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Abstract

Fibring is defined as a mechanism for combining logics with a first-
order base, at both the semantic and deductive levels. A completeness
theorem is established for a wide class of such logics, using a variation
of the Henkin method that takes advantage of the presence of equality
and inequality in the logic. As a corollary, completeness is shown to be
preserved when fibring logics in that class. A modal first-order logic is
obtained as a fibring where neither the Barcan formula nor its converse
hold.

1 Introduction

Given the interest in the topic of combination of logics [2] and the significance
of fibring [8, 9, 14] among the combination mechanisms, we have been following
a research program directed at establishing preservation results on fibring. In
[17] we established the preservation of completeness when fibring propositional
based logics. Here, we address the same problem in the more challenging context
of first-order based logics. At the same time, we attempt to assess to what extent
the techniques of fibring can be used in the long standing issue of combination
of modalities and quantification.

Extrapolating the definition of fibring to first-order based logics raises new
technical problems at both the semantic and the deductive levels.

At the semantic level, the problem is to find a suitable abstraction of seman-
tic structures encompassing a wide class of logics. Indeed, fibring appears as
an operation on logics endowed with the same kind of semantics (the so called
homogeneous scenario for the combination). So, we need a notion of semantics
that encompasses as special cases logics as different as modal propositional logic
and classical quantifier logic. To this end, we deal with quantifiers as special
modalities for which assignments play the role of worlds. From the point of
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view of fibring, it is very natural to look at quantifiers as modalities. This atti-
tude is fully developed here and we show that it has interesting and somewhat
surprising consequences. Another key ingredient of our approach is the rigidity
of variables while having non-constant domains. We want variables to be rigid
designators because we are motivated by applications, such as the application
of temporal quantifier logic to reactive system specification and knowledge rep-
resentation, where it is essential to be able to compare values of flexible terms
at different times using (rigid) variables. We want to be able to work within
the more general setting of possibly non-constant domains, since this is a com-
mon feature of many recent approaches to modal quantifier logics. Finally, the
techniques of fibring led us to work with very general notions of quantifiers and
modalities, therefore encompassing a much wider class of logics. These features
of our semantic approach make it rather different from other recent approaches
to modal quantifier logic.

At the deductive level, the main new problem is the need to deal with side
constraints in inference rules, like “term ¢ is free for variable z in formula ¢”.
The main idea is to deal with such provisos as meta-predicates on substitutions.

For illustration purposes, a modal first-order logic is presented in detail at
both model and proof theoretic levels. Both the Barcan formula and its converse
are shown to fail in this logic. Definability of properties related to these formulae
is briefly investigated. Once fibring is defined, this logic is recovered as a fibring.

In order to establish conditions for the preservation of completeness by
fibring first-order based logics, we first obtain a completeness theorem. The
latter is proved using a variation of the Henkin method where we take advantage
of having equality and inequality in the logic. The rigidity of variables also
plays a crucial role here. The completeness theorem is proved to hold for a
wide class of first-order based logics. Besides fullness and congruence, some
reasonable assumptions are made on quantifiers and modalities, independently
of each other. The preservation of completeness by fibring follows by showing
that these assumptions are preserved by fibring.

In Section 2, the basic linguistic components of first-order based (fob) logics
are introduced. Section 3 presents the semantic notions. Section 4 is dedicated
to the semantics of an interesting modal first-order logic. Section 5 contains
the notions on Hilbert calculi for fob logics. Section 6 is concentrated on the
completeness theorem. Fibring of fob logics is defined in Section 7. In Section
8, the preservation of completeness by fibring is proved under some natural
assumptions. Finally, in Section 9 an assessment is made of what has been
achieved and what is still ahead.

2 First-order based signatures and languages

It is worthwhile to describe in detail the language of fob logics. That is, what
we accept as being a fob signature and how the language is generated by a
signature.

We assume given once and for all three denumerable sets: X (the set of
(quantification) variables), © (the set of term schema variables) and Z (the set
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of formula schema variables). We also assume as fixed the equality symbol =
and the inequality symbol #. The schema variables (or meta variables) will be
used for writing for example schematic inference rules, following the approach
[14, 17].

In the envisaged notion of fob signature we should include, as expected,
function and predicate symbols. We also include in the signature connectives,
quantifiers and modalities since we want to encompass a wide variety of logics.
Finally, for technical reasons explained in Section 6, we also include individual
symbols as distinct from 0-ary function symbols (constants).

Definition 2.1 A fob signature is a tuple ¥ = (I, F, P,C, @, O) where:

e [ is a set (of individual symbols);

F = {F} }ren is a family of sets (of function symbols);

P = { Py }ren is a family of sets (of predicate symbols);

C = {Ck}ken is a family of sets (of connectives);

Q = {Qi}ren+ is a family of sets (of quantifiers);

o O = {O}ren+ is a family of sets (of modalities). A

In order to avoid grammatical ambiguities, we assume that the sets Py, Cy
and = are pairwise disjoint, as well as the sets I, Fy, X and ©. For the same
reason, we also assume that, for each k in N, the sets C}, and O, are disjoint.

For the purpose of describing the sets of terms and formulae generated
from a fob signature it is useful to make explicit the underlying two-sorted
algebra. Let S denote the set {7, ¢}, where 7 and ¢ are the (meta) sorts of
terms and formulae, respectively. Given a fob signature >, we define the family
G = {Gys}ses ses of sets of generators as follows:

¢ G, =IUFRUXUOU{#} :0,0/ €O, z € X};
o G .= Fy for k> 0;

¢ Gey =P UCHUEU{E : £ €2, 00, xe X};
GT2¢:{:7?£}UP2;

o Goiy= Py for k ¢ {0,2};

® Guy=CrU{(qz) : ¢ € Qr &z € X} UOy for k > 0;
e all other sets are empty.

Consider the S-sorted free algebra induced by G. We denote by T'(3, X, O)
the carrier of sort 7 and refer to its elements as ¥-terms (or, simply, terms), and
by L(¥, X,0,E) the carrier of sort ¢ and refer to its elements as X-formulae
(or, simply, formulae). Furthermore, we denote by T'(3, X) and L(3, X), re-
spectively, the sets of terms and formulae written without schema variables.
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Finally, we denote by ¢7'(X) the set of ground terms, i.e., terms without vari-
ables, and by cL(X, X) the set of closed formulae which are defined in the usual
way. For the sake of simplicity, we may denote T'(X, X), ¢7'(32), L(X, X) and
cL(X,X) by T, gT, L and cL, respectively.

Finally, we conclude this section on language issues by introducing some
notation concerning substitutions that act on the schema variables.

A Y-substitution p maps each term schema variable € to a term fp in T'(X, X)
and each formula schema variable £ to a formula {p in L(X, X). We denote the
set of all Y-substitutions by Sub(X).

A Y-schema substitution o maps each term schema variable 6 to a schema
term Ao in T'(X, X,0) and each formula schema variable £ to a schema for-
mula &0 in L(X, X,0,Z). We denote the set of all ¥-schema substitutions by
sSub(X).

It should be evident how to extend a schema substitution or a substitution
to the whole language. It is only worthwhile to explain what happens in the
case of 8, and £j. For instance, {jo is obtained from £o by substituting the
term fo for x.

3 Semantics

The idea is to build all the semantic notions for fob logics from a suitably
general notion of interpretation structure over a given fob signature. Such a
structure should provide the means for interpreting all the symbols. Given the
mixed nature of fob logics that include both quantifiers and modalities, one
expects that such a structure should include “individuals”, “assignments” and
“worlds”.

Moreover, looking at a fob structure as a kind of fibring (in the sense of [8])
of its quantifier and modal components, one is led to conceive it as a kind of
two dimensional modal-like structure composed of “points”, with one dimension
running on the assignments (for quantifiers) and the other dimension running on
the worlds (for proper modalities). Therefore, we want to know the value of an
expression at each point. For each point u we need to know the corresponding
assignment § = a(u) and world w = w(u). The interpretation of some symbols
will depend only on the assignments, while the interpretation of others will
depend only on the worlds. For visualizing this approach look at Figure 1
below.

The semantics of quantification is established by looking at different points
sharing the same world (by varying the assignment). Vice-versa, the seman-
tics of modalities is obtained by looking at different points sharing the same
assignment (by varying the world). In this way, quantifiers appear as modal
operators with assignments playing the role of worlds.

This view makes it easy to provide a rigid semantics for variables. The value
of a variable should depend only on the choice of the assignment. This implies
that we must have a fixed universe of individuals across the different worlds.
But, we may still vary the scope of quantification from one world to another,
since we do not assume that the set of assignments at a given world is composed



May 8, 2002 5

of all functions from variables to individuals.

Connectives can be expected to be independent of both assignments and
worlds. However, we choose to be quite more general here for technical reasons
(for proving the completeness theorem in Section 6).

Finally, function and predicate symbols are by default flexible (they may
depend on the world at end). Of course, as usual they are constant (they do
not depend on the assignment at hand). It is also convenient to have individ-
ual symbols that are both constant (independent of the assignment) and rigid
(independent of the world).

Definition 3.1 A Y-structure is a tuple (U, A, W, a,w, D,&E,B,[-]) with the
following components:

e U is a nonempty set (of points);

e A is a nonempty set (of assignments) and W is a nonempty set (of worlds);
e a:U—Aandw:U— W,

e D is a nonempty set (of individuals);

£ C DY is a set (of individual concepts) and B C 2V is a set (of truth
values), such that U € B;

the interpretation map [ -] is a function defined by means of the following
clauses 1) to 9), where

Us={ueU:alu)=46}, Bs={bnNnUs:be B},
Up={ueU:wu)=w}, B,={bNUy,:be B},
Uws = Uy NUs, Bus ={bNUys : b€ B},

1) [z] = {[x]s}seca where [z]s € D for z € X;

2) [i] = {[i]s}sea where [i]s € D for i € I, and [i]o(u) = [i]a(w) Whenever
u,u’ € Uy, for some w € W;

3) lf]= {[ Jw}wew where [fly, : D¥ — D for f € Fy;

4) [=] : D* — 2 is the diagonal relation;

5) [#] : D* — 2 is the complement of the diagonal relation;

6) [p] = {[plw}wew where [p]y, : D¥ — 2 for p € P;

7) [c] = {[clws fwew, sea where [c]ys : (Bus)® — Bys for ¢ € Cy;

8) [g2] = {[gzlw hwew where [gzlu : (Bu)* — By for g € @y and 7 € X;
9) [o] = {[0]s}sea Where [0]s : (Bs)* — Bjs for o € O.

Finally, the sets £ and B considered above are assumed to be such that the
following derived functions are well defined:
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1) rT:— ¢ by .7L'\(’U,) - [x]a(u); /Z\ — & by /Z\(u) - [i]a(u);

i) f:EF — &by fler,. . en)(w) = [Flowler(u), .. en(u));
iii) =: &% — B by =(e1, e2)(u) = [=](e1(u), e2(w));
iv) #:E2 = B by #(e1,e)(u) = [#](e1(w), ea(u));
v) D EF = Bby pler,. .., er) () = [Plow(er(u),. .., ex(w));
vi) ¢: B¥ — B by
b, -5 b)) (1) = [clo@a) (01 N Up@yatu)s - - bk N Usu)a(u)) (W);
vii) gz : B¥ — B by
q@ (b, - -5 b)) (w) = [q2]e(u) (01 N Upuys - - - > b N Uyu)) (1)
viii) 0: B¥ — B by
ob1, -+ b () = [0]auy (01 N Usguys -+ - b N Uy (10). A

Each element e € £ is an individual concept (adapting from [6]): the deno-
tation of the term “the president of country x” may vary with the point at hand
— the assignment and the time (world) at hand. Similarly, each b € B is a truth
value: the denotation of the formula “the president of country x = y” may also
vary with the point at hand. The standard choices for the sets £ and B are
DY and pU, respectively. Having the possibility of other choices makes this
structure “general” in the sense of [17], borrowing the notion of general frame
in modal logic [1]. This added freedom is really necessary when in Section 6 we
establish a completeness theorem which holds in a wide class of fob logics.

Like in many other approaches to modal quantifier logic, this semantics
allows different domains of individuals at different worlds, notwithstanding the
fact that in a structure there is a fixed global universe D of individuals. Local
domains are derived concepts in our case. At each world w, we should consider
the following two local domains:

e D¢ ={dec D:3ecf el w(u) =w & e(u) = d};
o Dy ={de D:3reX Fuecl wlu) =w & [T]a(u) = d}.

