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Abstract

A finitary axiomatization for EQPL (exogenous quantum propositional logic) is
presented. The axiomatization is shown to be weakly complete relative to an oracle
for analytical reasoning. The proof is carried out using a non trivial extension of the
Fagin-Halpern-Megiddo technique together with three Henkin style completions.

1 Introduction

A new logic (EQPL – exogenous quantum propositional logic) was proposed in
[1,2] for modeling and reasoning about quantum systems, embodying all that
is stated in the postulates of quantum physics (as presented, for instance, in
[3,4]). The logic was designed from the semantics upwards, starting with the
key idea of adopting superpositions of classical models as the models of the
proposed quantum logic.

This novel approach to quantum reasoning is quite different from the tradi-
tional approach [5,6] to the problem that, as initially proposed by Birkhoff and
von Neumann [7]. That approach focuses on the lattice of closed subspaces
of a Hilbert space. Our exogenous semantics approach has the advantage of
closely guiding the design of the language around the underlying concepts of
quantum physics while keeping the classical connectives and was inspired by
the possible worlds approach originally proposed by Kripke [8] for modal logic.
It is also akin to the society semantics introduced in [9] for many-valued logic
and to the possible translations semantics proposed in [10] for paraconsistent
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logic. The possible worlds approach was also used in [11–16] for probabilistic
logic. Our semantics of quantum logic, although inspired by modal logic, is
also completely different from the alternative Kripke semantics given to tra-
ditional quantum logics (as first proposed in [17]) that are also closely related
to the lattice-oriented operations. For other examples of logics based on the
exogenous semantics approach see [18].

The mainstream quantum logics replace the classical connectives by new con-
nectives inspired by the lattice-oriented operations. Contrary to that approach,
by adopting superpositions of classical models as the models of the quantum
logic, we are led to a natural extension of the classical language containing
the classical connectives (like modal languages are extensions of the classical
language).

Furthermore, the new logic allows quantitative reasoning about amplitudes
and probabilities, being in this respect much closer to the possible worlds logics
for probability reasoning than to the traditional quantum logics. For other
developments in this direction, also motivated by applications in quantum
computation and information, see [19,20].

Herein, we present a finitary Hilbert calculus for EQPL and show that it is
weakly complete relative to an oracle for analytical reasoning. Strong com-
pleteness is out of question since entailment is not compact. The proof of the
weak completeness result was carried out using a non-trivial extension of the
technique proposed by Fagin, Halpern and Megiddo for simple probabilistic
logics, together with three Henkin completions.

Although EQPL only provides the means for propositional, quantitative rea-
soning about quantum states, it is a mandatory step before further develop-
ments towards calculi for reasoning about the evolution of quantum systems
(as already outlined in [2]). The weak completeness result established here is
interesting from the theoretical point of view and shows that the proposed
language fits the proposed exogenous semantics. But, for practical applica-
tions in quantum system specification and verification, it seems better to go
for model checking techniques.

Such future developments of our approach to quantum reasoning are briefly
discussed in Section 6 of the paper. In Section 2, we briefly motivate the EQPL
semantic concepts and key design ideas, directly based on the postulates of
quantum physics. In Section 3, we present the EQPL language and semantics
with some examples. In Section 4, we introduce the axioms and rules of EQPL.
Section 5 is fully dedicated to the proof of the main result (weak completeness
of EQPL).
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2 Key design ideas

Starting from the postulates of quantum mechanics (closely following [3]), we
present the key ideas that guided the design of EQPL (together with a brief
review of the relevant concepts and results of operator theory).

Postulate 1: Every isolated quantum system is described by a Hilbert space.
The states of the quantum system are the unit vectors of the corresponding
Hilbert space.

Recall that a Hilbert space is a complete inner product space over C (the field
of complex numbers). For example, the states of an isolated qubit are vectors of
the form z0|0〉+z1|1〉 where z0, z1 ∈ C and |z0|2+|z1|2 = 1. In other words, they
are unit vectors in the (unique up to isomorphism) Hilbert space of dimension
two. Concerning EQPL, it is natural to represent each qubit by a propositional
symbol (more appropriately called a qubit symbol). Furthermore, each qubit
state (better called qubit valuation) should be a superposition of the two
possible classical valuations.

Postulate 2: The Hilbert space of a quantum system composed of a finite
number of independent components is the tensor product of the component
Hilbert spaces.

For example, z00|00〉 + z01|01〉 + z10|10〉 + z11|11〉, where z00, z10, z01, z11 ∈ C
and |z00|2 + |z01|2 + |z10|2 + |z11|2 = 1, is the general form of the states of an
isolated pair of qubits. Returning to the design of EQPL, we conclude that we
need two qubit symbols for working with two qubits. Moreover, in this case,
a quantum valuation should be a superposition of the four possible classical
valuations.

It is easy to generalize this idea to a finite set of qubits. However, as usual
in logic, we would like to work with a fixed, denumerable alphabet of qubit
symbols:

qB = {qbk : k ∈ N}.
But, then, what should be the Hilbert space for qB? The answer, a key ingre-
dient of the envisaged EQPL semantics, is the Hilbert space H = H(2qB) that
we define by free construction from the set 2qB of all classical valuations over
qB. This free construction is as follows.

Definition 2.1 Given an arbitrary set V , the Hilbert space H(V ) is as fol-
lows:

• Each element of H is a map |ψ〉 : V → C such that:
· supp(|ψ〉) = {v : |ψ〉(v) 6= 0} is countable;
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· ∑

v∈V

||ψ〉(v)|2 =
∑

v∈supp(|ψ〉)
||ψ〉(v)|2 < ∞.

• |ψ1〉+ |ψ2〉 = λv. |ψ1〉(v) + |ψ2〉(v).
• α|ψ〉 = λv. α|ψ〉(v).
• 〈ψ1|ψ2〉 =

∑

v∈V

|ψ1〉(v) |ψ2〉(v). .

The inner product induces the norm |||ψ〉|| =
√
〈ψ|ψ〉 and, so, the distance

d(|ψ1〉, |ψ2〉) = |||ψ1〉 − |ψ2〉||. Since H(V ) is complete for this distance, H(V )
is a Hilbert space 1 .

Given v ∈ 2qB, |v〉 is the vector of H defined as follows: |v〉(v) = 1 and
|v〉(v′) = 0 for every v′ 6= v. Observe that {|v〉 : v ∈ V } is an orthonormal
basis of H. This basis will play an important role in the semantics of EQPL
and for this reason we refer to it as being the logical basis of H.

The unit vectors of H are the envisaged quantum valuations over qB. Given
a quantum valuation |ψ〉 and a classical valuation v, the inner product 〈v|ψ〉
is said to be the logical amplitude of |ψ〉 for v. As we shall see, these logical
amplitudes are at the core of EQPL.

Observe that it is useful to be able to work with a constrained set V of
admissible classical valuations. That is, it is sometimes convenient to work with
V ( 2qb. Indeed, we may want to impose classical constraints on the quantum
valuations. For example, we may want to impose (qb1 ∨ qb2), constraining
the quantum system to states giving amplitude zero to every valuation not
satisfying this classical formula. Therefore, concerning the semantics of EQPL,
we conclude that a quantum interpretation structure w should contain at least
a set V ⊆ 2qB (the set of admissible classical valuations) and a unit vector |ψ〉
in H (the quantum valuation or the quantum state) such that 〈v|ψ〉 = 0 for
every v 6∈ V .

