the unsoundness of non-
tagged liberal rules.

Meet-combination of classical and intuitionistic logics

πππ

qk, k ∈ N

ff

tt

∧
∨
⊃ ¬

Figure 1: Propositional signature.

Let CPL = (ΣC,∆C,MC) be classical propositional logic. More concretely,
let:

• ΣC be a clone of the signature in Figure 1 containing ¬C, ∧C, etc.

• ∆C contains the tautologies as axioms plus modus ponens:

ξ1 (ξ1 ⊃C ξ2)

ξ2
(MPC).

• MC is composed of the matrices induced by valuations. Recall that each
valuation v : {qCk : k ∈ N} → {0, 1} induces a matrixMv with Av = {0, 1}
satisfying precisely the same formulas for each assignment.

Let IPL = (ΣI,∆I,MI) be intuitionistic propositional logic. More concretely,
let:

• ΣI be a clone of the signature in Figure 1 containing ¬I, ∧I, etc.

• ∆I contains the usual axioms of intuitionistic logic (see, for instance, [9])
plus modus ponens:

ξ1 (ξ1 ⊃I ξ2)

ξ2
(MPI).
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• MI is composed of the matrices induced by Heyting algebras. Recall that
each Heyting algebra H together with its ⊤ as the unique distinguished
value induces a matrixMH satisfying precisely the same formulas for each
assignment.

Thanks to the results in Section 4, the meet-combination

CIPL = ⌈CPL IPL⌉ = (ΣCI,∆CI,MCI)

of these two logics is sound and (concretely) complete. Furthermore, it is a
conservative (concretely) extension of each of them and, so, consistent. We now
proceed to study this meet-combination (that we may call classical-intuitionistic
propositional logic) in more detail.

Observe that in ΣCI we find three negations:

¬C = ⌈¬C tt
(1)
I

⌉

¬I = ⌈tt
(1)
C

¬I⌉

¬CI = ⌈¬C ¬I⌉ .

The same goes for the other connectives.
Given the conservative nature of the embeddings

ηC: CPL → L

ηI : IPL → L,

¬C behaves as in CPL within ηC(CPL) and ¬I behaves as in IPL within ηI(IPL).
For instance, we do have

⊢CI (qC1 ∨C (¬C qC1))

since middle excluded is inherited as it is (as an axiom). However,

6⊢CI (qI1 ∨I (¬I qI1))

since
6⊢I (qI1 ∨I (¬I qI1)).

It should be stressed that ¬C only behaves classically within ηC(CPL). Be-
yond that, things get more complicated since we can not invoke the conservative
nature of the embedding. For example, we still get

(†) (qC1 ∨I (¬C qC1))

as a theorem in the meet-combination, but

(‡) ((¬C(¬C qI1))⊃I qI1)

14



is not a theorem since it is not valid. Indeed, the following derivation establishes
the unexpected hybrid middle excluded (†)

1 (qC1 tt
(2)
C

(¬C qC1)) AXC

2 ttI AXI

3 (ttI ⊃I (ttI ∨I (tt
(1)
I

ttI))) AXI

4 (ttI ∨I (tt
(1)
I

ttI)) MPI 2, 3
5 (qC1 ∨I (¬C qC1)) LFT 1, 4

while the following matrix does not satisfy (‡):

M =M1 ×M2

where M1 is any matrix of CPL and M2 is a matrix of IPL induced by any
Heyting algebra in which the denotation of qI1 is not distinguished.

Concerning ¬CI, one would expect it to behave intuitionistically since it
inherits only the properties common to ¬C and ¬I. In order to illustrate this
fact in a very simple case, observe that

⊢CI (¬CI(¬CI ϕ))⊃CI ϕ

does not hold in general. Just consider an arbitrary ϕ ∈ ηI(LI). Then, by cLFT
we would obtain

⊢CI (¬I(¬I ϕ))⊃I ϕ

and, so, by the conservative nature of ηI, we would establish

⊢I (¬I(¬I ϕ))⊃I ϕ.

On the other hand, for instance, we do have

⊢CI ϕ⊃CI (¬CI(¬CI ϕ))

in general, since it is a common property of the two original negations.
The crucial difference between meet-combination and fibring [5] is clearly

illustrated by this connective ⊃CI (the meet-combination of classical and intu-
itionistic implications). Here it is intuitionistic while, in fibring, sharing these
two implications leads to the classical implication [6].

As expected, Peirce’s Law holds within ηC(CPL) for ⊃C, but not in general
within CIPL for ⊃CI, since it is not a common property of ⊃C and ⊃I. If Peirce’s
Law were to hold for ⊃CI, then by cLFT it would hold for ⊃I within CIPL and,
so, it would also hold for ⊃I within IPL.

