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Abstract. In the general context of the theory of institutions, several no-
tions of parchment and parchment morphism have been proposed as the
adequate setting for combining logics. However, so far, they seem to lack
one of the main advantages of the combination mechanism known as fibring:
general results of transference of important logical properties from the logics
being combined to the resulting fibred logic. Herein, in order to bring fib-
ring to the institutional setting, we propose to work with the novel notion of
c-parchment. We show how both free and constrained fibring can be charac-
terized as colimits of c-parchments, and illustrate both the construction and
its preservation capabilities by exploring the idea of obtaining partial equa-
tional logic by fibring equational logic with a suitable logic of partiality. Last
but not least, in the restricted context of propositional based, we state and
prove a collection of meaningful soundness and completeness preservation
results for fibring, with respect to Hilbert-like proof-calculi.

1 Introduction

Recently, the problem of combining logics has been deserving much attention. The
practical impact of a theory of logic combination is clear for anyone working in
knowledge representation or in formal specification and verification. In the fields
of artificial intelligence and software engineering, the need for working with several
formalisms at the same time is widely recognized. Besides, combinations of logics are
also of great theoretical interest [4]. Among the different combination techniques,
both fibring [12,13, 22] and combinations of parchments [20, 21] deserve close atten-
tion. In fact, although the work on parchments has found its way into practice, see
for instance [19], it lacks a feature that we consider essential: transference results
for relevant properties of logics, such as soundness and completeness. For fibring,
however, recent significant preservation results have been obtained [28, 7]. Our goal
in this paper is to bring both fibring and these transference results to the setting of
institutions.

This leads us, first of all, to a revised notion of parchment. It shall be made clear
that the detail provided by early definitions [14, 20, 21] is not enough to capture the
finer structure of models. In particular, for a smooth characterization of fibring, we
need a notion that promotes logical consequence as a whole, rather than just validity.
In previous work [22,28,7], a validity based consequence has also been considered
and related to this more “internal” notion [7]. Herein, however, we shall not make
explicit use of it. Still, the distinction is crucial to the full understanding of many
logics, including first-order logic and modal logic, and plays an essential role in
the process. So, we propose to work with c-parchments, that essentially extend the
model-theoretic parchments of [21] by endowing the algebras of truth-values with
more than just a set of designated values. Namely, we require the set of truth-values
to be structured according to a Tarskian closure operation as in [7], thus recovering
an early proposal of Smiley [25].



Besides showing how c-parchments can be seen as presentations of institutions,
a suitable notion of morphism is also proposed and shown to present institution
op-morphisms. The reason for this relationship to the dual of the category of in-
stitutions and institution morphisms is precisely our intention to follow the “old
slogan” in its strict sense, and use colimits for combination. Therefore, building
on the fact that c-parchments are essentially functors over a suitable category of
c-rooms, we manage to characterize both free and constrained fibring as colimits of
c-parchments. We illustrate fibring by providing a detailed construction of an equa-
tional logic dealing with partiality, by combining equational logic with a suitable
logic of partiality. This example, when compared with the way partiality is dealt
with using previous notions of parchment [20,21,19], is in fact paradigmatic of the
modular power of fibring. Along with the fibred semantics of partial equational
logic, we also show that by simultaneously combining Hilbert-like proof-calculi for
the given logics, a sound and complete calculus for partial equational logic can also
be obtained.

In fact, given that the right amount of structurality [6] is embodied in the de-
duction rules of proof-calculi, their fibring is well understood [7] and meaningful.
As in previous treatments of this issue, we shall achieve this by using schema vari-
ables to write schema rules that can then be instantiated with arbitrary formulae
while building deductions. In this context, although just for the particular case of
propositionally based logics, we then state and prove a collection of soundness and
completeness transference results for fibring. Preservation of soundness is easily just
a consequence of the construction underlying fibring, as shown in [7]. On the con-
trary, as should be expected, completeness preservation results are in general not so
easy to obtain. The completeness transference results that we shall present are based
on the fundamental notion of fullness, as a means of guaranteeing that we always
have enough models, extending original ideas from [28], further worked out in [7].
We provide completeness proofs for several classes of interpretation structures, in-
cluding partially-ordered ones, using standard techniques in logic and algebra, such
as congruence and Lindenbaum-Tarski algebras. Rephrasing the main Theorem of
[28], we also mention the case of powerset structures inspired by general models for
modal logic (see for instance [16]) whose completeness proof uses a Henkin-style
technique.

The rest of the paper is organized as follows. In Section 2 we introduce the
novel notion of c-parchment and show how it relates to institutions. For the sake
of illustration, we show how to represent two well known logics as c-parchments.
Section 3 is devoted to developing the categorial setting of c-parchments as indexed
categories of c-rooms and to establishing the cocompleteness of the correspond-
ing categories. In section 4, we define fibring of c-rooms (and c-parchments) and
provide its characterization as a categorial colimit. In order to bring the necessary
insight on the construction, we then dwell on the interesting example of obtaining
partial equational logic by fibring equational logic with a logic of partiality. More-
over, paving the way to the subsequent sections, we also show how a sound and
complete calculus for the resulting logic can be obtained by putting together (fib-
ring) the proof-calculus of equational logic with a suited calculus for the logic of
partiality. Section 5 introduces the details of the appropriate notion of Hilbert-like
proof-calculi, using schematic rules, and shows also that their fibring corresponds
to a colimit in the appropriate category. The whole treatment is restricted to the
particular case of propositional based logics, since that is sufficient for the forth-
coming preservation results. Finally, in Section 6, we state and prove our soundness
and completeness preservation results for fibring of propositional based logics. We
conclude by discussing the limitations of the work presented, and how we expect to
overcome them in future work.