Since we start with the semantics for the whole system (composed of the de-
numerable set qB of qubits), what is the role of Postulate 2? More precisely,
how can we identify an independent subsystem? The solution is “tensor fac-
torization” that we proceed to explain.

Given S ⊆ qB and V ⊆ 2qB, we introduce V[S] = {v|S : v ∈ V } and V]S[ =
{v|qB\S : v ∈ V }. We also need H[S] = H((2qB)[S]) and H]S[ = H((2qB)]S[).
Then, H(V ) is a subspace of H(2qB); H = H[S]⊗H]S[; and H(V ) ⊆ H(V[S])⊗
H(V]S[) where equality does not hold in general.

Given a unit |ψ〉 ∈ H, if there are unit vectors |ψ′〉 ∈ H[S] and |ψ′′〉 ∈ H]S[

such that |ψ〉 = |ψ′〉 ⊗ |ψ′′〉 then we say that, at state |ψ〉, the qubits in S are

1 Isomorphic to L2(V,#) where # is the counting measure over V .
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not entangled with those outside S. In this situation, the state |ψ〉 is said to be
S-factorizable. Furthermore, a vector |ψ〉 ∈ H[S] is said to be non-factorizable
if there is no proper subset S ′ of S such that there are unit |ψ′〉 ∈ H[S′] and
unit |ψ′′〉 ∈ H[S\S′] such that |ψ〉 = |ψ′〉 ⊗ |ψ′′〉.

Having in mind these semantic notions, given a finite set F of qubit symbols,
we conclude that the language of EQPL should provide the means for writing
assertions about:

• non-entanglement: “the qubits in F are not entangled with the other qubits”
(that is, the quantum state at hand is F -factorizable); this assertion is made,
as we shall see, with the EQPL formula [F ];

• logical amplitudes: “the amplitude of a classical valuation over F is equal
to a complex number”; that is, we need terms denoting arbitrary complex
numbers and terms denoting logical amplitudes; more precisely, as we shall
see, when the quantum state is F -factorizable, the EQPL term |>〉FA de-
notes the amplitude of the (unique) classical valuation vF

A over target F
that satisfies the qubits in A ⊆ F and does not satisfy the qubits in F \A.

Other useful quantum constructions will be introduced as abbreviations, in-
cluding inter alia:

• [G|F ] – formula stating that the quantum state is G-factorizable if it is
F -factorizable.

• |α〉FA – term roughly denoting the amplitude of vF
A if this classical valuation

satisfies α, and equal to zero otherwise.
• ([F ]3 α : u) – formula stating that the quantum state is F -factorizable and

that there is a classical valuation v over F in the F -component of the quan-
tum state satisfying α such that |v〉[F ] has non-null amplitude u.

Unfortunately, the amplitude terms are not always meaningful on a given
pair (V, |ψ〉). Namely, they require that the target qubits are not entangled
with the others. Therefore, we need more information in the envisaged notion
of quantum interpretation structure. But, before we are ready to give the
definition, we need some additional notation about partitions of qB. Given a
partition S of qB, let ∪S be the set of all unions of elements of S. That is,
∪S = {⋃S∈R S : R ⊆ S}.

Definition 2.2 A quantum interpretation structure is a tuple

w = (V,S, |ψ〉, ν)

where:

• V is a nonempty subset of 2qB.
• S is a finite partition of qB.
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• |ψ〉 = {|ψ〉[R]}R∈∪S where each |ψ〉[R] is a unit vector of H[R] and such that:

(1) |ψ〉[∅] = ei0;
(2) |ψ〉[R] = ⊗

S ∈ S
S ⊆ R

|ψ〉[S] for each non-empty R ∈ ∪S;

(3) |ψ〉[S] is non-factorizable for each S ∈ S;
(4) 〈v|ψ〉[qB] = 0 if v 6∈ V .

• ν : {νFA}F⊆finqB,A⊆F where each νFA ∈ C and νFA = 〈vF
A |ψ〉[F ] if F ∈ ∪S. .

In such a structure, we recognize the key elements V (the set of admissi-
ble classical valuations) and |ψ〉[qB] (the quantum state of the whole system).
The additional information is the factorization of |ψ〉[qB] and the map ν that
provides the means for interpreting amplitude terms even when they are phys-
ically undefined. In this way we avoided the need to work with partial inter-
pretation structures. Observe also that, although we work in H = H(2qB),
clause 4 in the definition above imposes that (up to isomorphism) we only
consider quantum states in H(V ).

As we just saw, Postulates 1-2 were sufficient to guide us in the task of setting
up the notion of quantum interpretation structure over which we shall be able
to define the semantics of EQPL. Now, we turn our attention to the postulates
concerning measurements of physical quantities.

Postulate 3: Every measurable physical quantity of an isolated quantum sys-
tem is described by an observable acting on its Hilbert space.

Recall that an observable is a Hermitian operator such that the direct sum
of its eigensubspaces coincides with the underlying Hilbert space. Since the
operator is Hermitian, its spectrum Ω (the set of its eigenvalues) is a subset
of R. For each e ∈ Ω, we denote the corresponding eigensubspace by Ee and
the projector onto Ee by Pe.

Postulate 4: The possible outcomes of the measurement of a physical quantity
are the eigenvalues of the corresponding observable. When the physical quan-
tity is measured using observable A on a system in a state |ψ〉, the resulting
outcomes are ruled by the probability space PA

|ψ〉 = (Ω,B|Ω, µA
|ψ〉) where in the

case of a countable spectrum

µA
|ψ〉 = λB.

∑

e∈Ω

χB(e)‖Pe|ψ〉‖2 .

For the applications we have in mind in quantum computation and infor-
mation, only logical projective measurements over a finite set of qubits are
relevant. Given a quantum structure w = (V,S, |ψ〉, ν), for each finite set F of
qubits, such measurements are defined using some observable AF on H such
that:
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• The spectrum of AF is equipotent 2 to V[F ].
• For each v′ ∈ V[F ], the corresponding eigenspace Ev′ is generated by all

vectors of the form |v′〉⊗|v′′〉 inH. Thus, each projector Pv′ is |v′〉〈v′|⊗1H]F [
.

For example, if the system is in the particular state

α00ω1|00ω1〉+ α01ω2|01ω2〉+ α01ω3|01ω3〉+ α10ω4|10ω4〉

then the probability of observing the first two qubits qb0, qb1 in the classical
valuation 01 is given by |α01ω2|2 + |α01ω3|2.

In general, the stochastic result of making a logical projective measurement of
a finite set F of qubits of the system at w = (V,S, |ψ〉, ν) is fully described by
the finite probability space PF

w = (V[F ], ℘V[F ], µ
F
w) where, for each U ⊆ V[F ]:

µF
w(U) =

∑

v′∈U

∑

v′′∈V]F [

|〈(v′ ⊕ v′′)|ψ〉|2 .

Here, v′⊕v′′ denotes the (unique) classical valuation over all qubits determined
by v′ and v′′.

