
Temporal logics for reasoning about quantum

systems

P. Mateus, J. Ramos, A. Sernadas, and C. Sernadas

SQIG-Instituto de Telecomunicações, IST - TULisbon,
Av. Rovisco Pais, 1049-001, Lisbon, Portugal

January 6, 2009

Abstract

Reasoning about quantum systems has gained prominence due to a
big potential in applications such as information processing, security, dis-
tributed systems and randomized algorithms. This fact has attracted
research in formal reasoning about quantum states, programs and pro-
cesses. On the other hand, temporal logics have proved to be successful
in the verification of classical distributed systems and security protocols.
In this chapter we extend Exogenous Quantum Propositional Logic with
temporal modalities, considering both linear and branching time. We pro-
vide a weakly complete Hilbert calculi for the proposed quantum temporal
logics and study their SAT and model-checking problems.

Contents

1 Introduction 2

2 Exogenous Quantum Propositional Logic 3
2.1 Language and semantics . 3
2.2 Axiomatization . 6
2.3 SAT problem . 8
2.4 Model-checking problem . 9

3 Quantum Computational Tree Logic 10
3.1 Computational Tree Logic . 10
3.2 QCTL: Syntax and semantics . 11
3.3 Axiomatization . 14
3.4 SAT problem . 16
3.5 Model-checking problem . 18

1

4 Quantum Linear Time Logic 19
4.1 Linear Time Logic . 19
4.2 QLTL: Syntax and Semantics . 20
4.3 Axiomatization . 21
4.4 SAT problem . 24
4.5 Model-checking problem . 25

5 Conclusions 25

1 Introduction

Reasoning about quantum systems has gained prominence due to their poten-
tial applications in information processing, security, distributed systems and
randomized algorithms. This has attracted research in formal reasoning about
quantum states [28, 27, 20, 12, 8] and quantum programs [19, 24, 1, 16, 2, 25, 3,
5, 11, 10, 4]. On the other hand, formal methods have proved to be successful
in design and verification of classical distributed systems and security proto-
cols, e.g, [14, 22]. Herein, we present branching and linear temporal logics for
reasoning about evolution of quantum systems composed of a fixed finite set of
qubits.

Our starting point is the logic dEQPL for reasoning about quantum states
presented in [20, 12]. The logic dEQPL is an exogenous logic [21] and designed
around the first two postulates of quantum mechanics. The first postulate says
that a quantum state is a unit vector in a complex Hilbert space and the second
one says that the quantum state composed of two independent quantum states is
the tensor product of the composing states. Herein, we consider just a restricted
sub-logic of dEQPL based on the first postulate. The models of this logic are
basically the quantum states of the finite qubit system. This simplification was
initially proposed in [4].

We present a sound and complete axiomatization of this state logic. The
completeness proof, which is inspired by [12, 17], suggests a decision procedure
for the SAT problem and we compute the complexity of the decision procedure
assuming that all basic integer operations (addition, subtraction, multiplication
and comparison) take unit time. Furthermore, assuming a floating point repre-
sentation of complex numbers and assuming that basic floating point operations
take unit time, we compute the complexity of the model-checking algorithm.

Next, we present quantum computational tree logic QCTL by replacing the
state formulas in the standard computational tree logic CTL [13] by dEQPL
formulas. The standard CTL is interpreted over classical states and transition
relations amongst these states. QCTL is interpreted over quantum states and
transition relations. We give a sound and complete axiomatization of QCTL
capitalizing on the complete axiomatization of dEQPL and CTL. The proof of
completeness follows the techniques introduced in [9, 6]. We combine the stan-
dard CTL SAT and model-checking algorithm with those from dEQPL to obtain

2

a SAT and a model-checking algorithm for QCTL. Some of the results in this
section where presented in [4].

Finally, we replicate the effort of obtaining a complete proof system, a SAT
and a model-checking algorithm to quantum linear temporal logic (QLTL).

2 Exogenous Quantum Propositional Logic

We discuss here briefly the restricted state logic, dEQPLas introduced in [4]. The
logic is designed around the first postulate of quantum mechanics which states
that each quantum system is a unit vector in a complex Hilbert space. For our
purposes, we shall only deal with a finite-dimensional Hilbert space composed
of a finite set of qubits. We shall thus assume a fixed finite set of qubit symbols,
qB, which will represent these qubits.

A quantum state |ψ〉 therefore is a unit vector in HqB = H(2qB), the Hilbert
space generated by the set of valuations 2qB. Please note that these valuations
constitute what is commonly called the standard computational basis. Assum-
ing that qB has n elements, the vector |ψ〉 is then specified by 2n complex
numbers {〈v|ψ〉 | v ⊆ qB}. The complex number 〈v|ψ〉 gives the projection of
the unit vector |ψ〉 on the basis vectors |v〉. We shall have terms in our language
representing the real and complex parts of these 2n complex numbers. Further-
more, please also note that there is a natural bijection between the subsets of
qB and the set of valuations over qB: a set A corresponds to a valuation vA
which valuates to true if qb ∈ A and valuates to false if qb /∈ A.

We shall also have terms in our logic that will represent the probability of
outcomes if all the qubits in qB were to be measured in the standard computa-
tional basis. We are now ready to discuss the syntax and semantics of dEQPL.

2.1 Language and semantics

Syntax. The terms in dEQPL denote elements from R, the set of real numbers.
The formulas of dEQPL henceforth called quantum formulas, are constructed
from comparison formulas (formulas that compare terms) using propositional
connectives. We present language of dEQPL in Table 1 using an abstract version
of BNF notation [23] for a compact presentation of inductive definitions and
discuss the language in detail below.

The first syntactic category is that of classical formulas. Please recall that
we fixed a finite set of qubit symbols qB. Classical formulas are built from
qubit symbols in qB using the classical disjunctive connectives, falsum ⊥ and
implication ⇒. As usual, other classical connectives like ¬, ∧,∨,⇔ and > are
introduced as abbreviations.

For the term language, we pick a denumerable sets of variables X = {xk :
k ∈ N} interpreted over reals. We also have a copy of integers in the set of
terms. The terms Re(|>〉A) and Im(|>〉A) denote the real and complex parts
of the logical amplitude 〈vA|ψ〉, where ψ is a quantum state over qB and vA is

3

Table 1: Language dEQPL

Classical formulas
α := ⊥ 8 qb 8 (α⇒ α)

Term language (with the proviso m ∈ Z and A ⊆ qB)
t := x 8m 8 (t+ t) 8 (t t) 8 Re(|>〉A) 8 Im(|>〉A) 8 (

∫
α)

Quantum formulas
γ := (t ≤ t)8 ⊥⊥ 8(γ A γ)

the (unique) valuation corresponding to the set A. The probability term (
∫
α)

denotes the probability that the classical formula α holds for an outcome of
measuring all the qubits (in qB) in the standard basis.

As usual, we may define the notion of occurrence of a term t1 in a term t,
and the notion of replacing zero or more occurrences of terms t1 in t by t2. If ~x
and ~t are sequences of variables and terms respectively, we will write t{|~x/~t|} to
mean the real term obtained by substituting all occurrences of xi by ti.

The quantum formulas are built from comparison formulas (t ≤ t) using
the connectives ⊥⊥ and A. The set of comparison formulas shall henceforth be
called qAtom and we shall use δ, δ′ to range over this set. Please note that
quantum bottom ⊥⊥ and quantum implication A should not be confused with
their classical counterparts. For clarity sake, we shall often drop parenthesis in
formulas and terms if it does not lead to ambiguity.

Semantics. The language is interpreted over a unit vector |ψ〉 on the Hilbert
space HqB spanned by all valuations over qB. For interpreting the variables,
we also need the concept of an assignment. An assignment ρ is a map from X,
the set of variables, to the real numbers R. Given a classical formula α and a
valuation v over qB, we shall also assume the definition of satisfaction of α by
v; and write v c α if v satisfies α. For interpreting the probability terms (

∫
α),

we shall use the probability map µ|ψ〉 : ℘(qB)→ R defined as:

µ|ψ〉(U) =
∑
v∈U

||〈v|ψ〉||2 .