2 The notion of c-parchment

We start by introducing some notation. In the sequel, AlgSig, denotes the cat-
egory of algebraic many-sorted signatures (S, O), where S is a set (of sorts) and
O = {Oy}ucs+ is a family of sets (of operators) indexed by their type, with a dis-
tinguished sort ¢ € S (for formulae) and morphisms preserving it. Given such a sig-
nature (S, 0), we denote by Alg((S,0)) the category of (S, 0)-algebras and homo-
morphisms, and by cAlg((S, O)) the class of all pairs {4, c) with 4 € |Alg((S, O))|
and c a closure operation on |A|s (the carrier of sort ¢, that we can see as the
set of truth-values). Recall that c : p(|.A|s) — ©(].A|¢) is required to be extensive
- B C B®, monotonous - B¢ C (B U B')¢, and idempotent - (B€)¢ = B€, for
all B, B' C |Als. We shall use W(g oy to denote the free (S, 0)-algebra (the word
algebra), and [_]* (for word interpretation) to denote the unique Alg((S,0))-
homomorphism from W oy to any given (S, 0)-algebra A. Also recall that ev-
ery AlgSig,-morphism h : (S1,01) — (S2,02) has an associated reduct func-

tor _|n : Alg((S2,02)) — Alg((S1,01)). As usual, we shall preferably write h
(for word translation) instead of [_]V¢s2:02)/» to denote the unique Alg((S,01))-
homomorphism from Wg, 0,) to W(s, 0,)|a-

Definition 1. A c-parchment is a tuple P = (Sig, L, M) where:

— Sig is a category (of abstract signatures);
— L: Sig — AlgSig, is a functor (of concrete syntaz);
- M= {ME}):aSig\’ with M5 C cAlg(L(XY)) (a class of structured algebras),

such that the following condition holds for every Sig-morphism o : X — X5:
— (AlL(),€) € Mg, for every (A,c) € Mx,.

Note that although this coherence condition is stricter than the one considered
in [21], all the examples presented there indeed correspond to this particular case.

It is easy to see that a model-theoretic parchment can be extracted from a c-
parchment. However, the idea here is to take advantage of the closure operation
in each structured algebra (A4, c) and to go beyond the obvious choice of the set
D = (€ C |A|y of designated values. Instead, we shall allow the set of distinguished
values to vary freely among all possible c-closed sets T C |Al4. Of course, given
Y € |Sig|, we can recognize [Wr(x)|g (the carrier of sort ¢ in the word algebra) as
the set Sen(X) of formulae. We shall use ¢, 1 with or without primes and subscripts
to denote formulae, and &,¥ to denote sets of formulae. Furthermore, we can set
Mod(X) = {{{A,c),T) : (A,c) € M, T® =T C |A|4} to be the class of models,
and define the satisfaction relation IF 5 by:

- ((A,¢),T) kg @ if [[(p]]‘A eT.

As usual, we extend satisfaction to sets of sentences by letting ((A,c),T) ks &
if and only if ({(A,¢),T) k5 ¢ for every ¢ € ¢. We denote the induced semantic
entailment relation by Fy. It is defined as usual, from satisfaction, by @ Fyx ¢
if ((A4,¢),T) IFx 9 whenever ({(A,¢c),T) b5 &, for every ((A,c),T) eMod(X).
However, easily, this definition can be seen to correspond precisely to:

— &yt if [P]* € {[¢]™: ¢ € B}C, for every (A, c) € My.

Note that validity is still represented by 0 Fx . For the sake of illustration, let
us develop two well known examples: classical first-order logic and propositional
normal modal logic.



Example 1. Classical first-order logic.
Let X be a fixed denumerable set of variables.

— Abstract signatures are given by Set™ x Set™, the category of pairs of IN-
ranked alphabets (F, P) (of function and predicate symbols) and rank preserving
functions.

— The concrete syntax functor L : Set™ x Set™ — AlgSig, is defined by:

o L((F, P)) = ({r,¢},0) with O = X UFy, Orn; = F, tor n > 0,0y =P,
forn € IN, Ogg = {~}U{Vz : 2 € X}, Oy24 = {=} and O, = () otherwise;

o L(h:(F, P) — (F', P')) is the identity on the sorts 7, ¢, the variables in X,
the quantifiers Vz and the logical connectives —,=-, and maps each n-ary
function symbol f € F, to h(f) € F) and each n-ary predicate symbol
p € P, to h(p) € P..

— Each Mg py is the class of all structured algebras (A, c) obtained from (F, P)-
interpretations I = (D, _;) with D # 0 a set, fr : D™ — D for f € F,, and
pr € D" for p € P,, as follows:

o |A|; = DASBX.D) 454 |Alg = p(Asg(X, D)), where Asg(X,D) = DX is
the set of all assignments p to variables in D;
o z4(p) = p(z) forz € X, faler,...,en)(p) = fr(e1(p),-.-,en(p)) for f € Fy,
paler,-..,en) = {p € Asg(X,D) : {e1(p),...,en(p)) € pi} for p € P,,
—A(r) = Asg(X, D)\r,Vz4(r) = {p € Asg(X, D) : p[z/d] € r for every d €
D}, and = 4(r1,m2) = (Asg(X, D) \ 1) Ury;
o c: p(|Alp) = 9(|Al4) is the cut closure operation induced by set inclusion,
that is, for every R C p(|Aly), R® = {r C|A|s : (N R) C r} is the principal
ideal determined by (] R) on the complete lattice (p(|.A|y), D).
Sen((F, P)) is the set of all first-order formulae build using the predicate symbols
in P from the terms build using the function symbols in F'. Easily, in such in-
terpretation structures, the denotation of a formula corresponds to the set of all
assignments for which it holds, and F g py reflects reasoning with a fixed assign-
ment. Moreover, )¢ = {Asg(X, D)} and thus a formula holds in a model if it is true
for all possible assignments, as usual. Of course, expectedly, Fr py does not com-
ply with the rule of generalization. Namely, in general {¢}7 (7 p)(VZ ¢). Instead,
however, as a rule for generating theorems out of theorems, generalization is such
that ((A,c),0°) kg py (V£ ) whenever ((A,c),0€) IFg py ©.