The set D¢ contains all possible values of terms at w. The set D% contains
all possible values of variables at w. Hence, Dﬁ contains all individuals which
are relevant when evaluating a quantification at w. Since variables are terms,
we have that D4 C DS. In the simplest cases, we have D5 = D = D, A
is isomorphic to DX and £ = DV, as illustrated in Example 4.1. Observe
that, in a logic with universal quantification, if D2 # D then the formula
Vo = ¢f can be falsified even if ¢ does not contain any modality. But the
formula Vzi = (E(t) = ¢7) will be valid when the existence predicate E is
interpreted at each world w as D% (provided that no modalities are involved).

It is important to observe that, although the formula Vay = (E(t) =¢}) has
a free logic flavor, our semantics is rather different from those given for instance
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in [10, 12] for modal first-order logic. In particular, our approach to the issue
of the Barcan formulae is different, as explained in detail in Example 4.2 below
and further commented after Remark 4.3.

As anticipated before Definition 3.1, the interpretation [z] depends only on
the assignment at hand. The interpretation [i] also depends only on the assign-
ment, but, furthermore, it must be constant within a given world. Naturally,
[f] and [p] depend only on the world at hand. Equality and inequality are given
their standard interpretations.

On the other hand, one might expect [c] to be invariant since that is the
case in the most usual fob logic (modal first-order logic). However, we make
it dependent on the pair world-assignment for technical reasons. This added
freedom is again essential in Section 6 when proving the completeness theorem.

Concerning the interpretation of quantifiers, we made [gz]| dependent only
on the world at hand, inspired by the functionality of the usual quantifiers,
having in mind the possibility of different ranges of quantification on different
worlds. Then, the interpretation [o] of a modality o is easily understood as the
dual. It depends only on the assignment at hand. This fibring style approach is
novel and will be further commented upon in the next section where we study
in detail the semantics of our first example of a fob logic.

It is worthwhile to extend these comments to the algebraic operations * in-
duced by the interpretation of the symbols. The definition of the functions f
and p imply that the truth of formulae depends on the world at hand already
at the atomic level (and not only as a consequence of the semantics for the
modal operators). Indeed, functions and predicates are dealt with as flexible
designators since their denotations may vary across worlds. On the other hand,
the value Z(u) does not depend on w(u), but only on the assignment a(u).
This means that variables are assumed to be rigid designators since they pre-

<

serve their values across worlds. The same applies to i(u). Furthermore, the
constraint 7(u) = (') whenever u, v’ € U, for some w € W imposes that indi-
vidual symbols also do not change their values within a given world. For this
reason we say that they are constant designators, besides being rigid. But note
that individual symbols may still have different values in different points, as
long as the points are in coordinatewise disjoint “clouds”. For instance, in Fig-
ure 1, the set U is the union of the sets A, B, and C, and we have ;(u) zg(u’)
for u,u’ € AU B, and for u,u’ € C; however we might have i(u) # i(u) for
u € AUB and v/ € C. In this figure, the horizontal marked part of U represents
the set of u such that a(u) = J, and the vertical marked part of U represents
the set of u such that w(u) = w.

Finally, observe that, in general, the set U,,s is not a singleton set and hence
U in general cannot be viewed as a subset of the Cartesian product W x A.

Given a X-structure it is straightforward to extend the interpretation to
terms and formulae, and, from there, to define two kinds of satisfaction (global
at the structure and local at a point).

Definition 3.2 Given a X-structure s = (U, A, W, a,w, D, E, B, [-]):
o []¢: T(Z,X) — £ is inductively defined by [t]¢ =, for t € X UT and

o~

[t s t)]s = FUEtDS - [t412), for £ € i, k> 0;
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At C

Uw 8

Us

Figure 1: A fibred universe

e [15: L(X,X) — B is inductively defined in the same way as [-]7, using
the p’s, €’s, qz’s and 0’s as well as taking into account [-]%;

3 sll—gfyiﬁ‘[h]]j):U;

o for every u € U, sulFJ v iff u € V15 A

Note that the global satisfaction and the local satisfaction are denoted by I,
and Ik, respectively. This notation was chosen taking into account that global
reasoning corresponds to proofs and local reasoning corresponds to derivations.

We might look directly at Y-structures as models for the fob language over
>.. But we prefer to allow the possibility of working with other kinds of models
as long as it is given a mechanism for extracting a Y-structure from a model.
The methodological advantage is obvious: we may then use the original models
of an already known logic and just show how to get a structure from each of
those models.

Definition 3.3 A Y-interpretation system is a pair (M, A) where M is a class
(of models) and A maps each m € M to a X-structure. A

Within the context of a Y-interpretation system, we freely replace A(m) by

m, writing for instance [-]7" instead of [[-]]‘;Km) and mu IFY « for A(m)u IFY 7.

Finally, we are ready to introduce the notion of the semantic component of
a logic as follows.

Definition 3.4 An interpretation framework is a pair S = (Sig, S) where:
e Sig is a class of fob signatures;

e S maps each Y € Sig to a X-interpretation system.
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The definition of the global and local entailments within a given interpre-
tation framework brings no surprises.

Definition 3.5 Given an interpretation framework S, we define for every X €
Sig, T C L(X,X) and ¢ € L(X, X):

o T IZE o iff, for every m € M within S(X), m H—l% © whenever m H-§ ~ for
every v € I';

o I'EY o iff, for every m € M and u € U at A(m) within S(X), mu IF} ¢
whenever mu H-E ~ for every v € I

A detailed illustration of all these semantic concepts is provided in the next
section where a novel semantics is proposed for the modal first-order logic.

4 Modal first-order logic

The following example serves two purposes. First, it is rich enough for illus-
trating the semantic concepts introduced in the previous section. Second, it
shows that those concepts are general enough for encompassing a novel seman-
tics of modal first-order logic where neither of the Barcan formulae is valid,
notwithstanding the fact that the domain of individuals is constant.

Example 4.1 Modal K first-order logic - interpretation framework.
Skror = (5ig, S)
(i) The class Sig is composed of all fob signatures of the form
X(I,F,P)=(I,F,P,C,Q,0),

in which I is a set, (F, P) a fol (first-order logic) alphabet (function and relation
symbols), and

e C1={"}, Coa={n}, Cr=0fork=0ork>2;
e Q1 =1V}, 0:={0}, Qr=0r=0fork>1.

(ii) Each interpretation system S(X(I,F,P)) = (M, A) is defined as follows.
We let M be the class of all tuples of the form

m = (D,W,R,V,T)
where:
e D and W are nonempty sets;
e R={Rs}scpx with each Rs C W x W (the accessibility relation at 0);

e V(p): W — 2 for p € Pp;
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e (i) € D for i € I,

o Z(f) = {Z(F)uw}wew where T(f), : DX — D for f € Fy;

e Z(p) = {Z(p)w }wew where Z(p)y : D¥ — 2 for p € P, with k > 0.
Finally, for each model m € M, we set:

A(m) = (U, AW, o,w,D,E,B,[-])

where:

e U=TWW x A and A = D¥;

e a((w,d)) =0 and w((w,d)) = w;

o £=DV and B =2Y;

(so that, the elements of B, and B; have respectively the form ({w} x A’) and
(W’ x {0}) with A" C A and W' C W)

o [z]s =d(z) and [i]s = Z(0);

o [f] = Z(f) for f € Fy, [p] = Z(p) for p € P, with k > 0, and [pl, =
V(p)(w) for p € F;

[_']w(s(b) =Ups \ b and [/\]w6(b17 bg) = b1 N bo;

V], ({w} x AN((w,d)) = 1iff &' € A’ for every ' € DX such that ¢ is
r-equivalent to 9;

o [Os(W'x{})({w,d)) =1iff w' € W for every w' € W such that wRs w’.

Observe that, for each w € W, the pair (D,Z,,) is a fol interpretation
structure corresponding to a vertical fiber in Figure 1, and, for each § € DX,
the triple (W, Rs, V) is a Kripke model corresponding to a horizontal fiber in
the same figure.

According to Definition 3.1, for every b C U and every (w, d) in U, we have

O(0) ({w, 8)) = [O]s(b N Us) ({w, 6))

This means that (w,8) € 0(b), if and only if, for every (w’,d) € Uy, if wRsw/,
then (w’,d) € b. Setting

(w,éﬂ?(w’,d’) iff §=0"and wRsw',

we have that R R
O0) = {u:Vu € UuRu' = ' € b}

and hence (B,f,f, S AV, EI> turns out to be a modal algebra, where [ is the
modal operator induced by the relation }/%, f=Qandt=U.

A similar reasoning leads to view the interpretation of quantifiers Vz as the
interpretation of a (vertical) S5 modality. For every b C U, the set Vx(b) is the
set of all u such that, for every u' € U, (), if a(u) is z-equivalent to a(u'), then
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u’ € b. This means that (B, £,5,57, \/ {Vaz}xex> is a multi-modal algebra,
where, for each variable x the operator Vz is induced by the relation R defined
by

(w, 5)R (w', 8"y iff w=w"and § is x-equivalent to §

We can observe here that the semantics for [ has a horizontal dimension,
namely, in order to evaluate a formula of the form Uy at a given u, we consider
the truth of ¢ at points u’ such that a(u) = a(u’), which means that, in this
evaluation, we always keep the same assignments. A

In the semantics for modal first-order logic we proposed above, the set of
individuals is constant across worlds. However, the following example shows
that making the accessibility relation dependent on the assignment is enough
to invalidate both Barcan formulae.

Example 4.2 Barcan formulae. We show that none of the formulae Valp =
OVxe and Vxe = Valp is valid in the semantics for modal first-order logic
given above.

Let s; be the structure pictured in Figure 2 in which

W = {wi,ws} and D={d,d}.

According to Example 4.1, these definitions determine the sets U, A, B, and &,
as well as the functions w and «. Fix a variable x and, for all u € U, set

Rou) = {{wi,wa)}, if afu)(z) = d; Row) = (), otherwise.

' A
A le Uu}2 A le Uw2 de
() 7| | p(x) o() || p(x)
w1y Wo W w1 w2 w3 W
S1 52

Figure 2: Barcan counterexamples

Assume that, in the signature at hand, P; contains an element p and let

[p]w1 (d) = [p]wl (d/) =0, [p]wz (d) =1, [p]w2 (d,) =
Thus, for every u € U,

uep@)]; it wu)=wsand a(u)(z) =d (%)
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This implies that, for every u € Uy, u € [Op(2)]})'; in fact, either a(u)(z) # d,
and hence R, is empty, or a(u)(x) = d, so that R,y = {(w1,ws)} and the
claim is a consequence of (x). Then, we can conclude u € [VzOp(z)]3 for all
u € Uy, .

Consider now any element u € U,, such that a(u)(z) = d. We have
u € [Ovap(z)]g HE (we,a(w)) € [Vap(z)];', but (+) implies that [Vzp(z)]}
is empty. This proves that for all u € U,, such that a(u)(x) = d, u &

[V2Op(z) = OVzp(2)]; -

As far as the converse implication is concerned, we consider instead the
structure s2 also outlined in Figure 2. In particular, we have W = {wy, wa, w3}
and D = {d,d'}. We set

Rogwy = {{w2,w3) }, if a(u)(z) = d; Ry = {{wz,w1)}, otherwise.
Define [p],, by

0 = [plw; (d) = [Pl (d') = [Pluz(d) = [Plun(d), 1= [plws(d) = [Plus(d)

Thus, [p(2)]} = [Vzp(2)]} = Uw,. Consider any u € Uy, such that a(u)(z) =
d; the equality [[V:Ep(l’)]];l = Uy, implies u € [[DVl'p(:L‘)]];l because R,y =
{{wa,w3)}. Let u' be any element of U,, such that a(u’) = a(u)%; then
Roy = {(wz,w1)} and hence v’ ¢ [Op(z)][3'. Moreover, a(u) < a(u') and
hence u ¢ [VaOp(z)]3'. We can then conclude u ¢ [OVap(z) = VaOp(z)[3. A
Remark 4.3 Quantifying bound variables. The implication [IVxp = Ve is
often considered a theorem of modal first-order logic (see, for instance, [11]).
Of course, there must be some step in the proof of this formula which is not
allowed in our semantics. The crucial passage, in fact, is the use of (equivalents
of) the first-order validity ¢ = Vz1), for & not free in . The structure sg of
Figure 2 can be used to show that this first-order validity can be falsified in our
semantics.

Assume that p is a 0-ary relation symbol, so that [p],, = 0 or [p],, = 1, and
assume [pl, = 1 only for w = ws. According to the example above, we have
u € [Op]? for every u € Uy, such that a(u)(z) = d. However, as the example
above shows, for these u’s we also have u ¢ [Va2Op] ;.

It can be easily verified, however, that ¢=-Vx is a validity in our semantics
if (x has no free occurrences in 1 and) ¢ does not contain modal operators.
This means that no genuine first-order validity is lost.