For the probability terms, we shall also need the extent of classical formulas
defined as:

|α| = {v ∈ ℘(qB) : v c α}.

The terms Re(|>〉A) and Im(|>〉A) are interpreted as the real and complex parts
of the logical amplitude 〈vA|ψ〉 where vA is the valuation corresponding to the
set A. Given a quantum state ψ and an assignment ρ, the denotation of terms

4

Table 2: Semantics of dEQPL

Denotation of terms
[[x]]|ψ〉ρ = ρ(x)
[[(
∫
α)]]|ψ〉ρ = µ|ψ〉(|α|)

[[Re(|>〉A)]]|ψ〉ρ = Re(〈vA|ψ〉)
[[Im(|>〉A)]]|ψ〉ρ = Im(〈vA|ψ〉)

Satisfaction of quantum formulas
|ψ〉ρ dEQPL (t1 ≤ t2) iff [[t1]]|ψ〉ρ ≤ [[t2]]|ψ〉ρ
|ψ〉ρ 6dEQPL⊥⊥
|ψ〉ρ dEQPL (γ1 A γ2) iff |ψ〉ρ 6dEQPL γ1 or |ψ〉ρ dEQPL γ2

and satisfaction of quantum formulas at |ψ〉 and ρ is inductively defined in
Table 2 (omitting the obvious ones).

Please note that the assignment ρ is sufficient to interpret a useful sub-
language of our quantum formulas defined as:

a := x 8m 8 (a+ a) 8 (a a)
κ := (a ≤ a) 8 (⊥⊥) 8 (κA κ)

Henceforth, the terms of this sub-language will be called analytical terms and
the formulas will be called analytical formulas.

Abbreviations. As anticipated, the proposed quantum language with the
semantics above is rich enough to express interesting properties of quantum
systems. To this end, it is quite useful to introduce other operations, connectives
and modalities through abbreviations. We start with some additional quantum
connectives:

• quantum negation: (� γ) for (γA ⊥⊥);

• quantum disjunction: (γ1 t γ2) for ((� γ1)A γ2);

• quantum conjunction: (γ1 u γ2) for (�((� γ1) t (� γ2)));

• quantum equivalence: (γ1 ≡ γ2) for ((γ1 A γ2) u (γ2 A γ1)).

It is also useful to introduce some additional comparison formulas:

• (t1 < t2) for ((t1 ≤ t2) u (�(t2 ≤ t1)));

• (t1 = t2) for ((t1 ≤ t2) u (t2 ≤ t1)).

Given A ⊆ qB, the following abbreviation will also be useful:

• (∧A) for ((∧qbk∈Aqbk) ∧ (∧qbk /∈A(¬ qbk))).

5

The above formula represents the valuation vA in the language. The following
abbreviation denotes the square of the absolute value of 〈vA|ψ〉:

• ||>〉A|2 for ((Re(|>〉A))2 + (Im(|>〉A))2);

The following abbreviation is also useful:

• (�α) for (
∫
α) = 1.

Intuitively, the formula (�α) means that the probability α being true of the
outcome of measuring all the qubits in the standard computational basis is 1.

2.2 Axiomatization

We need two new concepts for the axiomatization, one of quantum tautology
and a second of valid analytical formulas.

Consider propositional formulas built from a countable set of propositional
symbols Q using the classical connectives ⇒ and ⊥. A quantum formula γ is
said to be a quantum tautology if there is a propositional tautology β over Q and
a map σ from Q to the set of quantum formulas such that βσ coincides with γ
where βσ is the quantum formula obtained from β by replacing all occurrences of
⊥ by ⊥⊥, ⇒ by A and q ∈ Q by σ(q). For instance, the expected formula ((y1A
y2) A (y1 A y2)) is tautological (obtained, for example, from the propositional
tautology q⇒ q).

Please recall that an assignment is enough to interpret analytical formulas.
We say that an analytical formula κ is a valid analytical formula if it holds for
any assignment. It is a well-known fact from the theory of real closed fields [7]
that the set of valid analytical formulas so defined is decidable. However, we
shall not go into details of this result and will focus our attention on reasoning
about quantum aspects only.

The axioms and inference rules of dEQPL are listed in Table 3. The only
inference rule is modus ponens for quantum implication QMP.

The axiom QTaut says that a quantum tautology is an axiom. Since the
set of quantum tautologies is recursive, there is no need for spelling out details
of tautological reasoning. The axiom RCF says that if κ is a valid analytical
formula, then any formula obtained by replacing variables with the terms of
dEQPL is a tautology. Since the set of valid analytical formulas is recursive,
we refrain from spelling out the details. The axiom Unit says that a quantum
state is a unit vector.

The axioms CTaut, Meas∅, FAdd and Mon reason about probability
terms (

∫
α). These axioms are basically the axioms (or minor variations of)

the axioms of the probability logics in literature [17]. Hence, the probability
logics in [17] can be seen as a sub-logic of dEQPL.

Finally, the axiom Prob relates probabilities and amplitudes. This axiom
says that for any A ⊆ qB, the probability of observing the valuation vA when
all qubits are measured is the square of the amplitude |>〉A.

6

Table 3: Axioms for dEQPL

Axioms
[QTaut] `dEQPL γ for each quantum tautology γ

[RCF] `dEQPL κ{|~x/~t|} where κ is a valid analytical formula,
~x and ~t are sequences of variables and terms

[Unit] `dEQPL ((
∑
A⊆qB ||>〉A|2) = 1)

[CTaut] `dEQPL (�α) for each classical tautology α
[Mes∅] `dEQPL ((

∫
⊥) = 0)

[FAdd] `dEQPL (((
∫
(α1 ∧ α2)) = 0)A

((
∫
α1 ∨ α2) = (

∫
α1) + (

∫
α2)))

[Mon] `dEQPL ((�(
∫
(α1⇒ α2)))A ((

∫
α1) ≤ (

∫
α2)))

[Prob] `dEQPL ((
∫
∧A) = ||>〉A|2)

Inference rules
[QMP] γ1, (γ1 A γ2) `dEQPL γ2

The axiomatization presented above is sound and weakly complete. The
proof of weak completeness presented below follows the lines of the proof in [17,
12]. The proof of completeness also suggests an algorithm for deciding whether
a formula is theorem of dEQPL or not. The central result in the completeness
proof is the Model Existence Lemma, namely, if γ is consistent then there is
a quantum state ψ and an assignment ρ such that |ψ〉ρ dEQPL γ. A quantum
formula γ is said to be consistent if 6`dEQPL (� γ). A quantum formula γ is a
theorem if and only if (� γ) is inconsistent.

Theorem 2.1 (Model Existence Theorem) If the quantum formula γ is
consistent then there is a unit vector |ψ〉 and a ρ such that |ψ〉ρ dEQPL γ.

Proof: Given a classical state formula α, we can show using the axioms CTaut,
Meas∅, FAdd and Mon that `dEQPL ((

∫
α) =

∑
{A⊆qB | vAcα} (

∫
∧A)). The

axiom Prob then gives us that (
∫
α) =

∑
{A⊆qB | vAcα} ||>〉A|

2. Hence, given a
quantum formula γ, we can find an equivalent quantum formula that does not
contain any probability terms.

Given a formula γ free of probability terms, consider the formula γ†
def
=

(γ u (
∑
A⊆qB ||>〉A|2 = 1)). Please note that γ is consistent iff γ† is consistent.

Now, for each A ⊆ qB, pick two fresh variables xA and yA. Consider the formula
γ†† obtained from γ† by replacing each term Re(|>〉A) by xA and Im(|>〉A) by
yA. Now, by axiom RCF, γ† is consistent if and only if γ†† is consistent over

7

the reals. Observe that γ†† is a purely analytical formula. Therefore there is an
assignment, say ρ′, that satisfies γ†† or otherwise `dEQPL � γ†† by RCF, and
γ†† would not be consistent and neither would γ†, which is a contradiction. We
conclude that there is such an assignment ρ′, and from this assignment we can
construct |ψ〉 and ρ that satisfies γ as required. �

2.3 SAT problem

As there is an algorithm for deciding the consistency of analytical formulas [7],
the proof of the Model Existence Lemma suggests an algorithm for deciding the
consistency of quantum formulas. We shall now compute the complexity of one
such algorithm. We shall need a few definitions for this.