Ezxample 2. Propositional normal modal logic.

— Abstract signatures are given by Set.
— The concrete syntax functor L : Set — AlgSig, is defined by:
o L(PS) = ({¢},0) with Oy = PS, Ogg = {L3,~}, Ogy = {=} and Oy, = 0
otherwise;
e L(h : PS — PY') is the identity on the sort ¢, the modality O and the

connectives —, =, and maps each p € PS to h(p) € PS/;

— Each Mpg is the class of all structured algebras (A, c¢) obtained from a Kripke
frame (W R) and a valuation 9 : PS — p(W), where W # 0 is a set and
R C W2, as follows:

o Al = p(W);
OpA:ﬁ(p)forpEPSE]A() {fweW:{ueW:wRu} C U},
(U) W\Uand :>A(U1,U2) (W\Ul)UUz,
o c: p(|Alg) = ©(JAlg) is, as before, the cut closure operation induced by
set inclusion.

Easily, in such a structure, ¢ = {W} and a modal formula holds in a model if it is
true for all worlds in that model. In fact, the denotation of a formula corresponds
precisely to the set of all worlds where it holds. Therefore, Fpg reflects reasoning
over a given fixed world. Again, it does not comply with the rule of necessitation.
In general, {p}F ps(Oyp). Instead, as a rule for theorem generation, necessitation is
such that ({A, c),0€) IFps (Op) whenever ((A,c), 0) IFps .



3 The category of c-parchments

As for morphisms of c-parchments we propose a version specially tailored for fibring.
It is essentially dual to the notion of morphism of model-theoretic parchments used
n [21], although in our case the relation between algebras is a little stricter (in
exactly the same sense of the previous coherence condition for c-parchments).

Definition 2. A morphism of c-parchments from P, = (Sig;, L;, M;) to Py =
(Sigs, L2, M2) is a pair (®,7n) : P, — P> where:

— & : Sig, — Sig, is a functor;
— n: Ly o® — Lo is a natural transformation,

such that, for every X € |Sig,|, the following condition holds:
— (Alps,c) € My g(x) for every (A,c) € My 5.

Clearly, c-parchments and their morphisms constitute a category CPar. More-
over, the construction of an institution out of a c-parchment easily extends to a
functor from CPar to the dual of the category Ins of institutions and institution
morphisms [15]. In fact, a c-parchment is no more than a functor from a signature
category to the following category CPRoom of rooms for c-parchments, or just
c-T00MS.

Definition 3. A c-room is a pair R = ((S,0), M) with (S,0) € |AlgSig,| and
M C cAlg((S,0)). A morphism of c-rooms from R; = {((S;,01), M;) to Ry =
((S2,02), M>) is an AlgSig,-morphism h : (S1,01) — (S2, O2) such that (Als,c) €
M, for every (A,c) € M.

A c-parchment P = (Sig, L, M) essentially corresponds to the functor P :
Sig -+ CPRoom such that P(X) = (L(X), Myx) and P(o) = L(o). It is straight-
forward to show that this correspondence is not only a bijection, but that it indeed
extends to an isomorphism of categories. Namely, a morphism ($,7n) : P, — P» of
c-parchments corresponds precisely to a functor ¢ : Sig, — Sig; and a natural
transformation n : P, o & — P». Thus, in exactly the same way that the cate-
gory Ins of institutions and institution morphisms corresponds to a Grothendieck
construction on categories of functors to the category Room(2) of [14], and the
category MPar of model-theoretic parchments and morphisms corresponds to a
Grothendieck construction on categories of functors to the category MPRoom of
[21], the dual of our category CPar corresponds to a Grothendieck construction on
categories of functors to the dual of CPRoom. As in the other cases, the cocom-
pleteness of CPar follows immediately from the cocompleteness of CPRoom.

Proposition 1. CPRoom is cocomplete.

Proof. We just show what coproducts and coequalizers look like in CPRoom. For
the purpose, let I be a set and {R; = ({S;, 0;), M;)}icr a family of c-rooms. Of
course, we capitalize on the well known fact that AlgSig, is cocomplete.
(Coproducts) Let {h; : (S;,0;) — [I;c;(Si,0i)}jer be a coproduct in AlgSig,.
A coproduct {h; : R; — ([[;c;(S:,0:),M)}jecr in CPRoom can be obtained
by taking M C cAlg(]];c;(S:,O:)) to be the class of all pairs (A,c) such that
(Aln;,c) € Mj for every j € I.

(Coequalizers) Let I = {1,2}, h',h"” : Ry — Rs be CPRoom-morphisms and
h : (82,02) — (S,0) a coequalizer of h',h" : (S1,0:) — (S2,02) in AlgSig,.
A coequalizer h : Ry — ((S,0),M) of A',h" : Ry — Rs in CPRoom can be
obtained by taking M C cAlg(({S, 0)) to be the class of all pairs (A, c) such that
(Alp,c) € Ms. O



The following result is a simple corollary of the corresponding Grothendieck
construction, similar to the one in [26].

Proposition 2. CPar is cocomplete.

Proof. Again, we just show what coproducts and coequalizers look like in CPar.
For the purpose, let I be a set and {P; : Sig; - CPRoom};c; a family of c-
parchments.