This turns out to be a key feature of our approach to modal quantifier logic:
Wz is not necessarily equivalent to VallVz1y. This might seem strange but
it agrees with our point of view of looking at quantifiers as modalities (over
assignments). Indeed, in general, (J;[0y7) is not equivalent to o[J10s1)p. Fur-
thermore, it opens the possibility of not having the Barcan formula as explained
in Example 4.2. A

Although our main goal is the study of fibring, our semantic approach did
lead us to a novel semantics for modal first-order logic as presented in Exam-
ple 4.1. The striking novelty in our approach is the fact that the accessibility
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relation may depend on the assignments (but, as a particular case, we can
impose Rs = Ry for all 6,0’ in A as described below). Although it may seem
strange, having the relation depending on the assignment is the natural thing to
do from a fibring point of view. Indeed, from this point of view, a modal quan-
tifier logic is just a a bi-dimensional modal logic with one dimension dedicated
to the proper modality and the other dimension dedicated to the quantifiers
seen as modalities over assignments. Therefore, a model is a cloud of points
like in Figure 1 and at each point we have a (horizontal) modal line and a
(vertical) quantifier line. More precisely, at each point we have a (horizontal)
modal structure and a (vertical) fol structure. At two different points of the
same vertical line we may of course have two different modal structures and,
hence, two different accessibility relations.

The assignment-dependent accessibility relation is the key ingredient of our
approach towards obtaining a modal quantifier logic without the Barcan formu-
lae. This desideratum was already achieved by other means in other approaches
to modal quantification, like [10, 12], where, however, key ingredients are flex-
ible domains of individuals and existence properties. On the contrary, our
semantics of modal quantifier logic (in Example 4.1) uses rigid domains.

Definability

Although definability issues are beyond the scope of this paper, we briefly ad-
dress the problem in order to explain better the semantics we proposed for
modal first-order logic. Namely, we present the appropriate notion of definabil-
ity and look at the definability of properties related to Barcan formulae.

We already observed that, in our semantics, the accessibility relation be-
tween possible worlds may vary with the assignment at hand. The usual possi-
ble worlds Kripke semantics can then be viewed as a particular case of the one
we considered, in which Rs = Ry for all 4,6’ in A. If this holds in a model
m, we will say that m is standard. In a given standard modal model m, we
have that, for every formula ¢ and every variable z, [Op = Vx03xp]™ = U. In
general, the converse implication is not true, however: the function [-] can be
chosen suitably, in a way such that [O¢ = VadIzp]™ = U for every formula ¢,
even if Rs # Rg for some 6,0’ in A. In order to be able to define the class of
classical modal structures, we need to consider a different notion of definability.

Definition 4.4 Given a modal model m = (D, W, R, V,Z) with corresponding
structure s = (U, A, W, o,w, D, E,B,[-]), the frame F(m) of m is the tuple
(U,A,W,a,w,D,E B, R). We say that model m’ is a frame variant of model
m if F(m) = F(m').

Lemma 4.5 Assume that the language L contains an atomic formula ¢ =
p(z1,...,2%) (k > 0) which is neither an equality nor an inequality. Then
the modal model m is standard iff, for every frame variant m’ of m, [Qp =

VxOHJ:go]]m/ =U.

Proof: We already observe that the implication ¢p=Vx{dzy is true for every
© in every standard model and hence in every frame variant of it.
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In order to prove the converse implication, we consider the particular case
in which k=1 and write x for x;; the general case can be proved in a quite
similar way. We assume that, for every frame variant m’ of m, [Op(z) =
VxOEpr(x)]]m/ = U’. Assume, as a reductio, that for some w,w’ € W and
5,0’ € A, wRsw' and not-wRgw’. Consider a particular frame variant m’ of
m in which [pl,(d) = 1 iff v = w’ and d = §(z), so that 0 # [p(2)]* C Uy,
[Bzp(z)]* = Uw, and (w,8) € [Op(z)]*. Since w is not Ry related to w’,
(w,d") & [O0Txp(x)]* and hence (w, ) & [VzdIzp(x)]* . QED

It is straightforward to prove that, for every standard modal model m and
every formula ¢, [VzOp = OVzp]™ = U and [OVze = VaOp]™ = U. The
problem of the class of models which can be defined, in the sense of Lemma 4.5,
by means of these two formulae is rather complex and it lies beyond the scope of
the present paper. The following proposition provides an example of a property
of the relations Rs which follows from the Barcan formula.

Proposition 4.6 Let m be a modal model such that
[VaOp(z) = OVap(z)]™ = U’

for every frame variant m’ of m, and let wy,wy be two possible worlds in m
such that wiRs,ws for some 6y € A. Then, for every d € D, there exists a
d € A such that [z]s = d and w; Rswo.

Proof: Define the set D by:
D' ={d e D:36€A [z]s = d and wy Rswa}

We prove that D’ = D. Consider a frame variant m’ of m in which [p], = D
for all w # wy and [plw, = D'. We first show that [Op(z)]™ 2 U,,. Given
any (wy,0), if w # wy then w;Rsw implies trivially (w,d) € [p(z)]"™. If
w = wy, then wyRsw implies [z]s € D’ and hence (w,d) € [p(z)]™. The
inclusion [[Dp(x)]]m, 2 Uy, implies [[VxDp(a:)]]m, D Uy,, which implies, by
the Barcan formula, [[DVmp(a;)]]m/ D Uy,. The assumption wiRs,wz yields
(wo, ) € [Vap(x)]™, which implies (ws,8) € [p(z)]™ for all § € A and hence
D' = D. QED

5 Hilbert calculi

We now turn our attention to the deductive component of a fob logic. As in
[17, 14], we adopt a Hilbert style for this component. However, the problem
is now much more complex because rules in fob logics frequently have side
constraints like “provided that a term is free for a variable in a formula”. Such
constraints correspond to the following abstractions (adapted from [15]):

Definition 5.1 (i) A X-proviso is a map from Sub(X) to {0,1}. (ii) A proviso
7 is a family {7s}serobsig, Where fobSig is the class of all fob signatures and
each 7y is a Y-proviso, such that my/(p) = mx(p) for every X-substitution p
whenever ¥/ D X. A
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Intuitively, we have 7x(p) = 1 iff the X-substitution p is allowed. Provisos
are well known in first-order logic. For example, we can say that any substitu-
tion instance &p = Vx€p of & = Vz€ is a validity of first-order logic provided
that x is not free in £p; in this case, we have 7(p) = 1 iff x is not free in &p.
Similarly, the restriction “fp is free for variable x in formula &p” for the applica-
bility of the first-order axiom Vz{ = £§ can be expressed by means of a suitable
proviso.

The definition of proviso as a family of functions indexed by signatures wants
to express that, in general, the constraints which appear in deduction rules are
actually families of constraints, depending on the language we are considering.
The constraint “x not free in £p”, for instance, has the same meaning in all
first-order languages, but, as a function defined on the possible substitutions
depends on the language we are considering.

The unit proviso 1 maps at each signature > every >-substitution to 1. And
the zero proviso 0 maps at each signature 3 every X-substitution to 0.

The provisos cfo(€) and rig(&), defined as follows, will be used frequently
throughout the paper. For each signature X:

e cfox(&)(p) = 1 iff the formula &p is a closed first-order formula;

e rigy(£)(p) = 1 iff the formula £p is an equality or inequality of rigid terms,
i.e. terms in X U 1.

We denote the sets of all ¥-provisos and all provisos by Prov(X) and Prov,
respectively. Given a proviso m we say that my is the Y-instance of 7. When
no confusion arises we may write 7(p) for ms(p).

Using the notion of proviso we are ready to define precisely what we mean
by a fob inference rule for some signature .

Definition 5.2 A Y-rule is a triple (¥, n, ) where:
e U C L(X,X,0,E) is finite (the set of premises);
e ne L(X,X,0,E) (the conclusion);

e 7 € Prov (the constraint). A

One can reasonably find strange that, in the previous definition, the last
component of a YX-rule is not an element of Prov(X), but a whole family 7.
This fact has technical reasons; namely, we want to be able to consider a »-rule
also as a Y/-rule, where X' is a richer signature. In this case, we need to know
how the proviso works on Y/-substitutions.

It is worth observing that we loose no generality by endowing a rule with
just one proviso. Indeed, although rules may be stated in practice with a
collection of constraints, it is straightforward to represent any such collection
II of provisos by the “product” proviso that at each signature > maps each
Y-substitution p to 1 iff all the elements of Il at 3 do so for p. In the sequel,
given two Y-provisos m and 7’ we denote their product by 7 * 7.
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It is now natural to introduce the notion of fob Hilbert system as a collection
of rules. This collection must be given a inner structure because, as already
done in [14, 17], we want to distinguish between proof rules and derivation rules,
and, in the context of modal fob logics, we want to distinguish between proof
rules for quantifiers and proof rules for modalities.

Definition 5.3 A X-Hilbert system is a tuple (Rq, Rqp, Rop, Rp) where:
e Ry is a set of X-rules (the derivation rules);
e Rqp 2 Ry is a set of X-rules (the quantifier proof rules);
e Rop 2 Ry is a set of X-rules (the modal proof rules);

e R, O Rqp U Royp is a set of X-rules (the proof rules). A

The distinction between proof and derivation rules is understood in terms
of two semantic entailments introduced in Definition 3.5.

Definition 5.4 (i) Let s be a X-structure and H = (Rq, Rqp, Rop, Rp) be a
>-Hilbert system such that, for every Y-substitution p:

e for every (¥,n,m) € Ry, s H—§ np whenever s H—E Yp for every 1 € ¥ and
m(p) = 1;

o for every (V,n,7) € Rq and u € U, su I} np whenever su IFy 1p for
every ¢ € ¥ and 7(p) = 1.

Then, s is said to be appropriate for H.

(ii) If A(m) is appropriate for the Hilbert system H for every model m in the
Y-interpretation system (M, A), then H is said to be sound for (M, A). A

The distinction between quantifier and modal proof rules will be used only
at the proof-theoretic level. We delay its justification until we address later on
in this section the problem of defining precisely what we mean by a vertically
and a horizontally persistent logic. But to this end we need first to introduce
the notion of Q-proof and O-proof that we shall do in the context of a Hilbert
framework (the proof-theoretic counterpart of interpretation framework).

Definition 5.5 A Hilbert framework is a pair H = (Sig, H) where:
e Sig is a class of fob signatures;

e H maps each ¥ € Sig to a X-Hilbert system. A

Logics are often endowed with uniform Hilbert calculi in the sense that their
rules do not depend on the signature at hand. More precisely:

Definition 5.6 A Hilbert framework H is said to be uniform iff:
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1. HX) = H(Y) for every X, %' € Sig;

2. for every signature ¥ € Sig and proof rule (¥, n, ) in H(X), mx(p) =
mx(p'), where, for each 6 € © and ¢ € =, p/(0) and p'(§) are respectively
obtained from p(f) and p(§) by replacing some occurrences of i by x,
provided that z is fresh in ¥p U {np}. A

Uniform Hilbert frameworks are common in logic. When, for instance, we
say that a = (8 = «) is an axiom of first-order logic, we mean that, in every
language, every instance of &« = (8 = «) in that language is an axiom of the
version of first-order logic that is based on that language.

Clause 2. above is expected in a signature-independent framework since
individual symbols belong to the signature. However, it may happen that a
logic has some individual symbols that are present in all signatures. Even
in this case, Clause 2. imposes that provisos should be blind to them. This
additional requirement is nevertheless fulfilled by the Hilbert calculi given to
usual logics.

As an illustration of the concepts above, consider the following Hilbert
framework for the modal K first-order logic whose semantics was presented
in Example 4.1.

Example 5.7 Modal K first-order logic - Hilbert framework.
Hkror = (Sig, H)

(i) The class Sig is as introduced in Example 4.1. Note that we shall also use
other connectives defined as abbreviations in the standard way.

(ii) Each Hilbert system H(X(I,F,P)) = (Rq,Rqp,Rop, Rp) is as follows,
where possibly indexed 6 and & range respectively over O, the set of term
schema variables, and over Z, the set of formula schema variables.

e Ry is composed of the following rules:

0, o, > for every tautological schema formula ¢;

0,

0,0 —92=>92 = 01,1);

@,91—92#(92—93#91—93) >

0,01 = 0] = (... = (6 = O = G55k = Ok ), 1);

0,61 = 0= (.= (B = B = (175 = €5)) ), atm ()

177

=
—
—
—
—
=

where atm(§) = 1 iff £ is atomic;
- <®,91 75 92 = (_' 91 = 92), 1>;
- <{£17€1 = ‘52}7521 1>

e Rqp is composed of the rules in R4 and the following proper quantification
rules:

- <®7 (V.%’ (51 = 52)) = (ngl :>V.%'§2), 1>5
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— (0,& = Va &, x¢€) where ¢ (p) = 1 iff x does not occur free in p
and &p does not contain modalities;

— (0, (Vz &) =&5, 0va:§) where Ova:£ (p) = 1 iff when replacing the free
occurrences of x in £p no variable in fp is captured by a quantifier
and no non-rigid replacement is made within the scope of a modality;

- <{€}7vx§7 1>

e Rop is composed of the rules in R4 and the following proper modal rules:

- (0.0 =&) = 0&=0&),1);
— (0,£=0¢,rig(6));
- <{€}7D€7 1>

e R, = Rqp U Royp.