A term t of the dEQPL is said to be a polynomial in variables x1, . . . , xk
if t is of the form (

∑
mn1,...,nk

xn1
1 . . . xnk

k). The degree of a polynomial term
is defined as expected. We will also assume for the rest of the paper that
each polynomial is in a normal form: for any two summands xn1

1 . . . xnk

k and

x
n′

1
1 . . . x

n′
k

k there is some j such that nj 6= n′j . Now, given a set of classical
formulas A = {α1, . . . , αm}, a set of variables V = {x1, . . . xk, zα, . . . , zαm

} and
a set of polynomials P = {p1, . . . , ps} with variables in the set V, we say that
a comparison formula (t ≤ t′) is an (A,V,P)-atom if t′ is 0 and there is some
polynomial term p ∈ P such that replacing all occurrences of the variables zαi

by (
∫
αi) for each (1 ≤ i ≤ m) yields t. A dEQPL formula γ is said to be

a (A,V,P)-formula if each comparison formula occurring in γ is an (A,V,P)-
atom. We have:

Theorem 2.2 Let the set qB have n elements. Let A = {α1, . . . , αm} be
a set of classical formulas, V = {x1, . . . xk, zα, . . . , zαm

} be a set of variables
and P = {p1, . . . , ps} be a set of polynomials with variables in V. Let the
degree of each polynomial in P be bounded by d and let r = 2n+1 + k +m.
Then, assuming that all basic integer operations take unit time, there is an
O(|γ|(s + m + 1)r(max(d, 2))O(r)) algorithm to decide whether an (A,V,P)-
formula γ is a theorem or not.

Proof: For each αi ∈ V compute the set Bi = {A ⊆ qB |vA dEQPL αi}.
Computation of each Bi takes at most O(2n|αi|) steps, where |αi| is the length
of αi. Since the sum (

∑
1≤im |αi|) is less than |γ|, this whole computation takes

at most O(2n|γ|) steps. Please note that (2n|γ|) is bounded by |γ|(s + m +
1)r(max(d, 2))O(r).

Given a (A,V,P)-formula γ, let γ1 be the formula obtained from γ by re-
placing all probability terms (

∫
αi) by zαi

. Now, for each A ⊆ qB, pick two fresh
variables xA and yA and consider the formula

γ† = γ1 u (
d

1≤i≤m(z2
αi
−
∑
A∈Bi

(x2
A + y2

A) = 0))u ((
∑
A⊆qB x

2
A + y2

A)− 1 = 0).

We make a few observations here:

• γ is consistent iff and only if γ† is.

8

• γ† is purely analytical.

• γ† is built from comparison formulas of the form (p ≤ 0) or (p = 0) where
each p is a polynomial in the set

P ′ = P ∪{(z2
αi
−
∑
A∈Bi

(x2
A + y2

A))|1 ≤ i ≤ m}∪ {(
∑
A⊆qB x

2
A + y2

A)− 1}.

• P ′ has (s+m+1) polynomials. The degree of each polynomial is bounded
by max(d, 2) and is built from r = 2n+1 + k +m variables.

• The length of γ† is O(|γ|+m(max(d, 2)O(r))).

Assuming that integer operations take unit time, the results of [7] give an
O(|γ|(s + m + 1)r(max(d, 2))O(r)) algorithm to decide consistency of γ† which
concludes the proof of the corollary . �

2.4 Model-checking problem

For the model-checking procedure, we only consider closed formulas, i.e., formu-
las without variables. We assume that a quantum state |ψ〉 over qB is modeled
by a 2n-array of pairs of real numbers, with n = |qB|. We also assume that the
basic arithmetical operations take O(1) time.

We also assume the definition of the length of a classical formula α or a
quantum formula γ as the number of symbols required to write the formula.
The length of a formula ξ (classical or quantum) is represented by |ξ|.

Given a quantum state |ψ〉 and a quantum formula γ, the first step is to
evaluate all the terms occurring in γ. For the probability terms

∫
α, the eval-

uation takes 2n|α| steps as we have to compute the set of valuations ℘(qB)
that satisfy α. Once the terms are evaluated, the model checking algorithm is
straightforward.

Theorem 2.3 Assuming that all basic arithmetical operations take unit time,
there is an algorithm O(|γ|.2n) to decide if a quantum state |ψ〉 over qB satisfies
γ with |qB| = n.

Proof: First notice that the terms that consume more time to evaluate are
those of the type (

∫
α) (both the terms Re(|>〉A) and Im(|>〉B) can be accessed

in O(1) time, since they are elements of the array). The number of terms of type
(
∫
α) is bounded by |γ|. To evaluate one of these terms we require O(2n) time

corresponding to traveling throughout all the valuations satisfying α, computing
the square of the real and imaginary part, and summing all these values. So,
computing all (

∫
α) terms takes O(|γ|.2n) time.

After these values are obtained, the remaining computation (comparing
terms, negating a boolean value, and making implications between boolean val-
ues) takes at most O(|γ|) time. Hence, the total time to decide if a quantum
state |ψ〉 satisfies γ is O(|γ|.2n + |γ|) = O(|γ|.2n). �

9

3 Quantum Computational Tree Logic

We now introduce a temporal version of dEQPL by adopting the temporal
modalities of computational tree logic (CTL) [13]. The logic is interpreted over
a transition system in which the states are quantum states and the transitions
are unitary operators. We also provide a sound and complete proof system by
enriching the usual CTL proof system with the axioms of the quantum state
logic. We start by briefly recalling the syntax, semantics and proof system of
CTL.

3.1 Computational Tree Logic

Syntax. We shall assume that there is a countable set of propositional symbols
Ξ. Assuming the set Ξ, the formulas of a CTL are given in BNF notation as

θ :=⊥⊥ 8 p 8 (θ A θ) 8 EXθ 8 AFθ 8 E[θUθ]

where p ∈ Ξ.

Semantics. The semantics of the temporal logic CTL is given using a Kripke
structure

Definition 3.1 (Kripke Structure) A Kripke structure over a set of propo-
sitions Ξ is a tuple K = (S,R, L) where:

• S is a set, elements of which are called states.

• R ⊆ S × S is a said to be the accessibility relation and it is assumed that
for every s ∈ S there exists s′ ∈ S such that (s, s′) ∈ R′.

• L : S→ ℘(Ξ) is said to be a labeling function.

Given a Kripke structure, K = (S,R, L), an infinite sequence of states s1s2 . . .
is said to be a computation path if (si, si+1) ∈ R for all i ≥ 1. The semantics
of CTL is defined in terms of a Kripke structure K and a state s of the Kripke
structure. Intuitively, the modalities are composed by two symbols where the
first one is chosen between E or A and the second one amongst X, F, G and the
bi-modality U. The second symbol is used for temporal reasoning: X stands
for next; F for sometime in the future; G for always in the future; and U for
until. The first symbol quantifies over computation paths: an existential (E -
for there exists) path or a universal (A - for all) paths. The combination of the
two symbols can be easily guessed. For example, the formula EXθ holds in a
state s if there exists a next state s′ (that is, (s, s′) ∈ R) that satisfies θ. Given
a Kripke structure K, a state s of the Kripke structure, and a CTL formula θ,
the formal semantics is defined inductively in terms of a relation K, s CTL θ
and is given in Table 4.

10

Table 4: Semantics of CTL

K, s 6CTL⊥⊥;

K, s CTL p iff p ∈ L(s);

K, s CTL (θ1 A θ2) iff K, s 6CTL θ1 or K, s CTL θ2

K, s CTL EXθ iff K, s′ CTL θ for some (s, s′) ∈ R;

K, s CTL AFθ iff for all paths s1s2 . . . with s = s1 there is some i ≥ 1
such that K, si CTL θ;

K, s CTL E[θ1Uθ2] iff there is a path s1s2 . . . with s = s1 such that for
some i ≥ 1 K, s1 CTL θ2 and K, sj CTL θ1 for
1 ≤ j < i.