(Coproducts) A coproduct {(II;,¢;) : P; = P};cr in CPar can be obtained by
taking the functor P = ([[; o([I;c; i) : Il;c; Sig; — CPRoom, where: each
II; : [;c; Sig; — Sig; is the corresponding projection functor; [[; is the coproduct
functor left adjoint to the diagonal functor A; : CPRoom — CPRoom’; [Licr Pi:
[1;c; Sig; » CPRoom’ is the unique functor such that ([],.; P;); = P; o II; for
every j € I, resulting from the universality of the product {_, : CPRoom’ —
CPRoom}cs in Cat; and each ¢ 5 : P;(X;) = [[;c; Pi(%) is the corresponding
injection on the coproduct, for every X' = (¥;)icr € |[];c; Sigy-

(Coequalizers) Let I = {1,2}. A coequalizer (®,7) : P2 — P of a pair of morphisms
(@',n'),(?",n") : P — P2 in CPar can be obtained by taking the functor P =
o(M5, Mg) : Sig = CPRoom, where: & : Sig — Sig, is an equalizer of the functors
&', d" . Sig, — Sig; in Cat; is the coequalizer functor left adjoint to the diagonal
functor A;; : CPRoom — CPRoom"; (77};,74) : Sig — CPRoom" is the
unique functor such that (7,73)1 = 7 o ® and (75,7g)2 = 7' o &, with 7,7 :
Sig, - CPRoom" the functors corresponding to the natural transformations 7'
and 7', resulting from the universality of the pullback _;, , : CPRoom** —
CPRoom* of (dom, cod), (dom,cod) : CPRoom* — A x A in Cat; and 7y :
P (8(X)) = ((ng(5)> M3 (7)) is the corresponding coequalizer, for X € |Sig|. O

4 Fibred semantics

As we have said before, morphisms of c-parchments (as well as morphisms of c-
rooms) have been set up having in mind the characterization of fibring via colimits.
We now extend our previous characterizations of the construction [22,28,7] to the
level of c-rooms and c-parchments, and concentrate on the particular cases of colimit
defining fibring constrained by sharing of symbols. In the remainder of the paper,
in fact, we restrict our attention to just c-rooms. As we have seen, colimits can be
smoothly lifted to the level of c-parchments.

Let us consider fixed two arbitrary c-rooms R; = ({S1,01),M;) and Ry =
({S2,02), M5). For simplicity, we shall assume that when fibring R; and R» the
required sharing of syntax is specified by means of the largest common subsignature
of (S1,01) and (S3,02). That is, by default, we shall assume to be sharing the
signature (Sp, Op) with So = S; N S2 (it always includes at least the sort ¢) and
Op,u = 01,,N Oz, for u € Sar is shared according to the corresponding signature
inclusion morphisms h; : (Sp,0¢) — (S1,01) and ha : (Sp,00) — (S2,02). We
denote by Ry the canonical c-room ((Sp, O¢), My) where My = cAlg({So, Op)). In
the simplest possible case when Sy = {¢} and Oy = () we say that the fibring is free
or unconstrained.

Definition 4. The fibring of R; and R> (constrained by sharing (S, Op)) is the
c-room Ry ® Ry = ((S, 0), M) such that:

— 8§ = 81 USs,, with inclusions f; : S; — S;
= 0y =01,UO0s, ifueS§, 0, =0;,ifue S\ S and O, = 0 otherwise,
with inclusions g; : O; — O;



— M C cAlg((S,0)) is the class of all pairs (A, c) such that (Al 4,),¢c) € My
and <A|<f2,gz>’c> € M.

Clearly, M consists precisely of all those (A4, c) that can be obtained by joining
together any two (Aj,c;) € My and (A, c2) € My such that |A;|s = |Az2]s = |Als
for every s € Sy, 04, = 04, = 04 for every o € Op ,, with u € SO+, andc; =cy; =c.

Proposition 3. The fibring of c-rooms R; and Ry (constrained by sharing (Sy, Og))
is a pushout of {h; : Ry = R;}icq1,2} in CPRoom.

As a simple corollary, when the fibring is free, Ry ® R» is a coproduct of R; and
R5 in CPRoom.

Let us now analyze in some detail a new application of fibring, made possible
in this setting. The example concerns partial equational logic and the way it can
be obtained by fibring equational logic with a logic of partiality. A similar idea
had already been proposed in [19-21], but for a different notion of parchment and
without any concerns for preservation results. For this reason, we do think that
the approach followed here is much more ellegant, direct and modular. Moreover,
as we show, a nice proof-calculus for the fibred partial equational logic is obtained
by putting together the proof-calculi for equational logic together with a calculus
suited for the logic of partiality adopted.

Example 3. Partial equational logic.

We start by representing equational logic as a c-room, for a given IN-ranked alphabet
F of function symbols. In order to keep the focus on partiality, we shall just consider
an unsorted version of equational logic. Let X be a fixed denumerable set of variables
and Eq an equational specification (set of equations) over F' and X.

— The concrete syntax signature (S, O) is such that:
e §S={r,¢}
¢ O, =XUFy, Opny = Fy, forn >0, 0,24 = {=} and O,, = 0 otherwise.
— M is the class of all structured algebras (A, c) obtained from an F-algebra F
that is a model® of Eq as follows:
o |4, = |FIASBD and |4y = p(Asg(X, |F])), where Asg(X, |F]) =
|F|X is the set of all assignments p to variables in |F];
o z4(p) = p(z) for z € X, fale1,...,ex)(p) = fr(e1(p),-..,en(p)) for f €
Foy and =4 (e1,€2) = {p € Asg(X, [F]) : e1(p) = ea(p)};
e c: p(|Alp) = p(A|g) is defined as in Example 1 for first-order logic.

Clearly, as formulae, we have precisely the equations between terms build using the
function symbols in F' and the variables in X. Moreover, in all such interpretation
structures, the denotation of an equation is precisely the set of all assignments
where it holds. Moreover, )¢ = {Asg(X,|F|)} and an equation holds in a model if
the values of the two terms coincide for all possible assignments. Again, F reflects
reasoning with a fixed assignment and does not comply with the rule of substitution.
In general, {1 = t2}#t10 = ta0, where o is some substitution of variables by terms.
Instead, we have that if ((A, c),0C) IF t; = t5 then ((A,c),0C) IF tj0 = ta0.