Thus, we are able to say what is the probability in a given quantum state
of observing a classical formula α as being true. That is, given a quantum
structure w, we have the means for interpreting EQPL terms of the form (

∫
α)

that denote such probabilities.

Finally, although irrelevant to the design of EQPL, we mention en passant
Postulate 5 that rules how quantum systems evolve.

Postulate 5: Excluding measurements, the evolution of a quantum system is
described by unitary transformations.

This last postulate becomes relevant only when designing a dynamical exten-
sion of EQPL (see [2]).

2 The chosen bijection depends on how the qubits are physically implemented. For
example, when implementing a qubit using the spin of an electron, we may impose
that spin +1

2 corresponds to true and spin −1
2 corresponds to false. But, as we shall

see, the semantics of EQPL does not depend on the choice of the bijection, as long
as one exists. The same happens in the case of classical logic – its semantics does
not depend on how bits are implemented. The details of which voltages correspond
to which truth values are irrelevant.
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3 Language and semantics

The language of EQPL is composed of classical formulae, real terms, complex
terms and quantum formulae that we introduce using an abstract version of
the BNF notation [21] for a compact presentation of inductive definitions.

Classical formulae:

α := qb 8⊥ 8 (α⇒ α)

As usual, we introduce through abbreviations other classical connectives like
¬,∧,∨,⇔, as well as >. For instance, (¬α) is an abbreviation of (α ⇒ ⊥)
and > stands for (¬⊥). We denote the set of qubit symbols occurring in α by
qB(α). We say that a classical formula α is over a set S of qubit symbols if
qB(α) ⊆ S.

For building terms, it is convenient to use real variables X = {xk : k ∈ N}
and complex variables Z = {zk : k ∈ N}. Real and complex terms (with the
provisos computable real constant 3 r, finite F ⊂ qB and A ⊆ F ):





t := x 8 r 8 (
∫
α) 8 (t + t) 8 (t t) 8 Re(u) 8 Im(u) 8 arg(u) 8 |u|

u := z 8 |>〉FA 8 (t + it) 8 teit 8 u 8 (u + u) 8 (uu) 8 (α ¤ u; u)

Most of these terms are self-explanatory or already motivated in the previous
section. An explanation is needed concerning complex alternative terms: a
term (α ¤ u1; u2) denotes the value denoted by u1 if α is true, and denotes
the value denoted by u2 otherwise.

Quantum formulae (with the proviso finite F ⊂ qB):

γ := α 8 (t ≤ t) 8 [F ] 8 (γ A γ)

Quantum implication A is a global operator and should not be confused with
its classical (local) counterpart. As expected, other quantum connectives will
be introduced as abbreviations. But, before introducing the whole set of useful
abbreviations, we present the semantics of the language.

Given a set S of qubit symbols and a set V of valuations, the extent at V of
classical formulae over S is as follows (denoting classical satisfaction by °c):

• |α|SV = {v ∈ V[S] : v °c α}.

3 Following [22], we say that r is a computable real constant if there is a total
computable function f : N → Q such that |r − f(n)| ≤ 1/2n for every n ∈ N.
Therefore, the set of such constants is countable.
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By an assignment ρ, we mean a map such that ρ(x) ∈ R for each x ∈ X and
ρ(z) ∈ C for each z ∈ Z.

The denotation of terms at w = (V,S, |ψ〉, ν) and ρ is inductively defined as
follows:

• [[x]]wρ = ρ(x);
• [[r]]wρ = r;

• [[(
∫
α)]]wρ = µqB(α)

w (|α|qB(α)
V );

• [[z]]wρ = ρ(z);
• [[|>〉FA]]wρ = νFA;

• [[(α ¤ u1; u2)]]wρ =





[[u1]]wρ if wρ ° α

[[u2]]wρ otherwise
;

The denotation of the other terms follow the same lines. For instance,

• [[t1 + t2]]wρ = [[t1]]wρ + [[t2]]wρ.

The satisfaction of quantum formulae at w = (V,S, |ψ〉, ν) and ρ is inductively
defined as follows:

• wρ ° α iff v °c α for every v ∈ V ;
• wρ ° (t1 ≤ t2) iff [[t1]]wρ ≤ [[t2]]wρ;
• wρ ° [F ] iff F ∈ ∪S;
• wρ ° (γ1 A γ2) iff wρ 6° γ1 or wρ ° γ2.

The exogenous nature of the proposed semantics plays a double role above.
First, the denotation of a probability term (

∫
α) is the measure of the extent of

α, that is, the measure of the set of classical valuations that satisfy the classical
formula α. Second, a classical formula is satisfied by a quantum structure
(roughly a superposition of classical valuations) if all those classical valuations
satisfy the formula.

As anticipated in the previous section, the proposed quantum language with
the semantics above is rich enough to express interesting properties of quan-
tum systems. To this end, it is quite useful to introduce other operations,
connectives and modalities through abbreviations. We start with some addi-
tional quantum connectives:

• quantum negation: (¯ γ) for (γ A⊥);
• quantum disjunction: (γ1 t γ2) for ((¯ γ1) A γ2);
• quantum conjunction: (γ1 u γ2) for (¯((¯ γ1) t (¯ γ2)));
• quantum equivalence: (γ1 ≡ γ2) for ((γ1 A γ2) u (γ2 A γ1)).

Observe that the quantum connectives are classical in the sense that quantum

9



tautologies hold. For instance, (((¯ γ2) A (¯ γ1)) A (γ1 A γ2)) is satisfied by
every quantum structure and assignment. But they do not coincide with the
classical connectives! For instance, (¬α) entails (¯ α) but not the other way
around. For a more detailed discussion of the differences and relationship
between these two versions of classical logic refer to [18].

It is also useful to introduce some additional comparison predicate symbols:

• (t1 < t2) for ((t1 ≤ t2) u (¯(t2 ≤ t1)));
• (t1 = t2) for ((t1 ≤ t2) u (t2 ≤ t1));
• (u1 = u2) for ((Re(u1) = Re(u2)) u (Im(u1) = Im(u2))).

Classical molecular formulae (classical conjunctions of literals) are used pro-
fusely in the sequel. To this end, we introduce the following abbreviation (with
the provisos finite F ⊂ qB and A ⊆ F ):

• (
∧

F A) for ((
∧

qbk∈A qbk) ∧ (
∧

qbk∈(F\A) (¬ qbk))).

Observe that the formula (
∧

F A) specifies the unique classical valuation vF
A

over F that satisfies the qubits in A and does not satisfy the qubits in F \A.

Logical amplitude terms are easily extended to any classical formula besides
verum (with the provisos qB(α) ⊆ F , finite F ⊂ qB and A ⊆ F ):

• |α〉FA for (((∧F A)⇒ α) ¤ |>〉FA; 0).

Intuitively, |α〉FA coincides with |>〉FA if vF
A satisfies α, and it is zero otherwise.

Logical amplitude vector terms are introduced as follows (with the proviso
qB(α) ⊆ F ):

• |α〉F for (|α〉FA)A⊆F .