Axiomatization. The temporal logic CTL enjoys a sound and complete ax-
iomatization [15]. In order to give the axiomatization, we need to introduce
some useful abbreviations

• (AXθ) for �EX(� θ);

• (EFθ) for �(E[(� ⊥⊥)Uθ]);

• (AGθ) for �(EF(� θ));

• (EGθ) for �(AF(� θ));

• A[θ1Uθ2] for �(E[(� θ2)U(� θ1 u� θ2)]) u (�(EG(� θ2))).

The proof system HCCTL of CTL is given in Table 5. The following result is
proved in [15].

Theorem 3.2 The proof system HCCTL is sound and weakly complete with re-
spect to Kripke structures.

3.2 QCTL: Syntax and semantics

Syntax. Please recall that given the state logic dEQPL (see Section 2) de-
scribes quantum states over a finite set of qubits qB and is interpreted over unit
vectors in the Hilbert space HqB and assignments ρ : X → R where X is a
countable set of variables.

11

Table 5: HCCTL : complete calculus for CTL

Axioms
[Taut] All propositional tautologies with propositional symbols substituted

by CTL formulas;

[EX] `CTL EX(θ1 t θ2)≡ EXθ1 t EXθ2
[X] `CTL AX(� ⊥⊥) u EX(� ⊥⊥)
[EU] `CTL E[θ1Uθ2]≡ θ2 t (θ1 u EX(E[θ1Uθ2]))
[AU] `CTL A[θ1Uθ2]≡ θ2 t (θ1 u AX(A[θ1Uθ2]))
[AG1] `CTL AG(θ3 A ((� θ2) u EXθ3))A (θ3 A (�A[θ1Uθ2]))
[AG2] `CTL AG(θ3 A ((� θ2) u (θ1 A AXθ3)))A (θ3 A (�E[θ1Uθ2]))
[AG3] `CTL AG(θ1 A θ2)A (EXθ1 A EXθ2)

Inference rules
[MP] θ1, (θ1 A θ2) `CTL θ2

[AGen] θ1 `CTL AGθ1

Table 6: Language of QCTL

QCTL formulas

θ := γ 8 (θ A θ) 8 EXθ 8 AFθ 8 E[θUθ] where γ is a dEQPL formula.

The formulas of Quantum Computation Tree Logic (QCTL) are obtained
by enriching the quantum formulas with CTL modalities and are depicted in
Table 6.

As in the case of CTL formulas, other temporal modalities AXθ, EFθ, AGθ,
EGθ and A[θ1Uθ2] are introduced as abbreviations. The intuitive semantics of
the temporal modalities is similar to those in classical CTL.

Semantics. In order to provide semantics to the logic, we introduce a very
simple notion of quantum Kripke structure.

Definition 3.3 (Quantum Kripke structure) A finite quantum Kripke struc-
ture over the set of qubits qB and variables X is a pair T = (S,R) where:

• S ⊂ HqB × RX is a set of pairs (|ψ〉, ρ) such that |ψ〉 is a unit vector in
HqB and ρ is an assignment; and

12

• R ⊆ S×S is a relation such that for any (|ψ〉, ρ) ∈ S, there is an (|ψ′〉, ρ′) ∈
S such that ((|ψ〉, ρ), (|ψ′〉, ρ′)) ∈ R.

If S is finite then T is said to be finite and |S|, the number of elements of S, is
said to be the size of T .

For the sake of brevity, we shall often write the pair (|ψ〉, ρ) as |ψ〉ρ. As
usual, a computation path is a infinite sequence |ψ1〉ρ1|ψ2〉ρ2 . . . such that for
any i ≥ 1, we have (|ψ1〉ρ1, |ψ2〉ρ2) ∈ R. Given a quantum Kripke structure
T = (S,R), a pair (|ψ〉, ρ) ∈ S and a QCTL formula θ, the semantics of QCTL
is defined in terms of a relation T , |ψ〉ρ QCTL γ given in Table 7.

Table 7: Semantics of QCTL

T , |ψ〉ρ QCTL γ iff |ψ〉ρ dEQPL γ;

T , |ψ〉ρ QCTL (θ1 A θ2) iff T , |ψ〉ρ 6QCTL θ1 or T , |ψ〉ρ QCTL θ2

T , |ψ〉ρ QCTL EXθ iff T , |ψ′〉ρ′ QCTL θ for some |ψ′〉ρ′ ∈ S
such that (|ψ〉ρ, |ψ′〉ρ′) ∈ R;

T , |ψ〉ρ QCTL AFθ iff for all paths |ψ1〉ρ1|ψ2〉ρ2 . . . with
|ψ1〉 = |ψ〉, ρ1 = ρ there is a i ≥ 1 such that
T , |ψi〉ρi QCTL θ;

T , |ψ〉ρ QCTL E[θ1Uθ2] iff there is a path |ψ1〉ρ1|ψ2〉ρ2 . . .
with ψ1 = ψ, ρ1 = ρ such that for some i ≥ 1
T , |ψi〉ρi QCTL θ2 andT , |ψj〉ρj QCTL θ1
for 1 ≤ j < i.

It is easy to see that for closed formulas i.e., formulas without variables, we
can drop the assignment in the interpretation side of the satisfaction relation.
A quantum Kripke structure T is said to satisfy a temporal formula θ, which we
denote by T QCTL θ, if T , |ψ〉ρ QCTL θ for all |ψ〉ρ ∈ S. Please note that we are
not considering generalized measurements. However, we will be able to reason
about protocols where measurements in the standard computational basis are
performed at the end of the protocol, thanks to the probability terms

∫
α in

the state logic. Moreover, it is possible to rewrite any protocol in such a way
that at the end we only need to make measurements in the computational basis.
Similarly, classical states (bits) can be simulated by quantum states (qubits)
that remain in the computational basis throughout the transitions.

13

3.3 Axiomatization

A weakly complete axiomatization of QCTL capitalizing on the complete CTL
calculus HCCTL is given in Table 8. Please note that although the completeness
of the calculus may look trivial the proof of completeness is subtle. This is
because the connectives ⊥⊥ and A are shared between dEQPL and CTL logics
which may create new theorems that will not be obtained by just adding the
dEQPL axioms to CTL axioms.

Table 8: HCQCTL calculus for QCTL

Axioms

[QTeo] All dEQPL theorems;
[CTLTaut] All CTL tautologies with propositional symbols substituted

by QCTL formulas;
Inference rules

[QMP] θ1, (θ1 A θ2) `QCTL θ2
[AGen] θ1 `QCTL AGθ1

It is straightforward to check the soundness of the calculus, for this reason
we omit here the lengthy exercise of verifying that all axioms and inference rules
are sound.

Theorem 3.4 (Soundness) The axiomatization HCQCTL is sound.

The completeness of the calculus is established by following a technique in-
troduced in [9, 6]. Towards this end, it will be useful to translate QCTL formulas
and models to the CTL framework. Consider first the subset of atomic dEQPL
formulas qAtom (i.e., the set constituted by comparison formulas (t1 ≤ t2)).
Let Ξ be the countable set of propositional symbols used to write CTL formulas.
Given a fixed bijective map λ : qAtom→ Ξ (that translates each global atom to
a CTL propositional symbol) we can translate each dEQPL formula θ to a CTL
formula λ(θ) by extending inductively λ on the structure of the formula θ (and
preserving all connectives). For simplicity, we denote λ(θ) just by θ̃. The map
λ can also be used to translate a quantum Kripke structure T = (S,R) to the
CTL model T̃ = (S,R,L), where p ∈ L(|ψ〉ρ) if |ψ〉ρ dEQPL λ

−1(p).

Lemma 3.5 Let T be an quantum Kripke structure. Then,

T , |ψ〉ρ QCTL θ iff T̃ , |ψ〉ρ CTL θ̃.

14

Proof: The proof follows by straightforward induction on the structure of θ.

• Base: If θ is ⊥⊥ or (t1 ≤ t2) then T , |ψ〉ρ QCTL θ iff T̃ , |ψ〉ρ CTL θ̃ by
definition.

• Step: For the sake of simplicity, we just consider the case when θ is EXθ1.
The other cases can be similarly handled.