Observe that this Hilbert framework is uniform. Furthermore, it is easy to
check that, for each signature (I, F, P), the Hilbert system H(X(I, F, P)) is
sound for the interpretation system S(X(I, F, P)) introduced in Example 4.1.

Note also that we find again, now at the deduction level, the feature of
our approach discussed in Remark 4.3: OOVzt is not necessarily equivalent to
Vz[Vzey. This is a direct consequence of the strong proviso for axiom £ =
V€. We must stress that without that proviso the deductive system would be
unsound with respect to the interpretation framework given in Example 4.1:
consider the counterexample in Remark 4.3.

The strong proviso for axiom (Vx§) = £ is also essential. Without this
proviso, given a flexible symbol s, we would be able to infer (s = s) = O(s > s)
from Vz((s = z) = O(s > z)). Obviously, the latter is a satisfiable formula
while the former is not. A

Before defining precisely the four notions of inference within the context
of a Hilbert framework, we need to say what we mean by applying a schema
Y-substitution to a Y-instance of a proviso. Given a proviso 7 and a schema
Y-substitution o, we denote by mxo the map such that: (mx0)(p) = mx(op).
Obviously, 15,0 = 1y and Ogo = Oyx. Furthermore, for every Y-substitution p,
we have that either 7y,p = 1y or mxp = Oy, depending on whether 75 (p) = 1
or mx(p) = 0, respectively.

Definition 5.8 Within the context of a Hilbert framework H:

(i) A X-proofof p € L(X,X,0,Z) from I' C L(X, X,0,E) constrained by 7 €
Prov(X) is a sequence (@1, 1), ..., (¢n, ) of pairs in L(3, X, 0, =Z) x Prov(X)
such that:

o m# Ox;
e ©is ¢, and 7 is my;

e foreachi=1,...,n:
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— either ¢; € I and m; = 1x;

— or there is a rule r = (¥, n,7’) € R, within H(X) and a schema
Y-substitution o such that:

* i is 10,

* Wo={pj,. .05} S{or,. - pim1}
* O = Ty ke kT, K TR0

In this case we write I" I—E @ :mor, simply, 'k, . If ) l—g @ : ™ we say that
@ is a X-theorem constrained by w. If m = 1y, we omit 7 since such a constraint
is always fulfilled. In this case we are in the presence of a (non constrained)
Y-proof or a (non constrained) X-theorem.

(ii) For R € {Rqp, Rop, Ra} a XR-inference of ¢ € L(X,X,0,E) from I" C
L(%, X,0,E) constrained by m € Prov(X) is a sequence (@1, m1), ..., (©n, ) of
pairs in L(X, X, 0, E) x Prov(X) such that:

o m# Ox;
e ©is ¢, and 7 is Ty;
e foreachi=1,...,n:

— either p; € I and m; = 1y;;
— or ¢; is a Y-theorem constrained by 7' and m; = 7';

— or there is a rule r = (¥, n,7’) € R within H(X) and a schema
Y-substitution o such that:

* ;18 no;

* Wo = {<pj17""90jk} - {9017---3901'*1};

KT =Ty ke K T, kTGO

A Y.R-inference will be called a XQ-proof, or a XO-proof, or a X-derivation,
in all cases constrained by m, according to whether R is Rqp, or Rop, or Ry,
respectively. Moreover, we will write I" l—gp p:m,or ng p:myor l—§ p:T
with the obvious meaning. As above, we omit 7 in the unconstrained cases,
that is, when 7 is the unit X-proviso. A

According to this definition, for R € {Rqp, Rop, R4}, the difference between
a Y R-inference and a Y-proof, from a given set I', is that, in the former, the
elements of I" can be involved as premises only in rules in R. The inclusion
relationships between the various sets of rules imply that 1) if I' -4 ¢ : 7 then
IF'kpy:mand I'top ¢, and 2) if Mg p:mor I'kop @i then ', @ 7.
Moreover, every Y-theorem is XR-deducible for any R from any set I'.

In the sequel, it will be often convenient to use the ‘closure’ notation for
provability and derivability, that is, for F€ {Fp, Fqp, Fop, Fa} and any set T’
of formulae, we set

I'" = {p: Tk}
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For R € {R},, Rqp, Rop, R4}, the deduction sequence (p1,71),. .., (¢n, Tn)
of T’ I—[E{ @ @ 7 is said to be sober iff no proper subsequence is a deduction
sequence for T’ I—PE{ @ : m. Obviously, from any deduction sequence we can
always extract a sober one by removing superfluous steps.

If a deduction is done without using schema variables, the resulting 7 is
necessarily 1s;. Another way of obtaining such non schematic results is by
producing an instance of a schematic result by applying a substitution p €
Sub(X) such that m(p) = 1. Concerning such non schematic deductions, the
following result is easily established by induction.

Proposition 5.9 For R € {R,, Rqp, Rop, Ra} and p € Sub(X), if T F§ ¢ : 7
with sober deduction sequence (¢1,7m1),..., (¢n, ™) and ms(p) = 1, then we
have T'p F% ¢p with deduction sequence (p1p,15), ..., (¢np, 15).

The next result will also be used later on. In short, it states sufficient
conditions for replacing individual symbols by variables in a derivation.

Proposition 5.10 Assume that, in a uniform Hilbert framework H, T’ I—§ p:T
and let x be any variable fresh in the corresponding derivation. Then, for every
i which does not occur in the rules of H(X), T FY ¢t : .

Proof: Observe first that, given any rule » = (¥, 7, 7), any ¢ which does not
occur in ¥, any fresh x, and any schema Y-substitution o, if the set {¢1, ..., ¢r}
is contained in Wo, then the set {(p1), ..., (px)%} is contained in Wol. This
means that, if ¢ is a theorem, then its proof can be turned to a proof of ¥ by
replacing every schema substitution o involved in the proof by o’. Moreover,
it is trivial that ¢» € T implies 1. € T'.. Then, the substitutions o — of
transform a derivation of ¢ from I' into a derivation of ¢’ from T'%. As far
as the provisos are concerned, since H is assumed to be uniform, msct(p) =
7x(olp) = mx(op) = mxo(p) for every p and hence nxo? = nxo. This shows
that the substitutions o — ¢’ do not change the constraints in the derivation.

QED

We now proceed to identify interesting classes of Hilbert frameworks. When
proving the completeness theorem in the next section we need to assume that
we are working with frameworks in these classes. This assumption is not too
restrictive since fob logics tend to be endowed with such frameworks.

We start by defining vertically and horizontally persistent frameworks. These
notions shed some light on the need for the distinction between quantifier and
modal proof rules.

But first we introduce some useful ¥-provisos. Given a set ¥ of schema
formulae over X:

e cfox(T) = Ap. /\ cfox:(€)[§/v](p);

Ypew

o rigye () = Mp. N rigs(€)[¢/¢](p);

pew
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where [£/1] denotes the ¥-schema substitution that replaces £ by .

Definition 5.11 We say that a Hilbert framework H is wertically persistent
and horizontally persistent iff, respectively, the following properties (VP) and
(HP) hold for every signature ¥ € Sig and I', ¥, ¢ in L(X, X, 0, Z):

e o I—ap @ mx clon (W)

(VP) ;
I, WY ¢ 7 x cfox(0)

e, ¥ l—%p ok rigy (V)
e, U Y ¢ rigy (V) .

(HP)

We say that H is persistent iff it is both vertically and horizontally persistent.
A

Intuitively, in a persistent framework, whatever we can Qp-prove from a
set of closed first-order formulae, we can also derive from the same set; and
whatever we can Op-prove from a set of rigid formulae we can derive from the
same set. That is, quantifier proof rules do not bring anything new from a set
of closed first-order formulae and modal proof rules do not bring anything new
from a set of rigid formulae.

The distinction between quantifier and modal proof rules also plays an es-
sential role in the notion of congruent framework.

Definition 5.12 A Hilbert framework H is said to be congruent iff for every
signature ¥ € Sig:

1. for every Qp-deductively closed I" C L(X, X, 0, Z), Op-deductively closed
I'"C L3, X,0,8), ¢1,¢1, .-, ¢k, ¢, in L(X, X,0,2), and ¢ € Cy,

', 1" ; I—E @, :mand IV, T, ¢! |—§ pi:m fori=1,...,k
LT (o1, ) BT (@, o 0h) T

2. for every Qp-deductively closed I' C L(3, X,0,Z), ¢1,¢,..., ¢k ¢} in
L(¥X,X,0,E),q € Qrand x € X,

Do by ol imand T, i by @i fori=1,...,k
T,qz (P, on) Fg a2 (91, 0h) o

3. for every Op-deductively closed I' C L(X,X,0,Z), ¢1,¢],..., ¢k, ¢} in
L(3,X,0,5), and 0 € O,

Do Fyphimand T, FY i fori=1,...,k
Lyo(1,--50k) I—go(cpll,...,gok):ﬂ
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It is easy to understand why the set is required to be Qp-deductively closed
or Op-deductively closed. Observe that, in first-order logic, for I' = {¢, ¥} we
have I', p Fq ¥ and T', ¥ k4 ¢, but in general we do not have I',Vx ¢ Fq Vx .
And, in modal logic, for T' = {p, 9} we have I, ¢ Fq ¢ and T',¢ 4 ¢, but in
general we do not have I', Dy F4 0.

Finally, we consider the classes of Hilbert frameworks for equality and in-
equality. Recall that the symbols = and # are assumed to be always available
in every fob logic. Their semantics is fixed (recall Definition 3.1), but, so far,
we have not assumed at the proof-theoretic level anything about them.

Definition 5.13 A Hilbert framework H is said to be for equality iff, for every
signature ¥ € Sig, I', p in L(X,X,0,E) and ¢,t1,t],...,t;, ¢, in T(E, X, O):

1y t=t
2.t =ty FY to = ty;

3.t =ty ty =t Hy ty = t3;
Fl—gti:t;:ﬂforizl,...,k
DY f(t,.. te) = f(t),... th):m
PRyt =t :mfori=1,....k
T,p(ty, ..., tg) I—gp(t’l,...,t%):ﬂ
I‘,t:il—?gozw

r l—dZ p:T
whenever ¢ occurs in I'p or in p. A

4. (i)

9

(i)

I

, where ¢ does not occur in the rules of H(X) and 7(p) =0

Clauses 1-4 impose that equality is a congruence relation. Clause 5 expresses
a well known derived rule in ordinary first-order logic with equality that is
reasonable to assume of any fob logic for equality.

Definition 5.14 A Hilbert framework H for equality is said to be for inequality
iff, for every signature ¥ € Sig, I', ¢ in L(X, X,0,E) and t;,t2 in T'(X, X, O):

) F|—§t1:t2:7randfl—§t17ét2:7r_
‘ Fl—dzapzw ’
9 P,tl:t2|—§¢2ﬂ'andr,t17§t2|—§gp:ﬂ'

A
F"dEgOZﬂ'

Clauses 1 and 2 relate inequality with equality as expected when nothing is
assumed about the available connectives.

We conclude this section by introducing the notion of logic as composed by
an interpretation framework and a Hilbert framework, and by making precise
the notions of completeness.
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Definition 5.15 A logic is a triple £ = (Sig, S, H) such that (Sig, S) is an
interpretation framework, (Sig, H) is a Hilbert framework and H(X) is sound
for S(X) for every X € Sig. A

Observe that we decided to deal only with logics with sound rules. This
option is quite natural given the little interest of unsound rules, but it was
motivated by technical reasons: working only with sound rules simplifies the
treatment of fibring in Section 7.

As expected, a logic L is said to be for equality or inequality, or congruent, or
(vertically or horizontally) persistent iff so is the underlying Hilbert framework.

Definition 5.16 A logic L is said to be (strongly):

e p-sound iff, for every ¥ € Sig, I' C L(X,X) and ¢ € L(X,X), T IZE %
whenever T’ |—§ ©;

e d-sound iff, for every such %, I', o, I’ |=§  whenever I' I—§ ©;
e p-complete iff, for every such X, I", ¢, I’ I—E o whenever I' IZIE) ©;
o d-complete iff, for every such X, ', ¢, T’ |—§  whenever I’ IZE ®.

The logic £ will be said to be sound iff it is p-sound and d-sound and complete
iff it is p-complete and d-complete. A

Note that soundness and completeness are stated only for non schematic
formulae in L(X, X). Indeed, it would be impossible to consider those notions
for schema formulae in L(3, X, ©, =) since there is no semantic counterpart to
provisos.