We aim at obtaining a c-room for unsorted partial equational logic by fibring
the c-room above with a suitable room ({5, 0), M) for partiality. For the purpose,
let G = {Gn}, v be aranked subalphabet of F'. Operations in G shall be consid-
ered total, whereas all other operations in F' can be partial. Here is a very simple
possibility:

! This means that [t1]] = [t2]] for every assignment o : X — |F| and every equation
t1 = t2 € Eq.



— The concrete syntax signature (S, O) is such that:

o §S={r,¢}

¢ O, =XUFy, Opny = F, forn >0, 0,4 ={D}, O;2p ={=} and O, =0
otherwise;

— M is the class of all structured algebras (A, c) obtained from an F-algebra F
with a distinguished element * € |F| and satisfying:

e fr(ai,-..,a,) = * whenever some a; = *, for every f € F,;

e gr(ai,...,an) # *x whenever all a; # *, for every g € G,

plus a given binary relation R C |F| x |F| satisfying:
e g Rxor x Ra imply a = *,
as follows:

o Al = |FIASEXIZD and | Al; = p(Asg(X, | F]));

e z4(p) = p(z) for z € X, fa(er,...,en)(p) = frlei(p),---,en(p)) for f €
Fo, Duale) = {p € Asg(X,|F|) : e(p) # =}, and =4 (e1,e2) = {p €
Asg(X, |7|) - ex(p) Re2(p) };

o c: p(|Alg) = p(|Alp) is again the cut closure operation induced by set
inclusion.

In this case we are only concerned with partiality. Hence, we impose the least
possible constraints to the interpretation R of equality.

The desired c-room for unsorted partial equational logic, obtained by constrained
fibring and sharing both sorts 7 and ¢, the variables X, the equality symbol =, and
the operations in F' is as follows:

— The concrete syntax signature (S, O) is such that:
o S={1,¢}
¢ O, =XUFy, Opny = F, forn>0,0.4 ={D}, O;2p ={=} and O, =0
otherwise;
— M is the class of all structured algebras (.4, ¢) obtained from an F-algebra F
that is a model of Eq with a distinguished element * € |F| and satisfying:

e fr(ai,...,a,) = *x whenever some a; = *, for every f € F,;
e gr(ai,...,a,) # x whenever all a; # *, for every g € G,
as follows:

o |A], = |FIASBXIZD and |A]y = p(Asg(X, | F]));

o z4(p) = p(z) for z € X, fa(er,.-.,en)(p) = fr(ei(p),.--,en(p)) for f €
Fo, Dale) = {p € Asg(X,|F]) : e(p) # +}, and =4 (en,e2) = {p €
Asg(X, 7)) : ex(p) = e2(0)}:

o c: p(|Alg) = p(|Alg) is again the cut closure operation induced by set
inclusion.

Note that, in the resulting c-room, equality is necessarily interpreted as strong
equality. Existential equality can also be introduced, by adding the symbol = to the
partial logic room, where it should be interpreted as follows:

=4 (e1,e2) = {p € Asg(X,|F]) : e1(p) # * and e1(p) Rez(p)}-

One may ask what can be achieved at the proof-theoretic level. Can we expect
to obtain a calculus for partial equational logic, by putting together a calculus for
equational logic and a calculus for the logic of partiality? The answer is yes. Just
consider the following deduction rules for partiality:

D(f(t1,.-.,tn)) D(t1) ... D(tn)
t

F,i=1,... 20) - )
D) € " Dol tn)

g€ Gy

D(t1) ti=ty  D(t) ti=ts
D(t2) D(t1)




and for the partial logic with existential equality (=) we may consider the additional

rules:

t1 =to t1 = to t1 = to D(t;) t1=t»

D(ty) D(ts) ty =t <ty

It is easy to check that not only this calculus is sound and complete for the

simple logic of partiality being adopted, but furthermore the calculus for partial
equational logic obtained by adding these rules to the usual calculus for equational
logic with specific axioms for each equation in Eq is also sound and complete, even
with existential equality. The proof of soundness is straightforward. In what con-
cerns completeness, we can easily adapt the usual techniques for partiality (see, for
instance, [27,2]). We should also note that similar results could have been obtained
by taking from the beginning a conditional equational specification instead of Eq.

Note that other approaches to partiality, namely using three-valued or versions
of equality, could also be considered by just performing a closure operation on the
interpretation structures of equational logic, similarly to what is done in [28, 7]. This
just means that, for instance, all three-valued interpretation structures whose two-
valued fragment is now an interpretation structure should be added to the c-room.
This operation clearly has no effect on the entailment consequence [28,7] and can
be used to obtain the desired fibred logic by suitably defining the desired logic of
partiality, necessarily different from the one we have used above.

5 Fibred deduction

The most promising advantage of fibring concerns preservation results [12,13]. In
the next section, we present a collection of soundness and completeness preser-
vation results for fibring, within the context of a suitable notion of Hilbert-like
proof-calculus that explicitly distinguishes theorem generating rules. We dedicate
this section to presenting the details of such calculi and their fibring. However, we
shall restrict ourselves to logics with a propositional base, namely, whose concrete
syntax is given by a one-sorted signature whose only sort is the sort of formulae.
Thus, from now on, we shall refer to ¢-sorted signatures as those having ¢ as the
unique sort. The forthcoming proof-theoretic definitions could of course be extended
in order to encompass also logics without a propositional base, such as first-order
logic or equational logic as in the preceding examples. However, we refrain from
doing so, for simplicity, since the preservation results that we shall present are only
applicable to the propositional base case.