Now, if T , |ψ〉ρ QCTL EXθ1 then there is a |ψ′〉ρ′ such that (|ψ〉ρ, |ψ′〉ρ′) ∈
R and T , |ψ′〉ρ′ QCTL EXθ1. By induction, T , |ψ′〉ρ′ CTL EXθ1 iff
T̃ , |ψ′〉ρ′ CTL θ̃1. Thus, by definition T̃ , |ψ〉ρ CTL θ̃. The other direction
can be similarly proved.

�

QCTL incorporates both CTL and dEQPL reasoning.

Lemma 3.6 For any QCTL formula θ

• `CTL θ̃ then `QCTL θ;

• `dEQPL γ then `QCTL γ if γ is a dEQPL formula.

Proof: Follows directly from axioms CTLTaut and QTeo. �

Indeed, if one restricts just to dEQPL formulas, QCTL reasoning coincides with
that of dEQPL.

Lemma 3.7 (Conservative Extension) Let γ be an dEQPL formula. Then

`QCTL γ iff `dEQPL γ.

Proof: In light of Lemma 3.6, it suffices to show that if `QCTL γ then `dEQPL γ.
Suppose `QCTL γ. Then QCTL γ by soundness of QCTL. Let |ψ〉 be an arbitrary
unit vector in HqB and ρ an arbitrary assignment. Consider the the quantum
Kripke structure T = ({|ψ〉ρ}, {(|ψ〉ρ, |ψ〉ρ)}). We have that T , |ψ〉ρ QCTL γ.
By definition, we get |ψ〉ρ dEQPL γ. Since ψ and ρ are arbitrary, we get dEQPL

γ. By completeness of dEQPL, we get `dEQPL γ. �

The following Lemma is crucial to the proof of completeness.

Lemma 3.8 Let θ be an QCTL formula such that QCTL θ. Then there is a
dEQPL formula γθ such that

`QCTL γθ and CTL (AGγ̃θ A θ̃).

15

Proof: Let at = {γ1, . . . , γk} be the set of atomic dEQPL formulas that are
atoms of θ. Now for each k-vector i ∈ {0, 1}k, consider the dEQPL formula

δi =
kl

j=1

ϕj where ϕj =
{

γj if j-th bit of i is 1
(� γj) otherwise

Let K ⊆ {0, 1}k be such that δi is a dEQPL consistent formula and let γθ =⊔
i∈K δi. Clearly, `dEQPL γθ and therefore by Lemma 3.7, `QCTL γθ. Also please

note for any quantum state |ψ〉 and assignment ρ, |ψ〉ρ δi for exactly one
i ∈ K.

We shall prove CTL (AGγ̃θA θ̃) by contradiction. Suppose that K = (S,R, L)
is a CTL model such that K, s 6CTL (AGγ̃θ A θ̃) for some s ∈ S. Then K, s CTL

AGγ̃θ. and K, s 6CTL θ̃. Let S′ = {s′ ∈ S : s′ is reachable from s} (by reachable
we mean reachable using the accessibility relation R).

Pick s′ ∈ S′ and fix it. Since K, s′ CTL AGγ̃θ, we get that K, s′ CTL γ̃θ.
Hence, there is some is′ ∈ K such that K, s′ CTL δ̃is′ . Since δis′ is consistent
dEQPL formula, there is a unit vector |ψs′〉 and an assignment ρs′ such that
|ψs′〉ρs′ dEQPL δis′ . For each s′ fix on such |ψs′〉 and ρs′ ensuring that ρs1 6=
ρs2 (this can be ensured by modifying the assignments on real variables not
occurring in θ). Consider the set Sθ = {(|ψs′〉, ρs′) : s′ ∈ S′} and the QCTL
model T = (Sθ, Rθ), where (|ψs′〉ρs′ , |ψs′′〉ρs′′) ∈ Rθ iff (s′, s′′) ∈ R. Using the
fact that K, s 6 θ̃, it follows from Lemma 3.5 T , |ψs〉ρs 6 θ which contradicts
`QCTL γθ �

We are now able to show the completeness of HCQCTL.

Theorem 3.9 The axiomatization HCQCTL is weakly complete.

Proof: Let QCTL θ be a valid QCTL formula. Let γθ be as in Lemma 3.8, then,
CTL (AGγ̃θ A θ̃). Using CTL completeness we have `CTL (AGγ̃θ A θ̃). Now,
from Lemma 3.6 we get `QCTL (AGγθ A θ).

Hence, we are able do the following derivation in QCTL:

1) `QCTL γθ Tautology
2) `QCTL (AGγθ) Rule AGen
3) `QCTL (AGγθ A θ) Lemma 3.8,Lemma 3.6
4) `QCTL θ Modus Ponens 2, 3

Therefore, HCQCTL is complete. �

3.4 SAT problem

The completeness proof suggests a SAT algorithm for QCTL. Let θ be the QCTL
formula that we want to test for satisfiability and at = {γ1, . . . , γk} be the set of

16

atomic dEQPL formulas that are atoms of θ. Now for each k-vector i ∈ {0, 1}k,
consider the dEQPL formula

δi =
kl

j=1

ϕj where ϕj =
{

γj if j-th bit of i is 1
(� γj) otherwise

Let K ⊆ {0, 1}k be such that δi is a dEQPL consistent formula and let γθ =⊔
i∈K δi. Observe that dEQPL γθ and that for each |ψ〉, ρ there exists a unique

i ∈ K such that |ψ〉, ρ dEQPL δi. Given a CTL model K = (S,R,L) of (AG(γ̃θ)u
θ̃) and a state s ∈ S we denote by (|ψs〉, ρs) a dEQPL model that satisfies δi
whenever K, s CTL δ̃i. Moreover, choose (|ψs〉, ρs) 6= (|ψs′〉, ρs′) whenever s 6=
s′ (this can be done just by changing the assignments of variables not occurring
in θ). Finally, we denote by TK the quantum Kripke structure (SK , RK) where
{(|ψs〉, ρs) : s ∈ S} and ((|ψs〉, ρs), (|ψs′〉, ρs′)) ∈ RK iff (s, s′) ∈ R.

The following theorem is crucial to obtain the QCTL SAT algorithm.

Theorem 3.10 Let θ be a QCTL formula. Then, (AG(γ̃θ)uθ̃) is CTL-satisfiable
iff θ is QCTL-satisfiable. Moreover, K, s CTL (AG(γ̃θ)u θ̃) iff TK, |ψs〉ρs QCTL

θ.

Proof: ⇐) Follows directly from Lemma 3.5 and from the fact that dEQPL γθ.
Concerning the second assertion, it follows by noticing that T̃K is equal to K up
to relabeling of states.

⇒) For this direction, it is sufficient to show the second assertion. Since T̃K is
equal toK up to relabeling of states, by Lemma 3.5 we have that TK, |ψs〉ρs QCTL

AG(γθ) u θ and therefore TK, |ψs〉ρs QCTL θ. �

The SAT algorithm is now easily obtained from the CTL SAT algorithm.

Table 9: Algorithm to determine Sat(θ)

1) Generate δi for all i ∈ 2k where k is number of atomic dEQPL formulas
that are atoms of θ.

2) Using the SAT algorithm for dEQPL compute the set of indexes K
such that i ∈ K iff δi is a consistent dEQPL formula,
in this case store the dEQPL model output by the SAT algorithm
and call it (|ψi〉, ρi).

3) Find a model K for (AG(γ̃θ) u θ̃) using the CTL SAT algorithm.

4) Construct TK from the models stored in 2).

17

3.5 Model-checking problem

We now address the problem of model-checking a closed temporal formula. Fol-
lowing the usual model-checking technique for CTL, the goal is to compute the
set

SatT (θ) := {|ψ〉 ∈ S : T , |ψ〉 QCTL θ}

for a given finite quantum Kripke structure T = (S,R) and closed formula θ
(please note that assignments play no part the entailment relation for closed
formulas). This is called the global model-checking problem. The (global)
model-checking algorithm is given in Table 10.