Clearly, a logic L is sound iff, for each signature X € Sig, the Hilbert system
H(Y) is sound for the Y-interpretation system S(X). Therefore, (according to
Definition 5.15) every logic is sound.

Example 5.17 Modal K first-order logic. Consider the logic composed of the
interpretation framework introduced in Example 4.1 and the Hilbert framework
defined in Example 5.7. This logic is for equality and inequality. Furthermore,
the Qp-rule (0, ¢ = Va &, {x¢&}) ensures vertical persistency, and the Op-rule
(0, = 0O¢,rig(€)) guarantees horizontal persistency. In order to prove that
the logic is congruent, we can use classical results from first-order and modal
logic; it is worth observing that Clause 1 in Definition 5.12 holds for all sets I
and I'”. Tt is also straightforward to verify that the logic we are considering is
sound, taking into account the previous observation. A

Concerning completeness, it is in general not an easy task to establish if
a given logic enjoys that property. But in the next section we prove a quite
general completeness theorem.
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6 Completeness

In this section, we assume as given once and for all a logic £ with underly-
ing Hilbert framework H; what follows applies to every signature X within the
logic. Moreover, since we are here interested in completeness issues (see Defini-
tion 5.16) we will consider only formulae from L(3, X'). This means in particular
that provisos will not appear; in fact, for I' C L(X, X ) and v € L(%, X), if, for
instance, I' =q v : 7, then I' -4 v : 1x.

Definition 6.1 Within H(X), let ' C L and ¢ € L. We say that T' is ¢-
consistent iff T’ }7% . The set I' is said to be a p-maximal consistent set
(p-m.c.s.) if it is p-consistent and no proper extension of it is p-consistent. We
say that I' is consistent or maximal consistent if, respectively, there is a ¢ such
that I is p-consistent, or there is a ¢ such that I" is p-maximal consistent. Any
p-m.c.s. including I' is said to be a p-mazimal consistent extension (¢-m.c.e.)
of I'. Every p-m.c.e. of I is said to be an m.c.e. of T". A

The proof of the following Lindenbaum Lemma is based on the usual con-
struction.

Lemma 6.2 Within H(X), for every consistent set I and every ¢ such that
I' 4 ¢, there exists an p-m.c.e. of I'. In particular, every consistent set can be
extended to an m.c.s.. A

Lemma 6.3 Within H(X), if T" is an m.c.s., then, for all terms ¢,¢, t =¢ € T’
ifft £t &T.

Proof: By Clause 1 in Definition 5.14, there exists no consistent set containing
both t =t and t # t/. Assume that I" is a ¢p-m.c.s. such that t = ¢ € T" and
t#£t' ¢, then TU{t =t'} Fq p and TU{t # t'} Fq ¢, and hence, by Clause 2
in Definition 5.14, I' 4 ¢, which contradicts the assumption. QED

Definition 6.4 A logic £ is said to be full iff for every signature > € Sig and
Y-structure s for the Hilbert system H(X) there is a model m € M in S(X)
such that A(m) = s. A

Example 6.5 Modal K first-order logic. The modal first-order logic presented
in Example 5.17 is not full. But, for each ¥(I, F, P), we can enrich it with all
(1, F, P)-structures for the Hilbert system H(X(I, F, P)).

Theorem 6.6 Completeness. Every full, congruent, persistent, and uniform
logic for equality and inequality is complete.

!The consistency of a set ' is often defined as I'"d # L, but, for arbitrary Hilbert calculi,
in general it is not true that, if I'"9 % L, then there exists a maximal extension of I with this
property. This holds, however, if there exists a formula L such that {1} = L (see [16]). By
Clause 1 in Definitions 5.13 and 5.14, in Hilbert calculi for inequality, the role of L can be
played by t # t for any term t. Even if we will be mainly interested in these Hilbert calculi,
we prefer using the notion of consistency given in Definition 6.1 for the sake of generality.
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This theorem will be proved using the Henkin construction below which is
based on the following auxiliary concepts and lemmas. The Hilbert framework
H = (Sig, H) is assumed to be congruent, persistent, uniform, and for equality
and inequality.

From here on we consider fixed a signature ¥ € Sig and H may stand for
H(X). Recall also that we may use L for L(X, X), cL for the closed formulae
in L(X,X), T for T(X, X) and ¢T for the ground terms in 7'(3, X).

Given any set F such that Fy N E = () and I N E = (), we denote by Xg
the signature in Sig obtained from X by replacing I by I U E and we refer to
H(XE) simply as Hg. Similarly, we may use Lg for L(Xg, X), cLg for the
closed formulae in L(Xg, X), Tg for T(Xg, X) and gTg for the ground terms
in T(Xg, X).

Definition 6.7 Given any set I' of formulae in Lg, the Q-kernel and the O-
kernel of T', written K¢g(I') and Ko(I'"), are defined by

Kqo(I') = {¢e€Tl:pisafirst-order formula and ¢ € cL}U
{t=deTl:teglandde E}U
{d # d": distinct d,d’ € E and
' egT(t=deT andt/ =d €T)};
KoT) = {t=deTl:teXUlandde E}U
{t#t el t,{ e XUI}U
{d # d : distinct d,d’ € E and
e XUIt=deTlTandt' =d €T)}.
Lemma 6.8 Within Hg, for every set I' of formulae in Lg such that (Kq(I")U
Ko(I) €T,
Fa
(P U (Ko@) U (o)) * = T

Proof: Consider the instances of (VP) and (HP) in Definition 5.11 in which
I"» = ("» and W is, respectively, Ko(I') and Ko(T). In these cases, (VP) and
(HP) imply (Kqg(I')) e = (Kg(T))" and (Ko(I')) 0 = (Ko(T'))", because
(7r is contained in any set of the form K" or K"or and because the sets K¢ (T')
and Ko (T") fulfill the clauses for ¥ of that definition. Then, from the assumption
LU (Kg(D))er U (Ko(I)) 0r 4 ¢, we have T'U (Kg(I)) 4 U (Ko(T')) ™ Fq ¢
which yields I' -4 ¢ because Kg(I') CT" and Ko(I') C T. QED

Definition 6.9 Let E be a set such that Fy N E =0 and INE = (. A set
I' C Lk is said to be an E-Henkin set iff:

1. I'is an m.c.s. in Hg;
2. for every term t € T, there is a d € F such that t = d is in T’
3. for every d € E, there is a term t € T such that t =d € T;

4. {d+#d :d,d e E}CT.
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The set I' is said to be an E-pre-Henkin set iff Clauses 3 and 4 above are
fulfilled. A

The elements of F in an E-Henkin set will be called witnesses. If usual first-
order logic is considered, the definition of Henkin set given above is different
from the traditional one in the sense that, if I' is an F-Henkin set and Jxp(z) €
I", then the definition does not guarantee that there is a witness d such that
©(d) belongs to I'. This seeming departure from the usual construction will be
explained in Remark 6.12 below.

Given any set I' C Ly and any 6 € EXY we write 6 C I iff, for every
te XUl, t=46(t)isin . If T is a E-Henkin set, there is a unique § € EXY!
such that § C I' which we denote by dp. Moreover, it can be easily verified that,
if I is both an Ei-Henkin set and an FEs-Henkin set, then F; = E>.

Lemma 6.10 Henkin extension. Assume that: 1) D is a set with cardinality
greater than T such that FyN' D =0 and I N D = (), 2) E is a possibly empty
subset of D, 3) I" is a E-pre-Henkin set, and 4) T" is ¢-consistent in Hg. Then,
there exist a set E* and a set I'* C Lg« such that: i) E C E* C D, ii) I'* is
p-m.c.e. of I' in Hp«, and iii) I'* is an E*-Henkin set.

Proof: Since I' fulfills Clause 3 of Definition 6.9, also the cardinality of D\ F is
greater than that of 7" and hence we can consider an infinite sequence dy, dy, . ..
of elements of D\ E. Given any enumeration tg,t1,... of T, we define the
sequences I'o C I'y € ... and Eg C Ey C ... of subsets of Lp and of D,
respectively, such that, for each k,

(x) T isae-m.ce. of I within Hg,, and
(#x) T’y is a Ej-pre-Henkin set.

We let Ey be E and Iy be a p-m.c.e. of I within Hg (which exists by Lemma
6.2); thus, () and (*x) hold for k¥ = 0. Assuming inductively that (%) and (%)
hold for an arbitrary k, the sets I'y11 and Ej.; are defined according to the
following cases.

Case 1: for some d € Fy, d =t € I'y. Weset I'yy1 =1y and Epyq = Ey.

Case 2: for no d € Ey, d =t € I'y. We set Ey1 = Er U {dy} and we let I'y4q
be any p-m.c.e. of I‘;: = I'y U {ty =di} U {d#d} : d € E}} within Hg, .
By Lemma 6.2, I'y, ;1 exists if the set FZ is p-consistent in Hg, . Since
I'y is a p-m.c.s. in Hg, and t;, = d € T'y, for all d € Ej, Lemma 6.3 implies
ty #d € T'y for all d € Ej, and hence F: is p-consistent in Hp, , if and only
if such is I'y U {tx = di} (because each inequality d # dj, can be inferred from
ty # d and t, = dy). If Ty, U {t, = dp} Fq ¢ in Hg,,, Clause 5 in Definition
5.13 implies I'y Fq ¢ in Hg, ,, because dj does not occur in I'y and in .
By (the proof of) Proposition 5.10, we can replace every occurrence of dj in
the derivation of ¢ from I'y in Hg, , by a variable x which does not occur
in that derivation; in this way, a derivation of ¢ from I'y in Hg, is obtained.
This contradicts the inductive assumption that I'y is p-consistent in Hg, . It is
straightforward to verify that I'y;1 has the properties (%) and (xx).
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Set E* = UgenFir. The envisaged E*-Henkin set is given by I' = Ugenlk-
Indeed, by construction, I'* contains I' and fulfills Clauses 2 to 4 in Defini-
tion 6.9. As for Clause 1 in that definition, observe that the set I'* is -
consistent within Hg-+ because such is any 'y, and any derivation in Hg- is also
a derivation in some Hpg,. Furthermore, given any formula ¢ ¢ I'*, we can
consider a k such that ¢ € Lg,. Since ¥ ¢ I'y, and I'y is an p-m.c.s. within
Hpg, , we have I'y U{¢} F-q ¢ in Hp, , which implies ' U{¢} k4 ¢ in Hp-. QED

The Henkin construction

Given a consistent and p-deductively closed set I'y C L and a set D with
cardinality greater than that of T, such that Fo N D = () and TN D = 0, we
define an appropriate structure

s=(U,AW,a,w,D,E, B,[])
for the Hilbert calculus H at hand as follows. We set
U = {uC Lp:uisa E-Henkin set for some £ C D and I'g C u}.

If w € U is an E-Henkin set, the set E and the Hilbert calculus Hg will be
referred to as F, and H,, respectively.

Lemma 6.11 For every u € U, we have
1. Kg(u) € uand Ko(u) C u;
2. ((Kg(u))Fer UTg)d Cuand ((Ko(u)) o0 UTo) 4 C u within Hy;

3. the sets Kg(u), Ko(u), and Kg(u)UKo(u) are E-pre-Henkin sets, where
E is the smallest subset of D such that all its elements occur in, respec-
tively, Kg(u), or Ko(u), or Kg(u) U Ko(u);

4. there are infinitely many elements of D which do not occur in u.

Proof: 1. By the definition of Henkin set. 2. By Lemma 6.8, taking into
account that u contains I'g and is d-deductively closed. 3. By Definition 6.7
and the definition of pre-Henkin set. 4. By Clause 3 in Definition 6.9, we have
that the cardinality of the set of elements of D which occur in u is smaller than
the (infinite) cardinality of D. QED

The sets W and A, and the functions w and « are defined by
W = {Kg(u) :ueU} A ={0,:ueU} (6.1)

w(u) = Kg(u) a(u) = oy (6.2)
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Remark 6.12 Witnesses in Henkin constructions. As observed above, if the
logic at hand is usual first-order logic, then Definition 6.9 does not guarantee
that, if xp(z) € u € U, then p(d) € u for some d in D. This can be explained
by observing that, in our construction, the role of the usual Henkin sets is
essentially played by the sets U,. It is true, in fact, that if Jzp(x) € u €
Uy, then there is a v’ € U, and a d € D such that ¢(d) € «/. In order to
prove this, observe first that the set I'g U Kg(u) U {¢(z)} is consistent because
otherwise I'yUKg(u) Fq —¢(x) and, since Iy is p-deductively closed and Kq(u)
is composed of closed formulae, I'y U Kg(u) Fq Vz—p(z), which is impossible
because I'g U Kg(u) U {3zp(x)} C u and u is consistent. Then, we can consider
a Henkin extension u’ of T'p U Kg(u) U {¢(x)} which is in U, and, for some
d € D, contains x = d. From the properties of equality, we also have ¢(d) € v’

A

Observe that there is a one-to-one correspondence between the set A and
the set of all Kp(u) such that u € U; in fact, all the equalities ¢t = §,(¢) belong
to Ko(u) and, given §,, the set Kp(u) is the set of all equalities and inequalities
which can be derived from the set {t = d,(t) : t € X UTI}. Thus, the sets U,
and Us considered in Definition 3.1 fulfill the following equalities, in which « is
any element of U such that, respectively, w(u) = w and 6(u) = 9.