The way the proof-calculi of equational logic and of the logic of partiality were
put together in Example 3 to obtain the proof-calculus of partial equational logic,
can in fact be systematized as a corresponding proof-theoretic form of fibring. The
idea, originally used in [22], is to use schema variables in rules and schema variable
substitutions in rule application. For the purpose, we consider fixed a denumer-
able set =& = {¢, : n € IN} of schema formula variables, to be used in writing
schema rules. Letting ({¢},0) be a signature, we shall use W4},0)(Z) to de-
note the free ({¢}, O)-algebra on the set = of generators (the schema word al-
gebra), and [_]# (for schema word interpretation under a) to denote the unique
Alg({{#}, O0))-homomorphism from W (4},0y(Z) to any given ({#}, O)-algebra A
that extends a given assignment o : = — | Al4. As before, given AlgSig,-morphism

h: {({¢},01) = ({#}, O2), we shall preferably write h (for schema word translation)

instead of l[_]]g;{"’}’oz) ' to denote the unique Alg(({#}, O1))-homomorphism from
Wii41,01) (E) 10 W((4},04)|0(Z) that identifies schema variables.
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We can recognize |W4},0y(Z)|s (the carrier of sort ¢ in the schema word
algebra) as the set of schema formulae over ({¢},0). We shall use v,d with or
without primes and subscripts to denote schema formulae, and I', A to denote sets
of schema formulae.

Definition 5. An inference rule over a signature ({¢}, O) is a pair r = (I', §) where
I'U {6} C [Wi41,0)(E)|g is a finite set.

Given such an inference rule r, we shall often use Prem(r) = I" and Conc(r) = ¢
to denote its premises and conclusion. As usual, we shall sometimes represent r
simply by lg;n—“(:gg, %, or even by =T if I' = {v; ...v,}. If the set of premises is
empty the rule is sometimes also identified with its conclusion and referred to as an
aziom. The following definition is similar to those in [22,28, 7].

Definition 6. A proof-calculus is a triple C' = ({({¢}, O),dR, gR) where ({¢},O) is
a signature and dRUgR is a set of inference rules over ({¢}, O) such that Prem(r) #
(0 for every r € gR. A morphism between proof-calculi C; = ({{¢},01),dR1,gR;1)
and Cy = ({({¢}, O2),dR2, gRo) is an AlgSig,-morphism h : ({¢}, 01) = ({#},02)

such that H(r) € dR; for every r € dR;, and E(r) € gR; for every r € gR;.

In the definition above, dR denotes the set of rules allowed for building de-
ductions in the calculus, while gR stands for the set of rules that are to be used
just for building theorems out of theorems. Thus, the requirement that gR rules
must have premises is quite natural. In the context of a signature morphism A :
({¢},01) — {({#},02), given a rule r = %oner ({¢},01), we are of course

writing H(r) to denote the translated rule L“),I(SM over ({¢}, O2). It is straight-

forward that proof-calculi consitute a category PCalc. Moreover, exactly as the
category of c-parchments can be build over the category of c-rooms, we can use a
similar Grothendieck construction to set up our proof-theoretic notion of logic as a
category Prf of proof-systems built over PCalc.

A proof-calculus C' = ({{¢},0),dR, gR) presents, as expected, a deducibility
relation. However, this relation is build on top of a notion of theoremhood. For
convenience, we define both notions over schema formulae. We say that a schema
formula § is a theorem schema generated from the set of schema formulae I if there
exists a finite sequence 7 .. .7, of schema formulae such that:

— Yn is &

— foreachi = 1,...,n either v; € I', or there exist arule r € dRUgR and a schema
variable substitution o : & — [W(4},0)(Z)|¢ such that Prem(r)o C {v; : j < i}
and Conc(r)o is ;.

In the sequel, we shall refer to theorem schemata generated from () simply by theorem
schemata. In deductions now, only instances of rules in dR are allowed, together
with theorem schemata. We say that § is deducible from I', I' - § if there exists a
finite sequence 7; ...y, such that:

—= Tn i8 8

— foreachi =1,...,neithervy; € I', or ; is a theorem schema, or there exist a rule
r € dR and a schema variable substitution o such that Prem(r)o C {v; : j < i}
and Conc(r)o is ;.

Easily, @ - v if and only if «y is a theorem schema. Of course, since formulae are
special cases of schema formulae, the notions of theorem and deduction also apply.
The convenience for having introduced schema formulae is that both theoremhood



and deducibility are structural [22] in the following sense: for every schema variable
substitution o, if § is a theorem schema generated from I" then do is a theorem
schema generated from I'o, and if I" - é then I'o + do.

Often, we shall work with a c-room R = (({¢},0), M) equipped with a proof-
calculus C = ({({¢},0),dR, gR). In this context, since R defines a semantic entail-
ment relation F and C defines a deducibility relation I, we shall use the following
usual definitions:

— C is sound for R if & I 1 implies @ F ¢;

— C is weak complete for R if § E ¢ implies 0 - ¢;

— C is finite complete for R if & finite and @ E 1 imply @ F 1;
— C is complete for R if ¢ F ¢ implies & |- 9,

for every set of formulae ¢ and formula .

The usual way of proving the soundness of a proof-calculus consists in estab-
lishing the soundness of each of its rules. An inference rule r is said to be d-sound
for R if for every (A,c) € M and every assignment a : 5 — |A|, we have that
[Conc(r)]A € {[v]A : v € Prem(r)}©. On the other hand, r is said to be g-sound
for R if for every (A,c) € M and every assignment o : = — |A|y, we have that
[Conc(r)]A € € whenever {[y]2 : v € Prem(r)} C (€. Clearly, if all the rules of C
are sound for R, that is the rules in dR are d-sound and the rules in g R are g-sound,
then C is sound for R [22,28,7].

For the sake of illustration, let us now present the well known calculus for propo-
sitional normal modal logic.

Ezxample 4. Propositional normal modal logic.

— Consider any concrete syntax signature defined as in Example 2;
— The set dR of deduction rules is composed of the schema axioms

(&= (&=4))
(L= (L=8&)= (L= &)= (L =8)))
(&)= (&)= (L= &)
(A = &) = (B&) = (0&)))

and the schema rule

& (= 6)
&

— The set gR of theorem generating rules contains just the schema rule

&
(O&)

It is well known (see, for instance, [16]) that this proof-calculus is both sound and
complete for the c-room of propositional modal logic in Example 2.