In ΣCI one finds also other, at first sight less useful, meet-combined con-
structors, e.g. the meet-combination ⌈∧C∨I⌉ of the classical conjunction with
the intuitionistic disjunction. One may wish to drop them and can do so. But
they can be useful for studying the common properties of their components. For
instance, ⌈∧C∨I⌉ inherits only the common properties of classical conjunction
and intuitionistic disjunction. For results on such meet-combinations but only
within the setting of classical logic see [7].

Before concluding this preliminary study of classical-intuitionistic proposi-
tional logic, observe that the non-tagged versions of both modus ponens rules
are not sound in CIPL. Indeed,
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(i) ξ1, (ξ1 ⊃C ξ2) 6�CI ξ2;

(ii) ξ1, (ξ1 ⊃I ξ2) 6�CI ξ2.

For (i) consider an arbitrary matrix M =M1 ×M2 ∈ MCI and ρ such that:

• ρ(ξ1) ∈ D1 ×D2;

• ρ1(ξ2) ∈ D1 and ρ2(ξ2) 6∈ D2.

Clearly, Mρ 
CI ξ1 and Mρ 
CI (ξ1 ⊃C ξ2), but Mρ 6
CI ξ2. A counter-example
for (ii) is easily built in a similar way.

Meet-combination of modal logics

πππ

qk, k ∈ N

ff

tt

∧
∨
⊃ ¬

�

Figure 2: Modal propositional signature.

Let M4PL = (Σ4,∆4,M4) be modal 4 propositional logic. More concretely,
let:

• Σ4 be a clone of the signature in Figure 2 containing �4, ¬4, ∧4, etc.

• ∆4 contains the tautological formulas over Σ4 as axioms, the normality
axiom

((�4(ξ1 ⊃4 ξ2))⊃4 ((�4 ξ1)⊃4 (�4 ξ2))) (NORM4)

and the transitivity axiom

((�4 ξ1)⊃4 (�4(�4 ξ1))) (AX4),

plus modus ponens
ξ1 (ξ1 ⊃4 ξ2)

ξ2
(MP4)

and necessitation
ξ1

(�4 ξ1)
(NEC4).

• M4 is composed of the matrices induced by transitive Kripke structures.
Recall that, in general, each Kripke structure K = (W,R, V ) induces
a modal algebra AK which in turn together with set W as the unique
distinguished value induces a matrix MK satisfying precisely the same
formulas for each assignment.
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LetMTPL = (ΣT,∆T,MT) bemodal T propositional logic. More concretely,
let:

• ΣT be a clone of the signature in Figure 2 containing �T, ¬T, ∧T, etc.

• ∆T contains the tautological formulas over ΣT as axioms, the normality
axiom

((�T(ξ1 ⊃T ξ2))⊃T ((�T ξ1)⊃T (�T ξ2))) (NORMT)

and the reflexivity axiom

((�T ξ1)⊃T ξ1) (AXT),

plus modus ponens

ξ1 (ξ1 ⊃T ξ2)

ξ2
(MPT)

and necessitation
ξ1

(�T ξ1)
(NECT).

• MT is composed of the matrices induced by reflexive Kripke structures.

The results in Section 4 guarantee that the meet-combination

M4TL = ⌈M4PLMTPL⌉ = (Σ4T,∆4T,M4T)

of these two logics is sound and (concretely) complete. Furthermore, it is a
conservative (concretely) extension of each of them and, so, consistent. We
now proceed to study this meet-combination (that we may call ⌈4T⌉-modal

propositional logic) in more detail.
Observe that in this modal logic we have three modal boxes:

�4 = ⌈�4 tt
(1)
T

⌉

�T = ⌈tt
(1)
4

�T⌉

�4T = ⌈�4�T⌉ .

The same goes for the propositional connectives.
As expected, since







⊢4T ((�4(ξ1 ⊃4 ξ2))⊃4 ((�4 ξ1)⊃4 (�4 ξ2)))

⊢4T ((�T(ξ1 ⊃T ξ2))⊃T ((�T ξ1)⊃T (�T ξ2))),

using the lifting rule we obtain

⊢4T ((�4T(ξ1 ⊃4T ξ2))⊃4T ((�4T ξ1)⊃4T (�4T ξ2))).
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Actually, in the same way we also obtain, for example,

⊢4T ((�4T(ξ1 ⊃4 ξ2))⊃4 ((�4T ξ1)⊃4 (�4T ξ2))).

Furthermore, also by lifting, we have:

ξ1 ⊢4T (�4T ξ1).