Table 10: Algorithm to determine SatT (θ)

(1) SatT (γ) = {|ψ〉 ∈ S : |ψ〉 dEQPL γ};

(2) SatT (θ1 A θ2) = (S \ SatT (θ1)) ∪ SatT (θ2)

(3) SatT EXθ = {|ψ〉 ∈ S : R(|ψ〉) ∩ SatT (θ) 6= ∅};

(4) SatT AFθ = FixedPoint[λX.{R−1X}
⋃
X,SatT (θ)];

(5) SatT (E[θ1Uθ2]) = FixedPoint[λX.{R−1X
⋂
SatT (θ1)}, SatT (θ2)];

where R−1X = {ψ ∈ S | ∃ψ′ ∈ X, ρ, ρ′ s.t. (|ψ〉ρ, |ψ′〉ρ′) ∈ R}.

Clearly, quantum Kripke structures require, in general, exponential space
(over the number of qubits) to simulate with classical computers due to the
exponential number of possible state superpositions. For this reason, the model
checking algorithm takes exponential time on the number of qubits, but it is
polynomial on the size of the transition system and the complexity of the for-
mula.

Theorem 3.11 Assuming that all basic arithmetical operations take unit time,
the algorithm in Table 10 takes O(|θ|2.|ST |2.2n) time.

Proof: The propositional CTL model-checking algorithm takes O(|θ|.|ST |2) (see
[13] for a detailed analysis). So, if we consider each quantum atom to be a propo-
sitional symbol, the time complexity of the algorithm would be O(|θ|.|ST |2).
Finally, since checking if a quantum atom is satisfied by a quantum state takes
O(|θ|.2n) (c.f. Theorem 2.3) we derive the desired upper bound. Recall that we
consider all arithmetic computations to be O(1) by using floating point repre-
sentation for the real numbers. �

18

4 Quantum Linear Time Logic

4.1 Linear Time Logic

Syntax. Like in the case of CTL, we assume that there is a countable set of
propositional symbols Ξ. Assuming the set Ξ, the formulas of Linear Time Logic
(LTL) are given in BNF notation as

θ :=⊥⊥ 8 p 8 (θ A θ) 8 Xθ 8 θUθ

where p ∈ Ξ.

Semantics. The semantics of the temporal logic LTL is also given using a
Kripke structure. The semantics of LTL is defined in terms of a Kripke structure
K and a computation path π = s1, s2 . . . Given that the computation path
is fixed, the LTL modalities contain only the symbols for temporal reasoning:
X stands for next; and U for until. The remaining temporal modalities, F
and G, are easily obtained by abbreviation: (Fp) for ((� ⊥⊥)Up); and (Gp) for
(�F(� p)).

In terms of expressiveness, LTL and CTL are incomparable. For instance, the
LTL formula FGp has no CTL translation. Likewise, the CTL formula AGEFp has
no LTL counterpart. LTL has the advantage that it is able to express fairness
constrains, which are important in reasoning about distributed/parallel systems.
On the other hand, the complexity of model-checking LTL formulas is PSPACE-
complete [26], whereas CTL formulas can be checked in polynomial time [13].

Given a Kripke structure K, a computation path π = s1 . . . of the Kripke
structure, and a LTL formula θ, the formal semantics is defined inductively in
terms of a relation K, π θ and is given in Table 11. We denote by πi the i-th
suffix of π, that is, the path si, si+1 . . .

Table 11: Semantics of LTL

K, π 6LTL⊥⊥;

K, π LTL p iff p ∈ L(s1) with π = s1, . . . ;

K, π LTL (θ1 A θ2) iff K, π 6LTL θ1 or K, π LTL θ2;

K, π LTL Xθ iff K, π2 LTL θ;

K, s LTL (θ1Uθ2) iff there is some i ≥ 1 such that K, πi LTL θ2 and
K, πj LTL θ1 for 1 ≤ j < i.

19

Axiomatization. The temporal logic LTL enjoys a sound and complete ax-
iomatization. The proof systemHCLTL of LTL is given in Table 12. The following
result is proved in [18].

Theorem 4.1 The proof system HCLTL is sound and weakly complete with re-
spect to Kripke structures.

Table 12: HCLTL : complete calculus for LTL

Axioms
[Taut] All propositional tautologies with propositional symbols substituted

by LTL formulas;

[X1] `LTL (�Xθ1)≡ (X� θ1)
[X2] `LTL (X(θ1 A θ2))A (Xθ1 A Xθ2)
[G] `LTL (Gθ1)A (θ1 u (XGθ1))
[U1] `LTL (θ1Uθ2)A (Fθ2)
[U2] `LTL (θ1Uθ2)≡ (θ2 t (θ1 u X(θ1Uθ2)))

Inference rules
[MP] θ1, (θ1 A θ2) `LTL θ2
[XGen] θ1 `LTL (Xθ1)
[Ind] (θ1 A θ2), (θ1 A (Xθ1)) `LTL (θ1 A (Gθ2))

4.2 QLTL: Syntax and Semantics

Syntax. Similarly to QCTL, the formulas of Quantum Linear Time Logic
(QLTL) are obtained by enriching the quantum formulas with LTL modalities
and are depicted in Table 13.

Table 13: Language of QLTL

QLTL formulas

θ := γ 8 (θ A θ) 8 (Xθ) 8 (θUθ) where γ is a dEQPL formula.

The temporal modalities Fθ and Gθ are introduced as abbreviations.

20

Semantics. We now provide a semantics for QLTL based on quantum Kripke
structures. A computation path is a infinite sequence π = |ψ1〉ρ1, |ψ2〉ρ2 . . . such
that for any i ≥ 1, we have (|ψi〉ρi, |ψi+1〉ρ2) ∈ R. Given a quantum Kripke
structure T = (S,R), a computational path π in T and a QLTL formula θ,
the semantics of QLTL is defined in terms of a relation T , π QLTL γ given in
Table 14.

Table 14: Semantics of QLTL

T , π QLTL γ iff |ψ1〉ρ1 dEQPL γ;

T , π QLTL (θ1 A θ2) iff T , π 6QLTL θ1 or T , π QLTL θ2;

T , π QLTL (Xθ) iff T , π2 QLTL θ;

T , π QLTL (θ1Uθ2) iff there is some i ≥ 1 such that T , πi QLTL θ2 and
T , πj QLTL θ1 for 1 ≤ j < i.

A quantum Kripke structure T is said to satisfy a QLTL formula θ, which
we denote by T QLTL θ, if T , π QLTL θ for all computational paths π in T .

4.3 Axiomatization

Like for the case of QCTL, we are able to provide a weakly complete axioma-
tization of QLTL capitalizing on the complete LTL calculus HCCTL is given in
Table15.

Table 15: HCQLTL calculus for QLTL

Axioms

[QTeo] All dEQPL theorems;
[LTLTaut] All LTL tautologies with propositional symbols substituted

by QLTL formulas;
Inference rules

[QMP] θ1, (θ1 A θ2) `QCTL θ2
[Gen] θ1 `LTL Gθ1

It is straightforward to check the soundness of the calculus, for this reason

21

we omit here the lengthy exercise of verifying that all axioms and inference rules
are sound.

Theorem 4.2 (Soundness) The axiomatization HCQLTL is sound.

The completeness of the calculus is established by the same technique of
QCTL, that is, by translating quantum atoms into propositional symbols. Con-
sider the subset of atomic dEQPL formulas qAtom (i.e., the set constituted by
comparison formulas (t1 ≤ t2)). Let Ξ be the countable set of propositional sym-
bols used to write LTL formulas. Given a fixed bijective map λ : qAtom → Ξ
(that translates each global atom to a LTL propositional symbol) we can trans-
late each dEQPL formula θ to a LTL formula λ(θ) by extending inductively λ on
the structure of the formula θ (and preserving all connectives). For simplicity,
we denote λ(θ) just by θ̃. The map λ can also be used to translate a quantum
Kripke structure T = (S,R) to the LTL model T̃ = (S,R,L), where p ∈ L(|ψ〉ρ)
if |ψ〉ρ dEQPL λ

−1(p).

Lemma 4.3 Let T be an quantum Kripke structure. Then,

T , π QLTL θ iff T̃ , π LTL θ̃.

Proof: The proof follows by straightforward induction on the structure of θ.

• Base: If θ is ⊥⊥ or (t1 ≤ t2) then T , π QLTL θ iff |ψ1〉ρ1 dEQPL

θ iff T̃ , π LTL θ̃ by definition.