It turns out that it is convenient to introduce the additional syntactic category
of logical amplitude vector terms for each finite set F of qubit symbols:

|ω〉F = |α〉F 8 (u |ω〉F ) 8 (|ω〉F + |ω〉F )

with the obvious abbreviation rules for multiplication by scalar and addition.
Still concerning amplitude vector terms, the following abbreviations are handy:

• |0〉F for (0|>〉F );
• (|ω1〉F = |ω2〉F ) for (

d
A⊆F (|ω1〉FA = |ω2〉FA));

• (|ω1〉F ⊆ |ω2〉F ) for (
d

A⊆F ((|ω1〉FA 6= 0) A (|ω1〉FA = |ω2〉FA))).

Using the above abbreviations, we are ready to introduce some interesting
quantum operations, predicates and modalities:
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• [G|F ] for (
d

A′⊆G

d
A′′⊆F\G (|>〉F (A′A′′) = |>〉GA′|>〉(F\G)A′′)) with G ⊆ F ;

• (qbk1
∼F qbk2

) for (¯(
⊔

G ⊂ F
qbk1

∈ G
qbk2

/∈ G

[G]));

• ([F ]3 α : u) for ([F ] u |u| > 0 u (
⊔

A⊆F (|α〉FA = u)));
• ([F ]3 α1 : u1, . . . , αn : un) for (([F ]3 α1 : u1) u . . . u ([F ]3 αn : un));
• (3α) for (0 < (

∫
α));

• (2α) for (1 = (
∫
α)).

Most of these quantum constructions were already discussed in the previous
section. The entanglement formula (qbk1

∼F qbk2
) states that the two qubits

are entangled.

Quantum molecular formulae (quantum conjunctions of literals) are also very
useful. Note that a quantum literal is either a quantum atom or the quantum
negation of a quantum atom. Looking at the grammar of quantum formulae,
it is clear that quantum atoms are either classical formulae, or comparisons
between real terms or non-entanglement assertions:

qAtom := α 8 (t ≤ t) 8 [F ]

Finally, we introduce the following abbreviation (with the provisos finite Q ⊂
qAtom and D ⊆ Q) that will be used extensively in the proof of completeness:

• (
d

Q D) for ((
d

δ∈D δ) u (
d

δ∈(Q\D) (¯ δ))).

Observe that a quantum molecular formula defines a set of quantum structures
that may be empty because, for instance, the quantum molecular formula
(α u (¬α)) has no models (here Q = {α, (¬α)} = D).

We finish this section with a simple example. Consider the following variant
of Schrödinger’s cat.

Example 3.1 The relevant attributes of the cat are: being inside or outside
the box, alive or dead, and moving or still. These three attributes are repre-
sented by the qubits qb0, qb1, qb2, respectively. For the sake of readability we
use instead cat-in-box, cat-alive, cat-moving, respectively. The following
EQPL formulae constrain the state of the cat at different levels of detail:

(1) [cat-in-box, cat-alive, cat-moving];
(2) (cat-moving⇒ cat-alive);
(3) ((3 cat-alive) u (3 (¬ cat-alive)));
(4) (¯[cat-alive]);
(5) ((

∫
cat-alive) = 1

3
);

(6) ([cat-alive, cat-moving]3 (cat-alive ∧ cat-moving) : 1√
6
,

(cat-alive ∧ (¬ cat-moving)) : 1√
6
,
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((¬ cat-alive) ∧ (¬ cat-moving)) : ei π
3

√
2
3
).

Observe that the assertions above are consistent with each other. Intuitively,
assertion 1 states that the qubits cat-in-box, cat-alive, cat-moving are not
entangled with the other qubtis of the cat system. Assertion 2 is a classical
constraint on the set of admissible valuations: if the cat is moving then it is
alive. Assertion 3 states the famous paradox: the cat can be in a state where it
is possible that the cat is alive and it is possible that the cat is dead. Assertion
4 states that the qubit cat-alive is entangled with other qubits. Assertion 5
states that the cat is in a state where the probability of observing it alive (after
collapsing the wave function) is 1

3
. Finally, assertion 6 states that the qubits

cat-alive, cat-moving are not entangled with other qubits and that in the
quantum state there is a classical valuation with amplitude 1√

6
where the cat

is alive and moving, there is another classical valuation also with amplitude
1√
6

where the cat is alive and not moving, and there is a classical valuation

with amplitude ei π
3

√
2
3

where the cat is dead (and, thus, thanks to 2, also not

moving). .

4 Axiomatization

Entailment for EQPL may be defined as expected – we say that Γ entails η,
written Γ ² η, if wρ ° η for every w and ρ satisfying every element of Γ. But
a finitely bounded version of entailment turns out to be more relevant. Given
a finite set F of qubit symbols, a quantum structure w = (V,S, ψ, ν) is said
to be F -factorizable if F ∈ ∪S. Given a set Γ of quantum formulae over F
and a quantum formula η also over F , we say that the former F -entails the
latter, written Γ ²F η if wρ ° η for every F -factorizable w and ρ satisfying
every element of Γ.

Observe that Γ ² η implies Γ ²F η for every F . Furthermore, for any Γ and
η over F1, if F1 ⊆ F2 and Γ ²F2 η then Γ ²F1 η. Note also that Γ, η1 ²F η2 iff
Γ ²F (η1 A η2), and a similar result holds for the unbounded entailment. That
is, quantum implication does internalize the notion of quantum entailment in
EQPL.

Note also that both entailments (unbounded and bounded) are not compact
in the sense that there are Γ and η such that η is entailed by Γ but it is not
entailed by any finite subset of Γ. Indeed, (z = 0) is entailed from {(|z| ≤
1/n : n ∈ N)}. But, (z = 0) is not entailed by any finite subset of this set.

Therefore, there is no hope of setting up a finitary axiomatization (that is,
using only finitary rules) achieving strong completeness. But, it is possible to
establish a finitary axiomatization that achieves F -bounded weak completeness
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for any finite F : ²F η iff `F η. Indeed, the axioms and rules presented below
are sound and adequate for F -validity as will be proved in the next section.

Before listing all axioms and rules we need to introduce the concept of tau-
tological quantum formula or quantum tautology. A quantum formula γ is
said to be tautological if there are a classical tautology α and a substitu-
tion map σ : qB → qAtom such that γ coincides with α⇒A σ (where α⇒A is
the quantum formula obtained from α by replacing the classical connectives
by the corresponding quantum connectives). For instance, the quantum for-
mula ((x1 ≤ x2) A (x1 ≤ x2)) is tautological (obtained, for example, from the
classical tautology (qb1 ⇒ qb1)).

We also need to identify the following sublanguage of EQPL that we shall
henceforth call analytical language:

κ := (a ≤ a) 8⊥ 8 (κ A κ)

a := x 8 r 8 (a + a) 8 (a a) 8 Re(b) 8 Im(b) 8 arg(b) 8 |b|
b := z 8 (a + ia) 8 aeia 8 b 8 (b + b) 8 (b b)

Observe that an assignment ρ is enough to interpret formulae of this sub-
language. Therefore, an analytical formula κ is valid iff it is satisfied by
every assignment. For instance, (((t1 ≤ t2) u (t2 ≤ t3)) A (t1 ≤ t3)) and
((u2

1 = −1) A ((u1 = i) t (u1 = −i))) are both universal analytical formulae
(the latter using equality between complex numbers introduced as an abbre-
viation).