On the other hand, contrarily to what would happen in a fibring sharing
the two modal boxes (resulting in a S4 box), �4T does not fulfill the transitivity
and the reflexivity axioms (with respect to ⊃4T). Instead it fulfills only what
is common to both axioms:

⊢4T (((�4T ξ1)⊃4T (�4T(�4T ξ1))) ∨4T ((�4T ξ1)⊃4T ξ1)).

Semantically, the modal box �4T is established by the class of Kripke struc-
tures with accessibility relation locally (that is, at each world) reflexive or tran-
sitive. This class includes the reflexive structures and the transitive structures,
among others that are only locally reflexive or transitive. But it does not con-
tain all the Kripke structures.

Clearly, there are more common features to �4 and �T than those of the ba-
sic �K. For instance, the latter does not fulfill the disjunction of the transitivity
and the reflexivity axioms.

Within the setting of M4TL we may also investigate the properties of seem-
ingly less interesting mixed constructors like ⌈¬4�T⌉. For instance,

⊢4T ((⌈¬4�T⌉(⌈¬4�T⌉ ξ1))⊃4T ξ1)

but we refrain to delve into these issues. Indeed, for the purpose of combining
modal logics one probably would drop such mixed constructors.

6 Outlook

While investigating different ways of combining logics and the reasons why
they lead frequently to inconsistency, we came up with the idea of endowing
each combined constructor with only the logical properties that are common
to their components. To this end, we defined a new way of combining logics
(meet-combination) where each constructor of the resulting language is a pair of
constructors (of the same arity), one from each of the two original logics being
combined. Each of the given logics is embedded in the resulting logic by pairing
(meet-combining) it with the verum (of the same arity) from the other logic. In
the resulting calculus one finds the rules corresponding to the original inference
rules (via the embeddings mentioned above), rules imposing that the meet-
combined constructors inherit the common properties of their components and
only those common properties, and rules imposing the propagation of falsum.
Each matrix of the resulting logic is just the product of a matrix from one of
the original logics with a matrix of the other. In this way, the resulting logic
is an enrichment of each of the two given logics (via the relevant embedding).
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The conservative and consistency preserving nature of the embeddings followed
easily. We were also able to prove that soundness and (concrete) completeness
are preserved by meet-combination.

Although we started with the axiomatization of the meet-combination (im-
posing on the combined constructors the common properties of their compo-
nents) and only afterwards looked for an appropriate semantics, this turned out
to be the product of the two given matrix semantics. Therefore, unexpectedly,
we managed to obtain an axiomatization for the product of two matrix logics4.

For assessing what was achieved we looked with some detail into the meet-
combination of classical and intuitionistic logics and the meet-combination of
two modal logics, comparing in both cases the result with fibring. The fully
conservative nature of meet-combination seems to be the key advantage of this
new way of combining logics over other combination mechanisms previously
reported in the literature, namely fibring.

It should be stressed that the conservativeness desideratum was achieved
without loosing all the intuitions behind fibring. Each inherited connective

(like ⌈�4 tt
(1)
T

⌉) still behaves as expected since it inherits the laws imposed on
�4 within the original logic whence it comes. The main difference between
fibring and meet-combining logics concerns the non-inherited constructors (like
⌈�4�T⌉). In fibring the sharing of �4 and �T inherits the laws imposed on �4

and the laws imposed on�T (becoming the S4 box), while the meet-combination
of these two modal boxes only inherits their common laws (becoming the newly
discovered ⌈4T⌉-box).

Meet-combination relies on the notion of meet-combined constructor, first
proposed by us in [7] for studying the common properties of different connec-
tives, say conjunction and disjunction. Otherwise, to our knowledge, not much
work has been done on combining connectives (and other language construc-
tors) outside the field of combined logics. A related idea should be mentioned
nevertheless. In [2] a new connective is proposed which is defined only for the
pairs of truth values where conjunction and disjunction agree.

The investigation of meet-combination should go on in several directions.
First, a deeper study is necessary of interesting and relevant (from the point
of view of applications) meet-combinations of logics. Second, so far we defined
meet-combination only in the case of logics in the adopted universe (language of
propositional nature, Hilbert calculus and matrix semantics). In order to widen
the applicability of meet-combination, the work should be carried over to other
kinds of semantics, such as non-deterministic matrices [1], possible-translations
semantics [4], abstract valuations [3], and graph-theoretic interpretations [8],
as well as to other kinds of deduction systems, such as sequent calculi. Fur-
thermore, at some point the attempt should be made to leave the realm of
propositional-based logics and address logics with variables and binding oper-
ators. Third, the investigation on transference properties of meet-combination
should continue, namely concerning preservation of decidability. Fourth, the
conservative nature of meet-combination may help in studying what happens
when one wants to put together say a pure logic of negation with a pure logic

4As kindly pointed out by one of the reviewers.
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of disjunction without collateral effects.
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