As in the case of rooms, fibring of proof-calculi is to be characterized as a colimit.
And in fact the corresponding category PCalc is cocomplete.

Proposition 4. PCalc is cocomplete.



Proof. We just show what coproducts and coequalizers look like in PCalc. For the
purpose, let I be a set and {C; = ({({¢}, 0:),dR;, gR;) }ier a family of proof-calculi.
Again, we capitalize on the fact that AlgSig, is cocomplete.

(Coproducts) Let {h; : ({#},0;) = [1;c;({¢}, Oi) }jer be a coproduct in AlgSig,.
A coproduct {h; : C; = ([1;c;({#}, Oi),dR, gR)}jcr in PCalc can be obtained by
simply taking dR = J,c; hi(dR;) and gR = U;c; hi(gRi)-

(Coequalizers) Let I = {1,2}, h',h"” : C1 — C>2 be PCalc-morphisms and A :
({¢},02) — ({¢},0) a coequalizer of h',h" : ({¢},01) — ({#},02) in AlgSig,.
A coequalizer h : Cy — ({({¢},0),dR,gR) of h',h" : C1 — C> in PCalc can be

~

obtained by simply taking dR = h(dR2) and gR = ?L(ng) . O

As a consequence of the Grothendieck construction, Prf is also cocomplete.
The same applies to the following definition of fibring of proof-calculi. Let us
consider fixed two arbitrary proof-calculi C; = ({{¢},01),dR1,9R;1) and C2 =
(({¢}, 02),dR3, gR>), and recall from the previous section the definition of the
sharing common subsignature ({¢}, Op) and corresponding signature inclusion mor-
phisms hy : ({¢}, Og) = ({¢},01) and hs : ({¢}, Og) — ({¢}, O2). We shall denote
by Cy the canonical proof-calculus ({{¢}, Og), dRo, gRo) where dRy = gRy = 0.

Definition 7. The fibring of C; and Cs (constrained by sharing ({¢}, Oo)) is the
proof-calculus C; ® Cs = ({({¢}, O),dR, gR) such that:

— Oy =01,4,UO2, ifue S, O, =0, ifueSH\S; and O, = 0 otherwise,
with inclu/sigls gi: O; — O;/\

—dR= <id’{£\},91>(d31) U (id{/¢&92>(dR2);

— gR = (id{43,91)(9R1) U (id (43, 92) (9Ra)-

Thus, the schema inference rules in the fibring are just the translation of the
rules of each given proof-calculus translated to the fibred language.

Proposition 5. The fibring of proof-calculi C1 and Cs (constrained by sharing
(S0,00)) is a pushout of {h; : Co — Ci}ic{1,2} in PCalc.

As a simple corollary, if the fibring is free, C; ® C> also corresponds to a coproduct
of C; and C5 in PCalc.

6 Preservation results

We are now in the position of stating and proving our soundness and completeness
preservation results. Excluding the very last completeness transference result, that
is an instance of the one in [28], all the other results are suitably adapted from
[7]. Recall that these are, for the moment, only concerned with propositional based
logics. We shall discuss in the conclusions how these results can be extended to
the general case. In the remainder of this section we consider fixed two c-rooms
Ry = (({¢},01), M) and Ry = {{({¢},02), M), and two corresponding proof-
calculi C; = <<{¢}, 01), de,gR1> and C = <<{¢}, Oz), dRz,gR2>.

To prove preservation of soundness we shall rely on guaranteeing the soundness
of all inference rules.

Theorem 1. Soundness Preservation.
Assume that all the rules of C1 are sound for Ry and all the rules of Cy are sound for
R>. Then, the fibred proof-calculus C1 ® Cy is sound for the fibred c-room Ry ® Rs.

Proof. It is immediate, by definition of fibring, that in the conditions of the theorem
all the rules of C; ® C5 are sound for R; ® R». |



Completeness preservation is, as expected, much harder to obtain. Our com-
pleteness preservation results are based on the following notion of fullness.

Definition 8. Let P be a class of closure operations. A c-room ({({¢},0), M)
equipped with a proof-calculus C is said to be full with respect to P if M con-
tains every structure (A, c) € cAlg({({¢},0)) with (|Al4,c) € P that makes all the
rules in C' sound.

Although fullness may seem to be a fairly strong requirement, note that the
operation of turning a c-room full with respect to some given class P in the context
of a proof-calculus does not change its semantic entailment [28,7]. Moreover, the
essential bit is that fullness is always preserved by fibring.

Proposition 6. Let the c-rooms Ry and Ry equipped with the proof-calculi Cy and
C> be full with respect to a class P of closure operations. Then, the fibred c-room
R1 ® Ry equipped with the fibred proof-calculus Cy ® Cs is full with respect to P.

Proof. Suppose that (A, c) makes all the rules in C; ® C5 sound and (|Al4,c) € P.
Easily, then, being each (id;4y,9:) : ({¢}, O:) = ({¢},O) the signature morphism
underlying both the morphisms from R; to R; ® R2 and from C; to C; ®C> as defined
in the fibring, and given that the rules of C; ® Cs are corresponding translations
of rules of C1 or Co, it easily follows that (Al(iqa,,,e),C) makes all the rules of
C; sound. Moreover, |(Al(id,,,.:))l¢ = |Al¢ and therefore, by the fullness of each
R; equipped with Cj, it follows that (A|(a,,, ¢:),¢) € M;. Thus, by definition of
fibring, (A, c) is a structure of the fibred room R; ® R,. O

We shall now present completeness preservation results for several choices of P.

Theorem 2. Completeness Preservation - All Structures.

Let the c-rooms Ry and Ra equipped with the proof-calculi Cy and C3 be full with
respect to the class of all closure operations. Then, the fibred proof-calculus C; ® Cs
is complete for the fibred c-room R; ® Rs.