Proposition 4.1 The set of valid analytical formulae is not recursively enu-
merable.

Indeed, assuming that the set is recursively enumerable we reach a contra-
diction as follows. Let h be a computable enumeration of the valid analytical
formula. Consider the procedure:

n := 0;

b := True;

while b do {
if h(n) = (r = 0) then {Output(True); b := False}
if h(n) = (r 6= 0) then {Outputr(False); b := False}
n := n + 1

}

This procedure always terminates since either r = 0 or r 6= 0 is valid. Hence,
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it is a decision algorithm for the problem “equality to zero of a computable
real constant”, contradicting the known undecidability of this problem (see
4.23.3 of [22]).

We are now ready to list the axioms and rules of our calculus for each finite
set F of qubit symbols: see Table 1 4 .

`F α for each classical tautology α [CTaut]

α1, (α1 ⇒ α2) `F α2 [CMP]

`F γ for each quantum tautology γ [QTaut]

γ1, (γ1 A γ2) `F γ2 [QMP]

`F κ~x~z
~t~u

for each valid analytical formula κ [Oracle]

`F ((α1 ⇒ α2) A (α1 A α2)) [Lift⇒]

`F ((α1 u α2) A (α1 ∧ α2)) [Refu]

`F (α A ((α ¤ u1; u2) = u1)) [If>]

`F ((¯α) A ((α ¤ u1; u2) = u2)) [If⊥]

`F [F ] [NEtgF ]

`F ([G2] A ([G1]≡ [G1|G2])) for any G1 ⊆ G2 [NEtg|]
`F ([G1] A ([G2] A [G1 ∪G2])) [NEtg∪]

`F ([G1] A ([G2] A [G1 \G2])) [NEtg\]
`F (|>〉∅∅ = 1) [Empty]

`F ((¬(∧F A)) A (|>〉FA = 0)) [NAdm]

`F ([G] A ((
∑

A⊆G ||>〉GA|2) = 1)) [Unit]

`F ((
∫

α) = (
∑

A⊆F ||α〉FA|2)) [Prob].

Table 1
Axiomatization of EQPL

In total, we have only two rules (modus ponens for classical implication [CMP]
and for quantum implication [QMP] 5 ) and fifteen axiom schemas. The axiom

4 By κ~x~z
~t~u

we mean the formula obtained from κ by uniform and simultaneous substi-
tution of the variables ~x = xi1 , . . . , xin and ~z = zi1 , . . . , zim by terms ~t = ti1 , . . . , tin
and ~u = ui1 , . . . , uim , respectively.
5 Actually, [CMP] can be derived from [QMP] and [Lift⇒].
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schemas are better understood in the following groups.

We have as axiom schemas the classical tautologies and the quantum tau-
tologies ([CTaut] and [QTaut], respectively). This is justified by the fact that
the set of classical tautologies and the set of quantum tautologies are both
recursive.

Since the set of valid analytical formulae is not recursively enumerable and,
thus, not recursive, Axiom schema [Oracle] is controversial. We decided to
use an analytical oracle for two reasons. First, we wanted to focus our atten-
tion on reasoning about quantum aspects without becoming lost in analytical
details. And, second, the alternative of presenting a recursive axiomatization
based on the theory of real closed fields and their algebraic closures would re-
quire a much weaker language (without computable real constants and without
exponentiation) and, in order to maintain completeness, a relaxation of our
semantics, maybe towards a point too far away from its intuitive roots in the
postulates of quantum mechanics. However, this alternative is interesting also
for other reasons and we shall come back to the issue in the last section of the
paper.

Axiom schemas [Lif⇒] and [Refu] are sufficient to relate (local) classical rea-
soning and (global) quantum tautological reasoning. Again, we refer to [18]
for more details.

Axiom schemas [If>] and [If⊥] are self explanatory. They will be used in the
completeness proof to remove alternative terms.

Axiom schemas [NEtgF ], [NEtg|], [NEtg∪] and [NEtg\] are enough to rea-
son about non-entanglement. Among other things they impose that non-
entanglement is closed under set theoretic operations (closure under inter-
section appears as a theorem as we shall see).

Axiom schemas [Empty], [NAdm] and [Unit] rule logical amplitudes. Each of
them closely reflects a property of our semantic structures.

Finally, [Prob] relates probabilities and amplitudes, closely following Postulate
4 of quantum mechanics.

As expected, we say that a formula η over F is F -derivable from a set Γ of
formulae over F , written Γ `F η if we can build a derivation of η from the
axioms and the elements of Γ using the inference rules. Furthermore, we say
that a formula η over F is an F -theorem, written `F η if it is F -derivable
from the empty set. As an illustration, consider the derivation in Table 2 that
establishes for any finite F :

• `F ((
∫>) = 1) [PUnit].

15



1 [F ] NEtgF

2 ([F ] A ((
∑

A⊆F ||>〉FA|2) = 1)) Unit

3 ((
∑

A⊆F ||>〉FA|2) = 1) QMP:1,2

4 ((
∫>) = (

∑
A⊆F ||>〉FA|2)) Prob

5 (((
∫>) = (

∑
A⊆F ||>〉FA|2))A

(((
∑

A⊆F ||>〉FA|2) = 1) A ((
∫>) = 1))) Oracle

6 (((
∑

A⊆F ||>〉FA|2) = 1) A ((
∫>) = 1)) QMP:4,5

7 ((
∫>) = 1) QMP:3,6

Table 2
Derivation of PUnit

Since we have only classical and quantum modus ponens as inference rules, it
is straightforward to establish the metatheorem of deduction:

• If Γ, η `F η′ then Γ `F (η A η′) [MTD].

Using the MTD, we can establish the metatheorem of reductio ad absurdum:

• If Γ, η `F ⊥ then Γ `F (¯ η) [MTA].

It is also easy to prove that the principle of substitution of equivalent quan-
tum formulae holds (where γη

η′ is obtained from γ by replacing a quantum
subformula 6 η of Γ by another quantum formula η′):

• `F (η ≡ η′) A (γ ≡ γη
η′) [SoEF].

The principle of substitution of equal terms also holds (where γt
t′ is obtained

from γ by replacing a term t occurring in Γ by another term t′):

• `F (t = t′) A (γ ≡ γt
t′) [SoET].

6 We must be very careful in defining the notion of quantum subformula. For in-
stance, q1 is a quantum subformula of ((q1uq2)Aq3) but not of ((q1∧q2)Aq3) since
it appears inside a quantum atom of the latter. In short, η is a quantum subformula
of γ if η is γ or η is a quantum atom occurring in γ or γ is of the form (γ1 A γ2)
and η is a quantum subformula of γ1 or of γ2. Observe that SoEF does not hold for
arbitrary subformulae, only for quantum subformulae.
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1 (α1 ∧ α2)⇒ α1 CTaut

2 ((α1 ∧ α2)⇒ α1) A ((α1 ∧ α2) A α1) Lift⇒
3 (α1 ∧ α2) A α1 QMP:1,2

4 (α1 ∧ α2)⇒ α2 CTaut

5 ((α1 ∧ α2)⇒ α2) A ((α1 ∧ α2) A α2) Lift⇒
6 (α1 ∧ α2) A α2 QMP:4,5

7 ((α1 ∧ α2) A α1)A

(((α1 ∧ α2) A α2) A ((α1 ∧ α2) A (α1 u α2))) QTaut

8 ((α1 ∧ α2) A α2) A ((α1 ∧ α2) A (α1 u α2)) QMP:3,7

9 (α1 ∧ α2) A (α1 u α2) QMP:6,8

Table 3
Derivation of Lift∧
We finish this section with a list of interesting F -theorems. Some of them will
be needed in the proof of weak completeness presented in the next section
(and for this reason we provide their derivations), but others are mentioned
just for illustration purposes.