Uy ={u: Ko(u') = Kg(u)} Us={u: Ko') = Ko(u)} (6.3)
On the basis of (6.3), the set Uys turns out to fulfill
Uws = {u: Kg(u) = w and d,, = 6} (6.4)

The sets E,,, Es, and E,; are respectively defined as N{E, : u € Uy},
N{E, : u € Us}, and N{E, : u € Uys}, so that we have that E,, U E5 C Ejs.
The calculi Hg, , Hg;, Hg,, will be also referred to as H,,, Hs, and H,s.

The extension |y| of a formula « in L and the extension |¢| of term ¢ in T,
are functions from U into, respectively, {0,1} and D:

Al =1 i 5 € o)

[t|(u) =d iff t=deu
It is worth observing that, if v and «’ belong to the same Uy, then w = Kqg(u) =
Kq(u') and hence, for every closed first-order formula 7 of L and every ground
term ¢t in T, |y|(u) = |y|(v) and [t|(u) = [t|(u). As far as extensions of
formulae are concerned, we will shift freely from the functional notation to the
set notation, that is, we will often write u € || instead of |y|(u) = 1. The sets
B and & are defined by:

B = {ly|:y€eL} and &€ = {|t|:t €T} (6.6)

Given any formula ¢ € I'g, since any element of U contains I'g, we have that
|p| = U and hence U is an element of B. On the basis of (6.6), we will use,
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possibly indexed, |y| and [t| to denote elements of B and of &, respectively.
Thus, setting

Mo = [N U (= {u: Ko(u) = w and v € u}) and

s = INUs (= (we Uty € uand 8, =) o0
the sets B,, and Bs can be written as
By ={llw:veL} and Bs={|ys:v€Ll} (6.8)
Finally, by (6.7) and (6.8), we have
Vlws = 17w N [yls  and  Buws = {|7|ws : v € L}. (6.9)

The construction of the envisaged -structure is accomplished by the follow-
ing definition of the interpretation map [-]. We first define the interpretation
of the elements of X, I, Fj, and of Py:

e forxe X,ie€1,and § € A,
[z]s = d6(x),  [i]s = 0(4); (6.10)
o for f € Fy (k>0)and u € Uy,

[lw(ltal(u), - el () = 1f (- o)l (u) s (6.11)

o for every u € U,

[=1(Eal(w), [t (u)) = 1A [£1](u) = [t2](u); (6.12)

[FI(ta](w), [t2l(w) = 1T [t1](u) # [t2|(u); (6.13)
o for pc P, (k> 0) and u € Uy,

[Pl ([tal(w), - [t () = Ip(tr, ... s tr)[(u) - (6.14)

As far as (6.10) is concerned, we have to show that, according to Definition 3.1,
for every i € I, every w, and u,u’ € Uy, [i]a) = [{]a)- This follows imme-
diately by observing that u,u’ € U, implies Kg(u) = Kg(u') and that these
sets contain all the equalities of the form ¢ = d,,(¢) and ¢ = d,/(¢), which implies

In order to show that [f], [p]w are well defined, we use some properties of
equality given in Definition 5.13. Observe first that, if |¢;|(u) = |t;|(u), then
there is a d € D such that ¢; = d € u and t;, = d € u, which implies in turn ¢; =
t; € u. So, for some d € D, f(t1,...,ti,...,tp) =d € wiff f(t1,...,t,... tx) =

de€wu,and p(ty,... t,... . tg) € wiff p(t1,...,t,...,t;) € u. Moreover, assume

*More precisely, [f]w is defined by (6.11) for the relevant tuples and chosen arbitrarily
elsewhere. Observe that the value of the interpretation elsewhere is irrelevant in Definition 3.2,
and, therefore, irrelevant to both semantic entailments. The same applies to the interpretation
of the other symbols.
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that the tuples (|t1](u), ..., [tx|(u)) and (|t1](u'), ..., |[tx|(v')) coincide for u,u’ €
Uy and let them be (dj,...,dg). This means that, for i=1 to k, t;=d; € u and
t;=d; € u'. This implies that, for every d, f(t1,...,t;) =d € wiff f(t1,...,t;) =
d € u' and that p(t1,...,t) € wiff p(ty,..., tx) € u'.

The functions [c|ys, [¢x]w, and [o]s are defined by

e for every c € Cy (k> 0), w € W, and any assignment ¢,
[ws(IVilwss -« [elws) = le(ys - 70) lws s (6.15)
e for every ¢ € Qp, x € X, and w € W,
[gz]ow(Py1hws - [elw) = lgz(ya, -0 |w s (6.16)
e for every o € O and any assignment 9,
[ols([7als; -5 [vkls) = lo(yr, - )l - (6.17)

The proof that [c|,s is well defined passes through the proof that, for all
formulae v and «/,

for all u € Uys, ToU Kg(u) U Ko(u), Fq v

in Hys
for all u € Uys, T'o U Kg(u) U Ko(u),y Fa vy

h"w& - ’7/‘11)6 ift {

(6.18)
If |v|ws # |7 |ws, then there is a v’ € Uys such that, e.g., v € v/ and v &
u’. Since v/ is d-deductively closed, we have u' /q v/ in H,, which implies
Ty UKqg(u)UKo(u),vy ta v in Hys because o U Kg(u') U Ko(u') U {y} C u/,
KQ(U) = KQ(U'/)v KO(U) = KO(UI)? and E,5 C Fyr.
Conversely, assume, e.g., I'g U Kg(u) U Ko(u),v t/a 7' in Hys. The set
I'p U Kg(u) U Ko(u) U {v} is a E-pre-Henkin set, where E is the set of all
elements of D which occur in K¢g(u)U Ko(u), because no element of D occurs
in I’y and in 7. By Lemma 6.10, we can consider a Henkin set u’ such that
I'oUKg(u) UKo(u) Cu/, v e v and v/ € «'. The set v’ belongs to Uys and
hence |V|ws # |7 |ws- This concludes the proof of (6.18).
Assume now |7;|ws = |7i|ws for i = 1 to k. For any u € Uy, (6.18) implies
that, in Hs,
{ Lo U Kq(u) UKo(u), v Fa v
Lo U Kq(u) U Ko(u),7; Fa i

Then, a fortiori

(To U Kg(u))er U (Tg U Ko(u)) v, i Fq 7!
(To U Kg(u)) e U(ToUKo(u)) 00,/ Fq v

and, by Clause 1 in Definition 5.12,

(To U Kq(u)) % U (To U Ko(u)) ™, ¢(y1, ..., ) Fa (3, -+ 7%)
(To U Kq(u)) e U(To U Ko(u) ™0, c(v],...,7) Fa c(vis - )



May 8, 2002 31

Observe now that Kg(u) is a set of first-order closed formulae in Lg and hence
it fulfills the requirement for ¥ in (VP) in Definition 5.11 and that, since the
elements of E are rigid designators in H,, the set Ko (u) fulfills the requirement
for ¥ in (HP) in that definition. Moreover, the set I'g is p-deductively closed.
Thus,

(V-5 M)

Tou KQ(U) U KO(”)? 6(717 s Yk
C('Yl, o aFYk)

FoU KQ(U) U KO(“)) 6(717 s a’YI,g

and hence (6.18) implies |e(V1, ..., Vi) |ws = (V- -, V) |ws-

In order to prove that the functions [¢z], and [o]s are well defined, we
proceed in a way quite similar to that we used above for [c|,s. We briefly
describe the main steps of the proof only for [gz],,. We first prove that, for all
7,7 € L, every w € W, and every u € Uy,

) Fd
) Fd

g ) ToUKqQ(u),yFay .
h/|w - h/ |w lff { FO UKQ(U),’}// l_d ~y m HU)

and, assuming |v;|y = [V} |w, for i=1 to k, we prove that, in H,,

(To U Kq(u))"ee, gz (y1,- -, ) Fa gz (), -+, 77)
(Co U Kq(u)) e, gz (v, -+, ) Fa gz (v, -, k)

The proof of these derivability results is quite similar to that of the correspond-
ing results for [c],,5. Then, we observe that Kqg(u) is a set of closed formulae
in Ly and hence, by (VP) in Definition 5.11, the following deductions hold in
Hy,

{ Lo U Kq(u),qz (v, -+, ) Fa gz (1, -+ 77)

LoUKqg(u),qz (V- ,7) Fa gz (v, -5 vk)

which implies |gz(v1, ..., %) |w = lgz(V], - -, Vi) w-
End of Henkin construction.

In the next lemmas, we will consider the evaluations [t]7 and [¢]7, where s is the
structure defined in the Henkin construction. Since there will be no ambiguity,
in the sequel we will often simply write [t] and [¢] for these evaluations.

Lemma 6.13 For every term ¢t € T, [t| = [t].

Proof: Consider any term ¢t € X U I and assume [t](u) = d. This means that
[t]s = d, i.e., 0(t) = d, where § is a(u), that is, J is d,, the only assignment
contained in u. This implies ¢t = d € u and, by (6.5), |t|(u) = d.

Let f be any element of Fy. By Definition 3.2, for every u € U, [f](u) =
[f]w(u)’ and, by (6.11), [f]w(u) = [fl(w).

Let t be f(t1,...,tx) and assume, as inductive hypothesis, that the claim
holds for t¢i,...,tx. By Definition 3.2, for every u € U, [f(t1,...,tx)](u) =
[flo@) ([t (), - . ., [tk](u)). Then, by the inductive hypothesis, [f(t1, ..., tx)](u)
= [flo@)([t1](u), ..., [tx|(u)) and hence the claim follows by (6.11). QED
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Theorem 6.14 For every formula ¢ € L, |p| = [¢].

Proof: If ¢ is an element, p, of Py, then, for every u, [p](u) = [pluw) = |p|(w).
If v is p(t1,...,tk), then, for every u, [p(t1,...,tx)](w) = D([t1],-- -, [tx])(w)
which is equal to [p],)([t1](u), ., [tk|(u)) by Lemma 6.13 and Definition 3.2.
Thus, (6.14) implies [p(t1, ..., tx)](u) = |[p(t1, ..., tx)|(u).

Assume now inductively that, for ¢ =1 to k, [i] = |pi|. In the rest of the
proof, we will use Definition 3.2 and Lemma 6.13, as well as (6.15), (6.16), and
(6.17), without referring explicitly to them.

Case 1: ¢ is c(¢1,. .., pr), where ¢ € Ck. So, for u € Uys, [c(e1,-..,0r)](u) =
(hus(211(0), - £l () = le(@r, ., 1) (1)

Case 2: pis qr(p1,...,¢k), where ¢ € Q. So, for u € Uy, u € [qz(e1,- -, k)]
iff u € [qz]y(|p1]|NUw, - .- ekl NUy) iff u € [qz]w(|o1]w, - - - |Prlw) = laz(er, ...,
¢k)|w. Then, we can conclude that u € [¢] iff u € |p| N Uy. Since u € Uy,
u € [¢] is equivalent to u € [¢] N U, and the equality [¢] = |¢| follows
immediately by observing that the sets U, are pairwise disjoint.

Case 3: ¢ is o(p1,...,¢k), where o € Op. The proof is quite similar to that of
the previous case. QED

Corollary 6.15 The structure s defined in the Henkin construction is appro-
priate for H.

Proof: Let ({¢1,...,¢k}, ¢) be an instance of a rule in R4 and assume that,
for some w in U and for i=1 to k, u € [¢;], which implies u € |p;], by Lemma
6.14. Then, for each 7, ¢; € u, and hence ¢ € u because this set is d-deductively
closed. Thus, we can also conclude u € [¢].

As far as rules in R, are concerned, observe first that, for every v € L,

V| =U iff veTy (*)

In fact, if v € T'o, then v € u for every u € U and hence |y| = U by (6.5).
If, conversely, v & I'g, then I'g I7, v because I'y is p-deductively closed. This
implies I'g /4 v and hence I'y is ~y-consistent; moreover, I'g is a ()-pre-Henkin
set. Thus, by Lemma 6.10, we can consider an element u of U such that v & u.
This concludes the proof of (x).