• Step: For the sake of simplicity, we just consider the case when θ is Xθ1.
The other cases can be similarly handled.

Now, T , π QLTL Xθ1 iff T , π2 QLTL θ1 iff, by induction, T̃ , π2 LTL θ̃1
iff T̃ , π LTL Xθ̃1 iff, by definition, T̃ , π LTL θ̃.

�

QLTL incorporates both LTL and dEQPL reasoning.

Lemma 4.4 For any QLTL formula θ

• `LTL θ̃ then `QLTL θ;

• `dEQPL γ then `QLTL γ if γ is a dEQPL formula.

Proof: Follows directly from axioms LTLTaut and QTeo. �

If one restricts just to dEQPL formulas, QLTL reasoning coincides with that of
dEQPL.

22

Lemma 4.5 (Conservative Extension) Let γ be an dEQPL formula. Then

`QLTL γ iff `dEQPL γ.

Proof: Thanks to Lemma 4.4 it suffices to show that if `QLTL γ then `dEQPL γ.
Suppose `QLTL γ. Then QLTL γ by soundness of QLTL. Let |ψ〉 be an arbitrary
unit vector inHqB and ρ an arbitrary assignment. Consider the quantum Kripke
structure T = ({|ψ〉ρ}, {(|ψ〉ρ, |ψ〉ρ)}) and π its unique path. We have that
T , π QLTL γ. By definition, we get |ψ〉ρ dEQPL γ. Since ψ and ρ are arbitrary,
we get dEQPL γ. By completeness of dEQPL, we get `dEQPL γ. �

The following lemma is crucial to the proof of completeness.

Lemma 4.6 Let θ be an QLTL formula such that QLTL θ. Then there is a
dEQPL formula γθ such that

`QLTL γθ and LTL (Gγ̃θ A θ̃).

Proof: Let at = {γ1, . . . , γk} be the set of atomic dEQPL formulas that are
atoms of θ. Now for each k-vector i ∈ {0, 1}k, consider the dEQPL formula

δi =
kl

j=1

ϕj where ϕj =
{

γj if j-th bit of i is 1
(� γj) otherwise

Let K ⊆ {0, 1}k be such that δi is a dEQPL consistent formula and let γθ =⊔
i∈K δi. Clearly, `dEQPL γθ and therefore by Lemma 4.5, `QLTL γθ. Also please

note for any quantum state |ψ〉 and assignment ρ, |ψ〉ρ δi for exactly one
i ∈ K.

We shall prove LTL (Gγ̃θAθ̃) by contradiction. Suppose that K = (S,R, L) is
a CTL model such that K, π 6LTL (Gγ̃θA θ̃) for some s ∈ S. Then K, π LTL Gγ̃θ
and K, π 6LTL θ̃. Let S′ = {s′ ∈ S : s′ occurs in π}.

Since K, π LTL Gγ̃θ, we get that K, π LTL γ̃θ. Hence, there is some is1 ∈ K
such that K, π LTL δ̃is1 . Since δis1 is consistent dEQPL formula, there is a unit
vector |ψs1〉 and an assignment ρs1 such that |ψs1〉ρs1 dEQPL δis1 . For each
sj fix on such |ψsj 〉 and ρsj ensuring that ρsj 6= ρsk

whenever j 6= k (this
can be ensured by modifying the assignments on real variables not occurring
in θ). Consider the set Sθ = {(|ψs′〉, ρs′) : s′ ∈ S′} and the QLTL model
T = (Sθ, Rθ), where (|ψs′〉ρs′ , |ψs′′〉ρs′′) ∈ Rθ iff (s′, s′′) ∈ R. Denote by π′

the path |ψs1〉ρs1 , |ψs2〉ρs2 . . . Using the fact that K, π 6 θ̃, it follows from
Lemma 4.3 T , π′ 6 θ which contradicts `QLTL γθ. �

We are now able to show the completeness of HCQLTL.

Theorem 4.7 The axiomatization HCQLTL is weakly complete.

23

Proof: Let QLTL θ be a valid QLTL formula. With γθ as in Lemma 4.6 we
have that LTL (Gγ̃θ A θ̃). Using LTL completeness we have `LTL (Gγ̃θ A θ̃).
Now, from Lemma 4.4 we get `QLTL (Gγθ A θ).

Hence, we are able do the following derivation in QLTL:

1) `QLTL γθ Tautology
2) `QLTL (Gγθ) Rule Gen
3) `QLTL (Gγθ A θ) Lemma 4.6,Lemma 4.4
4) `QLTL θ Modus Ponens 2, 3

Therefore, HCQLTL is complete. �

4.4 SAT problem

The SAT algorithm for QLTL is obtained similarly to the QCTL SAT algorithm.
For the sake of completeness we will present the details herein. Let θ be the
QLTL formula that we want to test for satisfiability and at = {γ1, . . . , γk} be
the set of atomic dEQPL formulas that are atoms of θ. Now for each k-vector
i ∈ {0, 1}k, consider the dEQPL formula

δi =
kl

j=1

ϕj where ϕj =
{

γj if j-th bit of i is 1
(� γj) otherwise

Let K ⊆ {0, 1}k be such that δi is a dEQPL consistent formula and let γθ =⊔
i∈K δi. Observe that dEQPL γθ and that for each |ψ〉, ρ there exists a unique

i ∈ K such that |ψ〉, ρ dEQPL δi. Given a LTL model K = (S,R,L) of (G(γ̃θ)u θ̃)
and a path π starting at s ∈ S we denote by (|ψs〉, ρs) a dEQPL model that
satisfies δi whenever K, π CTL δ̃i. Moreover, choose (|ψs〉, ρs) 6= (|ψs′〉, ρs′)
whenever s 6= s′ (this can be done just by changing the assignments of variables
not occurring in θ). We denote by TK the quantum Kripke structure (SK, RK)
where SK = {(|ψs〉, ρs) : s ∈ S} and ((|ψs〉, ρs), (|ψs′〉, ρs′)) ∈ RK iff (s, s′) ∈
R. Finally, given a computation path π = s1, . . . in K we denote by πK the
computation path (|ψs1〉, ρs1), . . . in TK.

The following theorem is the kernel of the QLTL SAT algorithm.

Theorem 4.8 Let θ be a QLTL formula. Then, (G(γ̃θ) u θ̃) is LTL-satisfiable
iff θ is QLTL-satisfiable. Moreover, K, π CTL (G(γ̃θ) u θ̃) iff TK, πK QLTL θ.

Proof: ⇐) Follows directly from Lemma 4.3 and from the fact that dEQPL γθ.
Concerning the second assertion, it follows by noticing that T̃K is equal to K up
to relabeling of states.

⇒) For this direction, it is sufficient to show the second assertion. Since T̃K is
equal to K up to relabeling of states, by Lemma 4.3 we have that TK, πK QLTL

G(γθ) u θ and therefore TK, πK QLTL θ. �

We are now able to show the SAT algorithm for QLTL.

24

Table 16: Algorithm to determine Sat(θ)

1) Generate δi for all i ∈ 2k where k is number of atomic dEQPL formulas
that are atoms of θ.

2) Using the SAT algorithm for dEQPL compute the set of indexes K
such that i ∈ K iff δi is a consistent dEQPL formula,
in this case store the dEQPL model output by the SAT algorithm
and call it (|ψi〉, ρi).

3) Find a model K for (G(γ̃θ) u θ̃) using the LTL SAT algorithm.

4) Construct TK from the models stored in 2).

4.5 Model-checking problem

In contrast to the case of QCTL, we will give a model-checking algorithm for
QLTL that uses directly the PSPACE model-checking algorithm for LTL. This
make the problem more or less trivial thanks to Lemma 4.3. Given the QLTL
formula θ and a quantum Kripke structure T , we start by transforming T into
a classical Kripke structure T̃ by checking whether the quantum states in T
satisfy or not the quantum atoms in θ. Then, it remains to model check T̃
against θ̃. Clearly, the model-checking procedure is still in PSPACE, since the
translation of T into T̃ can be done in polynomial space. We formalize the
algorithm in Table 17.

Table 17: Algorithm to determine SatT (θ)

1) Construct T̃ by checking whether the quantum states in T
satisfy or not the quantum atoms in θ.