First, observe that we have as theorems the following lifting properties that
we shall use in the proof of completeness.

In Table 3 is a derivation of the lifting of conjunction:

• `F ((α1 ∧ α2) A (α1 u α2)) [Lift∧].

The derivation of the lifting of negation

• `F ((¬α) A (¯ α)) [Lift¬].

is trivial since it is a special case of Axiom Lift⇒.

The following theorem, derived in Table 4 using MTD, completes the picture
of non-entanglement being closed under set theoretic operations.

• `F ([G1] A ([G2] A [G1 ∩G2])) [NEtg∩].

The following theorems give some insight on the major properties of logical
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1 [F ] NEtgF

2 ([F ] A ([G1] A [F \G1])) NEtg\
3 ([G1] A [F \G1]) QMP:1,2

4 [G1] Hyp

5 [F \G1] QMP:4,3

6 ([F ] A ([G2] A [F \G2])) NEtg\
7 ([G2] A [F \G2]) QMP:1,6

8 [G2] Hyp

9 [F \G2] QMP:8,7

10 ([F \G1] A ([F \G2] A [(F \G1) ∪ (F \G2)])) NEtg∪
11 ([F \G2] A [(F \G1) ∪ (F \G2)]) QMP:5,10

12 [(F \G1) ∪ (F \G2)] QMP:9,11

13 ([F ] A ([(F \G1) ∪ (F \G2)] A [G1 ∩G2])) NEtg\
14 ([(F \G1) ∪ (F \G2)] A [G1 ∩G2]) QMP:1,13

15 [G1 ∩G2] QMP:12,14

Table 4
Derivation of NEtg∩

amplitudes and how they are related with the (classical and quantum) con-
nectives.

• `F ((|(α1 ∨ α2)〉G + |(α1 ∧ α2)〉G) = (|α1〉G + |α2〉G)) [AAdd].
• `F ((α1 ⇒ α2) A (|α1〉G ⊆ |α2〉G)) [AMon].
• `F ((α1 ⇔ α2) A (|α1〉G = |α2〉G)) [ASoE].
• `F (α A (|α〉G = |>〉G)) [ANec].
• `F ((|α〉G + |(¬α)〉G) = |>〉G) [AMExc].

The first of the following theorems about probability after measurements just
states finite additivity. The second is an obvious instance of Postulate 4. The
third relates logical reasoning with probability reasoning (monotonicity).

• `F (((
∫
(α1 ∨ α2)) + (

∫
(α1 ∧ α2))) = ((

∫
α1) + (

∫
α2))) [PAdd].

• `F (([G]3 (
∧

G A) : u) A ((
∫
(
∧

G A)) = |u|2)) [Meas].
• `F ((α1 ⇒ α2) A ((

∫
α1) ≤ (

∫
α2))) [PMon].
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The following theorems show that the quantum and probability modalities do
behave as normal modalities.

• `F (([G]3 (α ∨ α′) : u)≡ (([G]3 α : u) t ([G]3 α′ : u))) [QNorm].
• `F ((α⇒ α′) A (([G]3 α : u) A ([G]3 α′ : u))) [QMon].
• `F ((u = u′) A (([G]3 α : u) A ([G]3 α : u′))) [QCong].
• `F (α A (2α)) [PNec].
• `F ((2(α⇒ α′)) A ((2α) A (2α′))) [PNorm].

5 Proof of bounded weak completeness

It is straightforward to prove that the calculus presented in the last section is
strongly sound – for any finite F ⊂ qB, if Γ `F η then Γ ²F η. Therefore, it is
also weakly sound.

On the other hand, as already pointed out, it is not possible to achieve strong
adequacy with a finitary calculus. But, for arbitrary finite F ⊂ qB, we were
able to prove F -bounded adequacy of the calculus – if ²F η then `F η. There-
fore, since we have soundness, our calculus is F -bounded weakly complete:

Theorem 5.1 (Bounded weak completeness) For every finite set F of
qubit symbols and quantum formula η over F , ²F η iff `F η.

The rest of this section contains the proof of the hard part of this result
(adequacy).

The quantitative nature of the language of EQPL raises specific problems when
proving an adequacy result. These problems appear on top of those raised by
the fact the calculus is not strongly complete. Thus, the traditional Henkin
approach to adequacy proofs [23] is not the answer here, or, at least, is not
the full answer.

In the end, we were inspired by the Fagin-Halpern-Megiddo technique that was
successfully applied in proving adequacy results for probability calculi [15].
The key step of this technique is the reduction of any formula to a disjunction
of systems of linear inequations over the real numbers where each variable
represents the probability of a classical molecular formula. A close examination
of the technique suggests that it should be applicable (possibly after a suitable
non-trivial extension) to any quantitative logic where the disjunctive normal
form lemma holds.

Actually, a quite significant revamp of the Fagin-Halpern-Megiddo technique
was needed in order to cope with the novel aspects of EQPL: (i) classical for-
mulae mixed with analytical (in)equations; (ii) global semantics of quantum
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connectives; (iii) non-entanglement atoms; (iv) amplitude terms besides prob-
ability terms; and (v) quantum structures instead of probability spaces. Note
that the Fagin-Halpern-Meggido technique was first developed for a proba-
bilistic logic somewhat simpler than the probabilistic fragment of EQPL.

In addition, we used the Henkin technique thrice: (i) for removing alterna-
tive terms; (ii) for constructing the set of admissible valuations; and (iii) for
building the finite partition of the set of qubits.

After these comments on the overall strategy, we are now ready to start the
(top-down) proof of the F -bounded weak adequacy of EQPL.

Given a quantum formula γ over F we say that it is F -consistent if 6`F (¯ γ).

The proof is carried out by contraposition:

(1) Assume that 6`F γ.
(2) So, quantum tautologically, also 6`F (¯(¯ γ)).
(3) Thus, (¯ γ) is F -consistent.
(4) Therefore, by the model existence lemma proved below, there are F -

factorizable w and ρ such that wρ ° (¯ γ).
(5) And, hence, it is not true that every such pair satisfies γ, that is, we

established that 6²F γ.

It remains to prove the model existence lemma:

Lemma 5.2 (Model existence lemma) If γ is F -consistent then there are
F -factorizable w and ρ such that wρ ° γ.

The quantum disjunctive normal form lemma holds in EQPL. Thus:

`F


γ ≡ ⊔

D∈qmols(γ)

(uQγD)




where qmols(γ) = {D ⊆ Qγ : `F ((uQγD) A γ)} and Qγ is the set of F -
quantum atoms used in γ.