Assume that ({¢1,...,¢k},®) is an instance of a rule in R, such that, in
the structure s, [y;] = U, for i=1 to k. By Lemma 6.14, we have |¢;| = U,
which implies ¢; € I'g by (). Since I'y is p-deductively closed, we can conclude
¢ € I'g, which implies [¢] = U. QED

Proof of the Completeness Theorem: Assume I' /4 ¢. Consider a Henkin
construction in which Ty = @7». Since T is @-consistent, we can use Lemma
6.10 with £ = ) to conclude that there is a v € U such that I' C u and ¢ ¢ u.
Then, by Theorem 6.14, in the structure s, we have u € [y] for all v € I" and
u ¢ [¢].

Assume now I' I/, ¢. Consider an arbitrary set D and the structure s
defined in the Henkin construction, where I'g is I'"». The set I'y is ¢-consistent
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because I' I/, ¢ implies I'"» 4 ¢; moreover, Ty is a (-pre-Henkin set. Thus,

by Lemma 6.10, there is a u € U such that ¢ ¢ u. Since every element of U

contains I'g, Theorem 6.14 implies [y] = U for all v € T, but [¢] C U \ {u}.
QED

Corollary 6.16 First-order and Modal Completeness.

1) Let T" be any set of closed first-order formulae, and let ¢ be any formula. If,
for every structure s and every w € W in s, U, C [I'] implies U,, C [¢], then
LFqp ¢

2) Let I' be any set of equalities and inequalities involving only rigid terms, and
let ¢ be any formula. If, for every structure s and every 6 € A in s, Us C [I']
implies Us C [¢], then I" o}, ¢.

Proof: Assume I' I/q, ¢, so that I' I73 ¢. Consider the structure s defined by
means of the Henkin construction in which Ty is #"». Since I' is ¢-consistent
and is trivially a (-pre-Henkin set, we can consider a u € U such that I"' C u
and ¢ & u. Observe now that I' C Kg(u); then, by (6.3), I' C v’ for every
u' € Uy, which implies U,y € [I'] by Lemma 6.14. The same lemma
implies U,y € [¢]. This concludes the proof of the first claim. The proof of
the second one is quite similar. QED

The conditions on I' in the previous corollary obviously depend on the way
in which the sets W and A have been defined in the Henkin construction. If this
construction had been carried out according to a different characterization of
the sets W and A, possibly with a finer granularity, then a different, accordingly
stronger, version of the previous corollary could have been proved.

7 Fibring

The rest of the paper is dedicated to the problem of fibring first-order based
logics. In this section we define precisely what is meant by fibring fob logics, we
provide two interesting examples, and we conclude with the result that fibring
is conservative with respect to derivation. As we shall see, fibring trivially pre-
serves soundness. We leave until Section 8 the proof that fibring also preserves
completeness under some reasonable assumptions.

Before defining the fibring of two fob logics, we need the concept of reduct
of a structure under an inclusion of signatures.

Definition 7.1 Given fob signatures ¥ C ¥ and a X'-structure s, the reduct
of s’ to X is the X-structure §'|y, = (U, A, W' o/, ', D' E" B[] ]5). A

The reduct is a Y-structure coinciding in all components with the original
Y-structure barring of course the denotations of the extra symbols which are
forgotten. Reducts are essential for relating the models in a fibring with the
models in the given logics. Abstracting from the definition in [17], the basic
ideas for fibring two logics £ and £” can be summarized as follows:
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e At the signature level, we should have the symbols from both logics. That
is, signatures of the fibring should be unions of signatures of the two given
logics.

e For each signature ¥ U X" in the fibring, the models should provide de-
notations for the symbols in that signature and their reducts to ¥’ and
¥" should correspond to models of £ and £” for ¥/ and ¥, respectively.

e For each signature ¥’ U X" in the fibring, the sets of rules should be the
unions of the corresponding sets of rules of £’ and £” for ¥ and X”,
respectively.

This abstraction is obvious at the signature and deductive system levels. But it
is worthwhile to question the abstraction at the semantic level. Adapting from
[17], we choose as models of the fibring at ¥/ U X" all the X' U X"-structures
such that their reducts to ¥’ and X" correspond to models in £ and L”, respec-
tively. But, as shown in that paper, this semantics of fibring makes sense (when
compared with the original, more intuitive definition in [14]) only in the case of
logics endowed with a semantics closed under isomorphic copies and unions of
models. The question is: can we safely assume that we are working with such
logics? Indeed yes if we decide to work with full logics (Definition 6.4). Such full
logics enjoy all the closure properties needed to relate the original definition of
fibring with the proposed abstraction. Otherwise, if the given logics are not full
one should make them full by endowing them with all structures appropriate
for the inference system. This enrichment does not change the logics because
the two entailments are unchanged. Therefore, we are justified in adopting the
abstraction ideas above to introduce fibring of fob logics as follows:

Definition 7.2 Given two fob logics £ = (Sig,S’, H') and L = (Sig", S", H"),
their fibring is the logic £' U L" = (Sig, S, H) where:

o Sig={XUY .Y € Sig,¥" € Sig'};
e S(XUXY")=(M,A) where:

— M is the class of all ¥’ U X-structures s such that:
x sl € A/(M') and s|yn € A"(M");
% s is appropriate for H(X' U X");

— A(s) = s for each s € M;

o« H(X'UY) = H'(X)UH"(S"). A

In each signature ¥’ U X" of the fibring, the symbols in ¥/ N X" are said to
be shared. If no symbols are shared we say that the fibring is unconstrained or
free at that signature. Otherwise, we say that it is constrained at that signature
by sharing symbols.

In the above definition of the class M in S(X' U X"), each structure s is
required to be appropriate for H(3 U X"); this is a necessary requirement for
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having that appropriateness, and hence soundness, are preserved by fibring. It
may happen, in fact, that s|y is appropriate for a rule ' in H(X'), but s is
not appropriate for 7’ in H(X' UX"): in the richer language there can be new
instances of . An example of this situation is the FOL axiom & = Vz¢ (x is
not free in &), which, as observed in Section 4, can be falsified if the language
contains modalities.

For the purpose of illustrating the concept of fibring fob logics, we consider
first the elementary example of generating a bi-modal first-order logic by fibring
two uni-modal first-order logics.

Example 7.3 2KFOL = KFOL' U KFOL". Let KFOL' and KFOL” be two
copies of full KFOL (as described in Example 6.5) such that ¥'(I, F, P) is
identical to ¥(I, F, P) with the exception that O] = {0/} and Of = {O0"}.
Each signature of the fibring is of the form ¥'(I’, F', P")UX"(I", F", P") where
the connectives — and A are shared, as well as the quantifier V, but where we find
two modalities (' and (0"). For each such a signature in the fibring, a model is
a structure whose reducts are structures corresponding to models in the given
logics, and the sets of rules are obtained by the union of the corresponding sets
of rules in the given logics. A

We now turn our attention to a more complex example where we obtain
KFOL as the fibring of pure first-order logic and modal logic enriched with
variables, individual symbols, equality and inequality.

Example 7.4 KFOL as a fibring. The idea is to obtain KFOL by fibring
first-order logic and K modal propositional logic. To this end, first we have
to present these two logics as fob logics. Presenting first-order logic as a fob
logic is straightforward. However, when defining a modal propositional logic
as a fob logic we are compelled to include in the language variables, as well as
equalities and inequalities between them. So, we obtain a richer modal logic that
nevertheless is quite appropriate to our objective. Indeed, in the richer modal
logic, the entailments are the same for the original formulae. Furthermore, it
is easy to establish a complete axiomatic system for the richer modal logic,
given a complete axiomatic system for the original modal logic. Finally, it is
straightforward to obtain KFOL by fibring first-order logic and the richer modal
logic.

First-order logic. The fob logic FOL is easily defined as follows. Signatures
are of the form
E(F,P)=(I,F,P,C,Q,0)

in which I =0, F', P, C and Q are as for K FOL, but Py = (), and there are no
modalities (that is, O = 0 for every k).

For each FOL signature X(F, P), its Hilbert system is as follows: Rq and
Rqp are as in Example 5.7, Rop, = 0, and R, = Rqp.

For each FOL signature X(F, P), in its interpretation system (M, A) we let
M Dbe the class of all X(F, P)-structures appropriate for the Hilbert system at
that signature and A be the identity map. Therefore, we obtain a full logic.
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Modal logic. The fob modal logic KML™ is defined as follows. Signatures
are of the form
(1,1I) = (I, F,P,C,Q,0)

in which Fj, = () for every k, Py = II, P, = () for every k > 0, C; = {—},
Cy = {A}, Cr = 0 for every k > 2, Q. = 0 for every k (that is, there are no
quantifiers), 01 = {0}, and Oy = 0 for every k > 1.

For each KML™ signature %(I,1II), its Hilbert system is as follows: Rop
and R4 are as in Example 5.7, but the latter without the congruence axioms
(since there are no function symbols and no predicate symbols), Rq, = (), and
R, = Rop.

For each KML™ signature ¥(I,1I), in its interpretation system (M, A) we
let M be the class of all X (7, II)-structures appropriate for the Hilbert system
at that signature and A be the identity map. Again, we get a full logic.

Fibring. Finally, we are able to recover the fob logic KFOL by fibring FOL
and KML™". Each signature of the fibring is of the form %(F, P)UX(I,II) where
the connectives = and A are shared. Note how important it was to endow the
logics with a full semantics in order to obtain the envisaged models in the
fibring. Otherwise, in the fibring, the modal part might collapse into classical
logic. A

Remark 7.5 In each of the two examples above we obtained the fibring of
two logics which were assumed to be endowed with semantics in the style of
Section 3 and deductive system in the style of Section 5. This is known as
the homogeneous scenario for fibring. Unfortunately, in general, we may be
given two logics with quite different types of semantics and of deduction sys-
tem. Therefore, what we need is first to prepare each of the given logics before
making the fibring. This preprocessing step is essential until a theory of hetero-
geneous fibring can be developed. At the semantic level, the preprocessing can
be conceptually very simple: for each of the native models of the logic we try
to generate a structure in the sense of Definition 3.1 and try to prove that the
entailments are preserved. At the deduction level, things can be much more
complicated if no equivalent Hilbert calculus is known. A

We conclude this section with a result comparing derivations in the given
logics with derivations in the fibring. Since, given a derivation (p1,m1),...,
(pn, Tn), for instance in L', of ¢ from I’ constrained by , precisely the same
sequence (@1,71), ..., (¢n,Ty) constitutes a derivation in £ of ¢ from I' con-
strained by 7, we have:

Proposition 7.6 In a fibring £L = L' UL", if T F, ¢ : mor I' F}] ¢ : m, then
kg A

Remark 7.7 The meaning of this proposition is that H' UH" is a conservative
extension of the two given Hilbert frameworks. This result will be frequently
used in the next section in the following way. Assume that a property of Hilbert
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calculi is equivalent to the fact that I" FE w7 for I' and ¢ in a suitable class
of formulae. Then, by Proposition 7.6, properties of this kind are trivially
preserved. Most of the preservation results of the next section will be proved
in this way.

8 Completeness preservation

In this section, we consider the problem of preservation of completeness by
fibring. It turns out that completeness is indeed preserved by fibring under some
natural assumptions that are fulfilled in a wide class of logics encompassing the
most common fob logics. We establish the preservation result by invoking the
Completeness Theorem (Theorem 6.6) proved in Section 6.

Proposition 8.10 below shows that the fibring of two full logics is still a
full logic. Similarly, Proposition 8.9 shows that also uniformity is preserved by
fibring. In general, however, the properties of logics considered in the Com-
pleteness Theorem are not always preserved by fibring. Example 5.8 in [17], for
instance, provides two congruent Hilbert systems with non-congruent fibring.3
The aim of the present section is to determine a class of logics which is closed
under fibring and such that every element of it enjoys the properties considered
in Theorem 6.6. As a corollary of this theorem, we will have that completeness
is preserved by fibring logics from that class. In the first part of this section,
we present and discuss particular properties of Hilbert frameworks, and hence
of logics, which will be shown to be preserved by fibring. In the second part,
we will show that Theorem 6.6 applies to logics with those properties.

Hilbert frameworks with implication and equivalence. Usual logics
have implication and equivalence, and the properties presented in the following
definitions are the minimal ones for logics with these connectives. In particular,
Definition 8.1 relates implication with deduction, while Definition 8.2 relates
equivalence with implication, and states that equivalence must be a congruence
for connectives and operators.