2) Model-check T̃ against θ̃ using a LTL model-checker.

5 Conclusions

We presented temporal quantum logics combining the quantum state logic given
in [12] with the computational tree logic CTL and linear temporal logic LTL. We
were able to obtain a complete calculus, and provide a SAT and model-checking
algorithm.

The main idea behind the temporalization of dEQPL was to replace the
propositional symbols of the temporal logics by the atomic formulas of dEQPL.
This approach is expressive enough to reason about quantum protocols (see

25

for instance [5]) and has the great advantage that is endowed with a complete
Hilbert calculus.

On the other hand, the SAT algorithms of the temporal quantum logics
have prohibitive complexity. For the case of QCTL, we need to apply the CTL
Exptime SAT algorithm to a CTL formula that has grown exponentially, obtain-
ing therefore a double-exponential time upper-bound. In the case of LTL, from
the PSPACE SAT algorithm of LTL, we obtain a EXPSPACE upper-bound.
Moreover, in both cases we also need to apply an exponential number of times
the SAT algorithm for EPPL, for which we gave an double-exponential time
upper-bound over the number of qubits. For all these reasons, the SAT results
presented here have more a theoretical value than a practical one. It is possible
to find better upper-bounds for the algorithms by exploring the particulari-
ties of quantum Kripke structures, but the authors believe that the improved
algorithms, alone, would never be usable in practice.

Concerning model checking, the results are more positive. Actually, if one
considers floating-point representation, the complexity upper-bounds obtained
for QCTL and QLTL are precisely the same of those for CTL and LTL, respec-
tively. Thus, the model-checking algorithms can be used in practice.

There is still much work to be done along this research line. From the state
logic point of view, an interesting improvement would be to consider density
operators instead of unit vectors, thus giving a global phase independent se-
mantics. In what concerns temporalization, it would be interesting to have a
quantum version of the full branching time logic CTL∗ and of the µ-calculus.
Finally, and from the semantics point of view, it would be interesting to have a
more refined notion of quantum Kripke structure, one that would mimic closer
the evolution of a quantum system.

Acknowledgments

This work was partially supported by FCT and EU FEDER, namely via CLC
POCTI (Research Unit 1-601), QuantLog project POCI/MAT/55796/2004, SQIG
- IT, QSEC project PTDC/EIA/67661/2006 and KLOG project PTDC/MAT/-
68723/2006.

References

[1] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols.
In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer
Science (LICS 2004), pages 415–425. IEEE Computer Science Press, 2004.

[2] T. Altenkirch and J. Grattage. A functional quantum programming lan-
guage. In Proceedings of the 20th Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 249–258. IEEE Computer Society, 2005.

26

[3] A. Baltag and S. Smets. LQP: The dynamic logic of quantum information.
Mathematical Structures in Computer Science, 2006. To appear.

[4] P. Baltazar, R. Chadha, and P. Mateus. Quantum computation tree logic –
model checking and complete calculus. International Journal of Quantum
Information, 6(2):281–302, 2008.

[5] P. Baltazar, R. Chadha, P. Mateus, and A. Sernadas. Towards model-
checking quantum security protocols. In P. Dini et al, editor, Proceedings of
the First Workshop on Quantum Security: QSec’07, page 0014. IEEE Press,
2007. Joint e-proceedings with Quantum, Nano, and Micro Technologies:
ICQNM ’07. 6 pages.

[6] P. Baltazar and P. Mateus. Temporalization of probabilistic propositional
logic. In Logic Foundations of Computer Science 2009, Lecture Notes in
Computer Science. Springer, In print.

[7] S. Basu, R. Pollack, and R. Marie-Françoise. Algorithms in Real Algebraic
Geometry. Springer, 2003.

[8] C. Caleiro, P. Mateus, A. Sernadas, and C. Sernadas. Quantum institu-
tions. In K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, editors, Algebra,
Meaning, and Computation – Essays Dedicated to Joseph A. Goguen on the
Occasion of His 65th Birthday, volume 4060 of Lecture Notes in Computer
Science, pages 50–64. Springer-Verlag, 2006.

[9] C. Caleiro, C. Sernadas, and A. Sernadas. Parameterisation of logics. In
J. Fiadeiro, editor, Recent Trends in Algebraic Development Techniques -
Selected Papers, volume 1589 of Lecture Notes in Computer Science, pages
48–62. Springer-Verlag, 1999.

[10] R. Chadha, L. Cruz-Filipe, P. Mateus, and A. Sernadas. Reasoning about
probabilistic sequential programs. Theoretical Computer Science, 379(1-
2):142–165, 2007.

[11] R. Chadha, P. Mateus, and A. Sernadas. Reasoning about quantum imper-
ative programs. Electronic Notes in Theoretical Computer Science, 158:19–
40, 2006. Invited talk at the Twenty-second Conference on the Mathemat-
ical Foundations of Programming Semantics.

[12] R. Chadha, P. Mateus, A. Sernadas, and C. Sernadas. Extending classical
logic for reasoning about quantum systems. In D. Gabbay K. Engesser and
D. Lehmann, editors, Handbook of Quantum Logic and Quantum Struc-
tures: Quantum Logic, pages 325–372. Elsevier, 2009.

[13] E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logics. In Proceeding of the
Workshop on Logics of Programs, volume 131 of LNCS. Springer-Verlag,
1981.

27

[14] E. M. Clarke and J. M. Wing. Formal methods: state of the art and future
directions. ACM Comput. Surv., 28(4):626–643, 1996.

[15] Edmund M. Clarke and Bernd-Holger Schlingloff. Model checking. In
Handbook of Automated Reasoning, pages 1635–1790. 2001.

[16] E. D’Hondt and P. Panangaden. Quantum weakest preconditions. In Peter
Selinger, editor, Proceedings of the 2nd International Workshop on Quan-
tum Programming Languages, number 33 in TUCS General Publications,
pages 75–90. Turku Centre for Computer Science, 2004.

[17] R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning about
probabilities. Information and Computation, 87(1-2):78–128, 1990.

[18] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The temporal analysis of fair-
ness. In Proceedings 7th Symp. on Principles of Programming Languages,
POPL’80, pages 163–173. ACM, 1980.

[19] E. Knill. Conventions for quantum pseudocode. Technical Report LAUR-
96-2724, Los Alamos National Laboratory, 1996.

[20] P. Mateus and A. Sernadas. Weakly complete axiomatization of exogenous
quantum propositional logic. Information and Computation, 204(5):771–
794, 2006.

[21] P. Mateus, A. Sernadas, and C. Sernadas. Exogenous semantics approach
to enriching logics. In G. Sica, editor, Essays on the Foundations of Mathe-
matics and Logic, volume 1 of Advanced Studies in Mathematics and Logic,
pages 165–194. Polimetrica, 2005.

[22] C. Meadows. Formal methods for cryptographic protocol analysis: emerg-
ing issues and trends. IEEE Journal on Selected Areas in Communications,
21(1):44– 54, 2003.

[23] P. Naur. Revised report on the algorithmic language Algol 60. The Com-
puter Journal, 5:349–367, 1963.

[24] J. W. Sanders and P. Zuliani. Quantum programming. In Mathematics of
Program Construction, volume 1837 of Lecture Notes in Computer Science,
pages 80–99. Springer, 2000.

[25] P. Selinger and B. Valiron. A lambda calculus for quantum computation
with classical control. In Proceedings of the 7th International Conference on
Typed Lambda Calculi and Applications (TLCA), volume 3461 of Lecture
Notes in Computer Science, pages 354–368. Springer, 2005.

[26] A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logics. Journal of ACM, 32(3):733–749, 1985.

28

[27] R. van der Meyden and M. Patra. Knowledge in quantum systems. In
M. Tennenholtz, editor, Theoretical Aspects of Rationality and Knowledge,
pages 104–117. ACM, 2003.

[28] R. van der Meyden and M. Patra. A logic for probability in quantum
systems. In M. Baaz and J. A. Makowsky, editors, Computer Science
Logic, volume 2803 of Lecture Notes in Computer Science, pages 427–440.
Springer-Verlag, 2003.

29