Clearly, γ is F -consistent iff there is D ∈ qmols(γ) such that (uQγD) is F -
consistent. Therefore, it is sufficient to prove the following restricted model
existence lemma:

Lemma 5.3 If (uQD) is F -consistent then there are F -factorizable w and ρ
such that wρ ° (uQD).

Since D = Dc ∪D≤ ∪D[ ], where Dc ⊆ Qc = {α : α ∈ Q}, D≤ ⊆ Q≤ = {(t ≤
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t′) : (t ≤ t′) ∈ Q}, and D[ ] ⊆ Q[ ] = {[G] : [G] ∈ Q}, we have:

(uQD) = ((uQcDc) u (uQ≤D≤) u (uQ[ ]
D[ ])).

Our goal is to reduce everything to inequations. We start by getting rid of the
non-entanglement atoms.

Thanks to NEtgF and NEtg|, we know that there is a quantum formula δ[]

without non-entanglement atoms such that `F ((uQ[ ]
D[ ]) ≡ δ[ ]). Thus, `F

((uQD)≡ δ) where δ = ((uQcDc) u (uQ≤D≤) u δ[ ]).

Note that δ[ ] and, hence, δ are not necessarily conjunctions of quantum literals
(because it may happen that a [G] appears in Q[ ] \ D[ ] and such a negation
involves a disjunction). Using again the quantum disjunctive normal form
lemma we have:

`F


δ ≡ ⊔

D∈qmols(δ)

(uQδ
D)


 .

So, δ is F -consistent iff there is D ∈ qmols(δ) such that (uQδ
D) is F -consistent.

Therefore, it is sufficient to prove the following even more restricted model
existence lemma:

Lemma 5.4 If (uQD) without entanglement atoms is F -consistent then there
are F -factorizable w and ρ such that wρ ° (uQD).

Assume that (uQD) is F -consistent and does not involve non-entanglement
atoms (that is, Q = Qc ∪ Q≤ and D = Dc ∪ D≤). Our goal is to find an F -
factorizable w = (V,S, |ψ〉, ν) and a ρ satisfying this molecular formula. We
start by looking for V .

Before setting up V , it is necessary to eliminate the probability and alterna-
tive terms and to add maximally consistent information about the admissible
classical valuations. This desideratum is achieved as follows:

(1) First, we replace in (uQD) each term (
∫
α) by

∑
A⊆F ||α〉FA|2. Let (uQD)

be the result.
(2) Consider an ordering α1, . . . , αm of the guards of alternative terms occur-

ring in (uQD).
(3) Consider the following sequence of formulae:

• η0 = (uQD);

• ηk+1 =





(ηk u αk) if `F (ηk A αk)

(ηk u (¯ αk)) otherwise
.

(4) Observe that each ηk is still F -consistent and a quantum molecular for-
mula. Furthermore, ηm is maximal with respect to guards.

(5) Now we can replace each term (α ¤ u1; u2) occurring in ηm by:
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• u1 if α is a quantum literal in ηm;
• u2 if (¯ α) is a quantum literal in ηm.
Let ηm be the resulting formula.

(6) Consider an ordering A1, . . . , Am′ of the subsets of F .
(7) Consider the following sequence of formulae:

• η′0 = ηm;

• η′k+1 =





(η′k u (¬(∧F Ak))) if `F (η′k A (¬(∧F Ak)))

(η′k u (¯(¬(∧F Ak)))) otherwise
.

(8) Observe that each η′k is still F -consistent and a quantum molecular for-
mula. Furthermore, η′m′ does not contain probability terms or alternative
terms and is maximal with respect to admissible classical valuations.

(9) Thanks to Prob, If> and If⊥, denoting the resulting still F -consistent
molecular formula by (uQ′D

′) = ((uQ′cD
′
c) u (uQ′≤D′

≤)), we have

`F ((uQ′D
′) A (uQD)).

(10) Therefore, we may proceed working towards the envisaged w and ρ with
the new formula.

Having (while preserving F -consistency) eliminated the probability and alter-
native terms and having determined the classical valuations, we are ready to
build V . Let V be composed of each v ∈ 2qB

[F ] such that v °c α for each α ∈ D′
c.

Now we have to analyze two cases:

a) Either for each α ∈ Q′
c\D′

c there is a v ∈ V such that v 6°c α and, therefore,
this V is viable because

(V, . . . ) °F (uQ′cD
′
c) .

b) Or that is not the case. But, then, we would be able to contradict the
F -consistency of (uQ′D

′) as follows:
(1) Indeed, if it is not the case then there is a α ∈ Q′

c \D′
c such that v °c α

for all v ∈ V . That is, by construction of V , there is α ∈ Q′
c \D′

c such
that

²c





 ∧

α′∈D′c

α′

⇒ α


 .

(2) So, by CTaut, there is α ∈ Q′
c \D′

c such that

`F





 ∧

α′∈D′c

α′

⇒ α


 .

(3) Thus, by Lift⇒, there is α ∈ Q′
c \D′

c such that

`F





 ∧

α′∈D′c

α′

 A α


 .
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(4) Thus, by Refu and QTaut (transitivity of A), there is α ∈ Q′
c \D′

c such
that

`F






l

α′∈D′c

α′

 A α


 .

(5) Therefore, by QTaut (right weakening of A)

`F






l

α′∈D′c

α′

 A


 ⊔

α∈Q′c\D′c
α







leading to

`F


¯






l

α′∈D′c

α′

 u




l

α∈Q′c\D′c
(¯ α)










by several obvious tautological steps.
(6) That is, we have `F (¯(uQ′cD

′
c)), contradicting the F -consistency of

(uQ′cD
′
c).

In short, we did find V satisfying the classical part of (uQ′D
′). Let us proceed

with the construction of the partition S. The idea is to find a maximally
fine partition SF of F such that ((uQ′D

′) u (uS∈SF
[S|F ])) is F -consistent, as

follows:

(1) Let G1, . . . , Gn be an ordering of the subsets of F .
(2) Consider the following sequence of formulae:

• γ0 = (uQ′D
′);

• γk+1 =





(γk u [Gk+1|F ]) if this formula is F -consistent

(γk u (¯[Gk+1|F ])) otherwise
.

(3) Observe that each γk is F -consistent and, furthermore, γn is maximally
consistent with respect to non-entanglement assertions.

(4) Let U = {G : [G|F ] is a factor of γn}.
(5) Let SF be composed of all minimal (with respect to inclusion) elements

of U . Then, thanks to NEnt∩, NEnt∪ and NEnt\, it is straightforward
to prove that SF is a partition of F . Moreover, ∪SF = U .

(6) Let S = SF ∪ {qB \ F}. Observe that S is finite.
(7) Since `F (γn Aηm), we proceed working with γn in our task of completing

the construction of w and ρ.

It remains to find F -factorizable |ψ〉, together with ν and ρ. As already men-
tioned, the key idea is to reduce everything to a system of (in)equations on
variables representing amplitudes. But, first we need to add the constraints
imposed by the relevant axioms. Thanks to Unit, for every G ∈ ∪SF , we
can establish: `F (γn A ((

∑
A⊆G ||>〉GA|2) = 1)). Thanks to NAdm, for every
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(¬(∧F A)) occurring in γn, we have: `F (γn A (|>〉FA = 0)).