Definition 8.1 (a) A Hilbert framework H is said to be a Hilbert framework
with implication iff, for each signature ¥ € Sig, (5 contains = and the
Metatheorem of Modus Ponens (MTMP) and the Metatheorem of Deduction
(MTD) hold: For every p-deductively closed I' C L(X, X,0,Z) and ¢1,¢2 €
L(X,X,0,5),
r |—§ p1=p2:T
I o1 I—CE1 o1

(MTMP)

L1y w2
I’l—ggol:goz:ﬂ'

(MTD)

(b) A logic L is said to be a logic with implication iff its Hilbert framework is
with implication. A

3The definition of congruent system given in [17] is different from Definition 5.12, but the
example can be easily adapted to the present case.
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Definition 8.2 (a) A Hilbert framework H with implication = is said to be
a Hilbert framework with equivalence iff, for each signature ¥ € Sig, Cy con-
tains < and the Metatheorems of Biconditionality 1 and 2 (MTB1,2), and the
Metatheorems of Substitution of Equivalents 1-3 (MTSE1-3) hold: For every
I CL(X,X,0,5), v1,92,¢i, ¢, € L(X,X,0,E), c € Ck, ¢ € Qk, and o € O,

F|—§<p1:><p2:7r I‘l—dch2:><p1:7r

MTB1
F|—§g01<:><,02:71’ ( )
g1 g (MTB2)
Fl—ggplégpgiﬂ' FI—EQO2:>901Z7T
TS g el im, fori=1,.. .k
Fieiegin, forizl (MTSE1)
CEY (et ypn) & cl@l, o 9h) i
Mor by giegim, fori=1,....k (MTSE2)
Trae BY q(pr, ..o 01) € qu(el, . @) i T
Fop |3 : P
v bgpiegim, fori=1....k (MTSE3)

FFOP I_dz 0(()017'”790]6)<:>0<90/1""’(‘0;f) -

(b) A logic L is said to be a logic with equivalence iff its Hilbert framework is
with equivalence. A

The definition of logic with equivalence given in [17] is different from the
previous one. The proof of Proposition 6.5 in that paper, however, can be easily
adapted to prove the second part of the next preservation result; the first part
is Proposition 6.2 in [17].

Proposition 8.3 (a) The fibring of logics with implication is a logic with im-
plication, provided that implication is shared at each signature. (b) The fibring
of logics with equivalence is a logic with equivalence, provided that both impli-
cation and equivalence are shared at each signature. A

Persistent Hilbert frameworks. Horizontally and vertically persistent Hil-
bert frameworks were considered and motivated in Section 5. Definition 8.4
and Lemma 8.16 below provide a sufficient condition for horizontal and vertical
persistence.

Definition 8.4 (a) We say that a Hilbert framework is @Qp-persistent if, for
every rule r = (I',n,m) € Rqp \ Rq, either I' = (), or

LT ={v}
2. n is of the form r(~);
3. yFar(y): cfo(y);

4. for every rule <{’717'--7’7k}7777r/> in Rd (k > O)a {T(Vl)a"-vr(yk)} l_d
/

r(y):«.
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Op-persistent Hilbert frameworks are defined in the same way, by replacing Rqp,
by Rop, and cfo(y) by rig(y) in Clause 2.

(b) A logic L is said to be a Qp-persistent logic or a Op-persistent logic iff so is
its Hilbert framework. A

The properties of Qp-persistence and of Op-persistence are generalizations
of usual properties of first-order and of modal logics. The first-order rule of
generalization, for instance has the properties 1 to 4 of the previous definition,
where r(7) is of course Vavy.

Proposition 8.5 Qp-persistence and Op-persistence are preserved by fibring.

Proof: Clauses 1 and 2 for Qp- and Op-persistence hold in the fibring by Def-
inition 7.2. Clauses 3 and 4 are expressed in the form outlined in Remark 7.7;
thus, according to this remark, the preservation of these properties is a conse-
quence of Proposition 7.6. QED

Hilbert frameworks with strong equality. The only difference between
the requirements for equality and those for strong equality is that Clause 5 in
Definition 5.13 is replaced in the latter by a requirement in which only rules (and
not inferences) are involved. By Proposition 7.6, this will make preservations
results almost straightforward.

Definition 8.6 A Hilbert system with implication is said to be with strong
equality if Clauses 1 to 4 in Definition 5.13 are fulfilled and, in addition,

ro = ({=x=¢}LEm € Ry (8.1)
where, for each signature ¥, mx(p) = 1 iff  does not occur in £p.
Lemma 8.7 In any logic, Clause 4. (i) of Definition 5.13 holds iff
(@) ti=t, ... .tk =t} b5 fltr,....te) = fF(th,-- - th),
and, in logics with equivalence, Clause 4. (ii) of Definition 5.13 holds iff
(b) t1=t),...,tg=t, FF plt1,....tx) & pth,....1,).

Proof: Clause 4. (i) of Definition 5.13 implies (a) for I' = {t; =t : i =
1,...,k} and 7 = 1. Assume now (a) and ' -y t; =t} : 7, for i = 1,...,k.
Then, we can clearly construct a proof of f(t,...,tx) = f(t},...,t}) from T
by suitably “putting together” the proofs of ¢; = t; from I' and the proof of
f(tr, ... ty) = f(t], ..., 1)) from the equalities t; = t;. Since each of the former
proofs is constrained by w and the latter is constrained by 1, we eventually
obtain I' FY f(t1,...,tx) = f(t],....t}) : .

By the properties of implication and of equivalence, Clause 4. (ii) is equiv-
alent to

PRy ti=t:mfori=1,...,k

FI—Ep(tl,...,tk)<:>p(t’1,...,t§€):7r
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and hence the proof of that Clause 4. (ii) is equivalent to (b) is quite similar to
that above. QED

Proposition 8.8 Strong equality is preserved by fibring Hilbert logics with
equivalence, provided that both implication and equivalence are shared at each
signature.

Proof: Use Proposition 7.6, and the remark below it, order to have that
Clauses 1-3 hold in the fibring. The same proposition and Lemma 8.7 can
be used in order to have that Clause 4 is preserved. The fibring fulfills (8.1)
simply because of Definition 7.2. QED

This concludes the presentation of the classes of logics that will be involved
in the main preservation result. The next two propositions provide other two
partial results of this kind.

Proposition 8.9 Uniformity is preserved by fibring.

Proof: Straightforward from Definition 5.6 and Remark 7.7. QED

Proposition 8.10 Fullness is preserved by fibring.

Proof: We have to show that every (X'UY")-structure s appropriate for H (XU
¥} is in A(M). That is, we have to show that s|y is in A’'(M’) and s|g» is
in A”(M"). Indeed, s is appropriate for both H'(¥') and H”(X"), and, hence,
slsv is appropriate for H'(X') and s|y» is appropriate for H”(X"”). Given the
fullness of £ and L", s|sy € A/(M') and s|yr € A”(M"). QED

Finally, we can consider the properties involved in Theorem 6.6 and show
that they hold in a suitable class of logics. The first result regards congruence;
the following lemma can be proved in the same way as Theorem 6.6 in [17].

Lemma 8.11 Congruence holds in logics with equivalence.

This lemma and Proposition 8.3 provide a sufficient condition for the preser-
vation of congruence:

Proposition 8.12 Congruence is preserved by fibring logics with equivalence,
provided that both implication and equivalence are shared at each signature.

The next results concern the preservation of the properties of equality.

Proposition 8.13 Every uniform Hilbert system with strong equality is a
Hilbert system with equality.
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Proof: Assume I';t =i FE @ : m, where the invariant ¢ does not occur in the
rules of H(X) and 7(p) = 0 whenever ¢ occurs in I'p or in ¢p. By compactness
we also have {v1,...,v},t =i Fq ¢ : 7 for some {v1,...,v} CI'. Moreover,
since we are assuming that the Hilbert system is with implication, we also have

Fat=i=gx:m, foro"=Mm=(r=...=Ww=>9¢...))

Since we are considering a uniform Hilbert system, Proposition 5.10 implies
Fqt =2 = ¢*:m, which implies in turn

Fpt=z=¢" 7 (*)

Consider now the rule r( for strong equality in (8.1), and write 7y for the proviso
in it. Given any substitution o such that o(f) =t and o(§) = ¢*, (%) implies
Fp ¢* :mxmoo and Fq ¢* : 7 x mo0.

Given any X-substitution p, we have moo(p) = mo(op) = 1 iff i does not
occur in o(&)p, that is, iff i does not occur in ¢*p. Thus, since 7w(p) = 0
whenever ¢ occurs in ¢*p, we have that # = 7 * mpo and hence 4 ¢* : 7.

Using the properties of implication again, we have {y1,...,7} Fq ¢ : 7 and
I'Fqp:m. QED

Proposition 8.14 Equality is preserved by fibring uniform logics with strong
equality and equivalence.

Proof: By Proposition 8.13 and Proposition 8.8. QED

Proposition 8.15 Inequality is preserved by fibring logics for equality and
implication, provided that implication is shared at each signature.

Proof: Indeed it is straightforward to verify that Clauses 1. and 2. of Defini-
tion 5.14, respectively, hold iff:

Lt=tt£tF ¢
2. FY (t=t=p)= (t#£t=p)= ).

Again, using Proposition 7.6, we obtain the envisaged preservation. QED

Proposition 8.16 1) If a Hilbert framework is Qp-persistent, then it is verti-
cally persistent. 2) If a Hilbert framework is Op-persistent, then it is horizon-
tally persistent.

Proof: We prove only claim 1) since the proof of 2) is quite similar. Assume
I'», ¥ Fqp ¢ : mxcfo(¥) and assume that the inference contains /N applications
of rules in Rq, \ Rq; we show that the inference can be transformed into an
inference with N — 1 applications of those rules.

Consider the first part (y,71), ..., (&, T%) of the inference of ¢ from I P UW
and assume that ~; is obtained by a rule r in Rqp \ Rq and that no rules in
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Rqp \ Rq were used before. Then, ~y; is r(7y;) for some j < k. Consider the se-
quence (Y1, 71), (T(71)s T1)s « -« (Ve—1, Th—1)s (" (Vk—1)s Tk—1), (Y&, Tk ), Where each
7; contains cfo(¥); we show that each pair in it can be derived from I'» U .
This will conclude the proof because v, is 7(7;).

If 4, € e, then r(v;) is also in T'"e. If 4y € U, then T'"e U -y 7(v;),
using Condition 3. in Definition 8.4. Assume that ; is derived by means of
an instance ({¢1,...,%¥n}, 7,7’ ) of a rule in Rq. Then, using Condition 4. of
Definition 8.4, we can conclude that {r(v1),...,7(¢n)} Fa r(7) : 7, and so we
have the result by induction. QED

Proposition 8.17 Persistence is preserved by fibring Qp-persistent and Op-
persistent logics.

Proof: By Proposition 8.5 and Lemma 8.16. QED

Theorem 8.18 (Completeness Preservation.) Completeness is preserved when
fibring full, uniform, Qp- and Op-persistent logics with implication, equivalence,
strong equality and inequality, provided that both implication and equivalence
are shared at each signature.

Proof: The previous results of this section show that: (1) the fibring of two
logics with the properties considered in the present theorem is still a logic with
these properties and (2) the condition for completeness stated in Theorem 6.6
are consequences of the properties considered in the present theorem. QED

9 Concluding remarks

We were able to extend the main results in [17] from the context of propositional
based logics to the context of first-order based logics. This extension raised
several definitional problems. At the model-theoretic level, a suitably general
notion of interpretation structure was found as the basis for defining an algebraic
semantics for fibrings of fob logics. At the proof-theoretic level, we had to deal
with side constraints on inference rules and we had to revise the structure of
Hilbert systems.

Proving the envisaged completeness theorem within the context of first-
order based logics turned out to be much more complex than expected. Besides
fullness and congruence, which were the only assumed properties of the logics
in [17], some other key assumptions regarding the independent behaviour of
quantifiers and modalities were found to be necessary. The proof was carried
out using a variation of the Henkin method that took advantage of the assumed
presence of equality and inequality in the logic.

Finally, reasonable sufficient conditions were identified for the preservation
of completeness when fibring fob logics. These conditions define a wide class of
such logics, encompassing many logics with quantifiers and modal or relevance
components among others.
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A fob logic as understood in this paper is endowed with a semantics of
algebraic nature. One wonders if it will be possible to study fibring of other
types of logics and still obtain completeness preservation. A first step in this
direction for propositional based logics is given in [5] where results about fibring
of non-truth-functional (such as paraconsistent logics) are established. In this
context, it seems worthwhile to pursue the study of fibring of protoalgebraic
and algebraizable logics in the sense of Blok and Pigozzi [3, 4].

A fob logic as defined in this paper is endowed with a deductive system in
the style of a Hilbert calculus. Fibring of logics with other types of inference
systems raise specific problems and deserve further work. Some results in this
direction for propositional based logics are obtained in [13].

These two lines of research are still to be initiated within the context of
first-order based logics. Dealing with higher-order quantification, as started in
[7], is another obvious line of research.
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