Let γ•n be the formula


γn u




l
G∈∪SF





 ∑

A⊆G

||>〉GA|2

 = 1





 u




l

(¬(∧F A)) in γn

(|>〉FA = 0)





 .

Observe that we can derive: `F (γn ≡ γ•n). Let (γ•n)≤ the conjunction of the
(in)equations in γ•n. Consider the finite system of (in)equations obtained from
(γ•n)≤ by replacing at each term of the form |>〉GA by a fresh variable z|>〉GA

.
Now we have to analyse two cases:

a) Either the system of (in)equations has no solution. But, in this case we
would be able to contradict the F -consistency of γn as follows (using the
analytical oracle):
(1) Let Λ≤ be the (finite) set of analytical literals occurring in (γ•n)≤ and

Λc be the (finite) set of non-analytical literals in (γ•n)c.
(2) Since (γ•n)≤ = (uκ∈Λ≤κ), there is a bijection between Λ≤ and the set of

inequations composing the system described above.
(3) From the fact that the system of inequations induced by (γ•n)≤ has no

solution, we conclude that there is no assignment ρ such that ρ ° κ for
all κ ∈ Λ≤.

(4) In other words, for all assignment ρ there exists κ ∈ Λ≤ such that
ρ ° (¯κ) and so, thanks to Oracle, we have: `F (tκ∈Λ≤(¯ κ)).

(5) Hence, a fortiori, we obtain: `F ((tγ∈Λc(¯ γ)) t (tκ∈Λ≤(¯κ))).
(6) That is, since

((tγ∈Λc(¯ γ)) t (tκ∈Λ≤(¯κ))) ≡ (¯((uγ∈Λcγ) u (uκ∈Λ≤κ)))

= (¯((γ•n)c u (γ•n)≤))

= (¯ γ•n)

≡ (¯ γn),

we can conclude `F (¯ γn), contradicting the F -consistency of γn.
b) Or the system has at least one solution and then we can build the envisaged

F -factorizable w = (V,S, |ψ〉, ν) and ρ from any of the solutions in the
following way:
• V is as described above.
• S is as described above.
• |ψ〉 = {|ψ〉[R]}R∈∪S is obtained as follows:

· |ψ〉[G](v
G
A) is the solution value of z|>〉GA

for every G ∈ SF (note that
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|ψ〉[G] is non-factorizable by construction of SF );

· |ψ〉[qB\F ] is any non-factorizable unit vector in H(2qB
[qB\F ]) such that

〈v|ψ〉[qB\F ] = 0 for every v 6∈ V[qB\F ];

· |ψ〉[∅] = ei0 and |ψ〉[R] = ⊗
S ∈ S
S ⊆ R

|ψ〉[S] for each non-empty R ∈ ∪S.

• ν = {νGA}G⊂finqB,A⊆G is chosen as follows:
· If z|>〉GA

is a variable of the system then νGA takes the value of this
variable in the adopted solution.

· Otherwise:
If G ∈ SF then νGA = 〈vG

A |ψ〉[G];
otherwise, the value of νGA can be chosen freely in C.

• ρ is established as follows:
· ρ(x) is equal to the value of x if this variable occurs in the system,

and given an arbitrary value otherwise;
· ρ(z) is equal to the value of z if this variable occurs in the system,

and given an arbitrary value otherwise.
Such a pair wρ satisfies (γ•n)≤ and, so, also satisfies (uQD). QED

6 Concluding remarks

Using a non-trivial extension of the Fagin-Halpern-Megiddo technique to-
gether with three Henkin like completions we were able to prove the finitely
bounded weak completeness of the proposed finitary axiomatization for EQPL.
The analytical oracle was used once for obtaining a contradiction in the case
where the induced system of (in)equations has no solution.

The adoption of an analytical oracle for abstracting away the reasoning about
real and complex numbers allowed us to concentrate on the quantum aspects
of the calculus. Since the set of valid analytical formulae is not recursively
enumerable, there is no hope of replacing the oracle by recursive axioms while
keeping EQPL as it is. However, it is viable and interesting to weaken the
language of terms (by dropping exponentiation and the computable real con-
stants) and to relax the semantics (by replacing R and C by arbitrary real
closed fields and their algebraic closures). In this way, we could preserve com-
pleteness when replacing the oracle by the recursive theory of real closed
fields and their algebraic closures. Parallel developments in probabilistic logic
[15,16], give us hope of obtaining even decidable calculi. But, then, we have to
pay the price of working with relaxed quantum structures that are far away
from their roots in the postulates of quantum mechanics. Nevertheless, this
seems the way towards automation techniques for EQPL (and its dynamical
and temporal extensions) to be used in the specification and verification of
quantum procedures and protocols.
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The weak completeness result obtained in this paper shows that the pro-
posed language of EQPL is appropriate for the proposed exogenous seman-
tics. Therefore, EQPL constitutes a sound basis for further developments of
our approach to quantum reasoning, namely towards dynamical extensions for
reasoning about the evolution of quantum systems and protocols. For prelimi-
nary results in this direction, see [2] where DEQPL (a dynamical extension of
EQPL) is outlined. Recent work on dynamical versions of traditional quantum
logic [24] should also be taken into account. Another interesting development,
also from the applications point of view, will be directed at a EQFOL (a FOL
version of exogenous quantum logic).

The detailed analysis of the weak completeness proof reinforces the idea (al-
ready present in the choice of the EQPL abbreviations) of the key role, when
using EQPL for reasoning, of a finite context of qubit symbols. One wonders
if this assumption can be relaxed to any recursive set of qubits by starting
with classical ω-infinitary propositional logic [25]. At least from a theoretical
point of view, this line of work should be explored.

As we saw, the semantics of EQPL is based on pure quantum states of col-
lections of qubits. Recall that pure quantum states are unit vectors of the
underlying Hilbert space. In consequence, EQPL provides the means for as-
serting properties of and reason about such vectors. Therefore, EQPL is not
insensitive to the global phase of the quantum state. One may argue that it
should be insensitive since no physical measurement will ever be able to distin-
guish two quantum states that are equivalent up to global phase. We decided
to make EQPL as it is (that is, sensitive to global phase) for two reasons.
In practice, physicists and quantum computer scientists need to work with
both levels of abstraction. Sometimes they want to work with states as unit
vectors. Sometimes they want to abstract away the global phase. Therefore, a
calculus supporting the former level of abstraction is also useful. The second
reason is a consequence of the fact that forgetting global phase requires a ma-
jor semantic shift. Indeed, it is better solved by identifying a quantum state,
not with a unit vector of the underlying Hilbert space, but, instead, with a
density operator working on that space, that is, working with ensembles or
mixed quantum states in general.

Such shift towards a semantics based on density operators will lead to a quite
different quantum logic (but still extending classical logic by applying the
exogenous approach) that will also be useful for reasoning about quantum
systems evolving under partial tracing, besides unitary transformations and
measurements. Clearly, this is yet another line of research that will deserve
attention.

Finally, the relationship between the exogenous quantum logics and the more
traditional quantum logics (based on the original Birkhoff and von Neumann
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proposal) should be explored. At the preliminary stage of work in this direc-
tion, it seems that most of the qualitative assertions possible in the latter can
be made in the former and that most of the quantitative assertions possible
in the former can be borrowed by extensions of the latter.
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