Proof. We know that R; ® Ry equipped with C; ® Cs is full with respect to the
class of all closure operations. It is very easy to see that the structure (W43,0),¢)
such that ¢ =}, where ({¢}, O) stands for the fibred signature, makes all the rules
in C7 ® Cs sound. Therefore, the structure belongs to the fibred room R; ® R> as
a consequence of fullness. Suppose now that, in the fibring, & I/ ¢. To show that
& I ¢ it is enough to note that [_]"V«{43.0) is the identity on formulae. O

Due to the plain use of the free word algebra, this result is, so to say, a little too
much syntactic. Let us try and avoid such structures. A closure operation (4, c) is
said to be elementary if for every aj,a2 € A, a1 € {a2}€ and a2 € {a1}€ together
imply a; = a2. In most of the interesting cases, the structure used in the previous
proof clearly fails to be elementary.

In this case, however, we need to make a few further assumptions about the
systems being fibred. A proof-calculus C' = ({({¢}, O}, dR, gR) is said to be congruent
if for every operator o € Ogngy, every set I" of schema formulae closed for theorem
generation, and all schema formulae 7v; ..., vn,01,...,0d,, it is the case that

ruf{o(yr -..,v)} Fo(b1,...,0n)
whenever

rv{y,}Fé and T'U {6} Fvy fori=1,...,n.



Many proof-calculi, including the one for modal logic presented in Example 4, are
indeed congruent. However, there are exceptions, as for instance the paraconsistent
systems of [11].

Moreover, C'is said to have an implication connective if there exists = € Oy24
such that, for every set I' of schema formulae and all schema formulae v, § it is the
case that

I't (y=90)if and only if 'U {y} I é6.

This condition can be easily shown [28] to be equivalent to requiring
OF (&= &),

{&, (6= &)} &
{&}F (&= &)

and

{(¢r = 7) : v € Prem(r)} I (§ = Conc(r))
for each r € dR and some &, not occurring in 7.

Furthermore, in the presence of an implication, it is known [28] that congruence is
equivalent to the condition that, for each operator o € Ogn 4, the schema formula

(o(&1 .-, &) = 0(&1,...,E)))
is a theorem schema generated from

{&a=8),E =8&)--En=8) (&, = &)}

Given these characterizations of implication and congruence in the presence of an
implication, it is very easy to see that the fibring of two congruent proof-calculi
sharing an implication connective is also a congruent proof-calculus with implica-
tion. The proof of this property can be found in [28,7] and just uses the obvious
fact that both theorem generation and deducibility are preserved by morphisms of
proof-calculi.

Theorem 3. Completeness Preservation - Elementary Structures.

Let the c-rooms Ry and Rs equipped with the proof-calculi Cy and Cy be full with
respect to the class of all elementary closure operations. If both Cy; and Cs are
congruent and there is a shared implication connective, then the fibred proof-calculus
C1 ® Cs is complete for the fibred c-room R ® Ra.

Proof. We know that R; ® Ry equipped with C; ® C> is full with respect to the
class of all elementary closure operations. Moreover, we also know that C; ® C- is
congruent and has an implication connective =. It is easy to see that the binary
relation = defined on formulae by 1 = g2 if both {p1} F @2 and {2} F ¢4 is an
equivalence relation. Moreover, if ({¢}, O) is the fibred signature, the congruence of
C1 ® Cy immediately implies that = is a congruence relation on the word algebra
Wii¢},0- Thus, let us consider the structure (W 43,0)/=,¢), corresponding to the
Lindenbaum-Tarski quotient algebra together with the closure defined by {[¢] : ¢ €
1€ = {[¢'] : ¥ F! '}, where [_] applied to a formula denotes its equivalence class
under =. Once again, it is straightforward to show that this structure makes all the
rules in C; ® Cy sound. In fact, it is clear that [_]"«¢3.0)/= = [_]. Therefore, the
structure belongs to the fibred room R; ® Ry as a consequence of fullness. Suppose
that, in the fibring, & I/ ¢. The structure just built clearly shows that @ 1. O



Let us try and improve even more on this result, by requiring that the algebra
of truth-values has the usual property of being ordered. Every partial-order (4, <)
easily induces two polarities Upp(B) = {a € A : b < afor every b € B} and
Low(B) = {a € A : a < bfor every b € B}, and a cut closure ¢ on A defined by
B¢ = Upp(Low(B)), where B C A, as in [3]. In such case, (4,c) is said to be a
partially ordered closure operation.

Theorem 4. Completeness Preservation - Partially Ordered Structures I.

Let the c-rooms Ry and Rs equipped with the proof-calculi C1 and Cy be full with
respect to the class of all partial-order closure operations. If both Cy and Cs are
congruent and there is a shared implication connective, then the fibred proof-calculus
C1 ® Cs is weak complete for the fibred c-room Ry ® Rs.

Proof. The proof of this result is similar to the previous one, but now considering
a different closure operation on the Lindenbaum-Tarski algebra. Just note that
the binary relation < defined by [p1] < [p2] if @ F (1 = ¢2) is a partial order
on the quotient of the set of formulae. Therefore, let us consider the structure
(W(1¢1,0y/=, c) where c is the cut closure induced by < as explained above. Let
us check, in this less trivial case, that this structure indeed makes all the rules
of C1 ® Cy sound. Just note that an assignment « in the quotient algebra sends
each schema variable to an equivalence class of formulae. Therefore, if we set a
schema variable substitution o such that [0(¢)] = «(£), it immediately follows that
[[_]]zv“‘”’o)/: = [_o]. Consider a d-rule r = 2= and fix an assignment o. We
need to show that [§c] € {[y10],...,7,0]}€. Therefore, let ¢ be a sentence such that
[¢] < [yio] for i = 1,...,n. By definition, this means that § - (¢ = ~;0) for each .
Therefore, by using the last requirement (concerning d-rules) in the characterization
of implication together with the structurality of deducibility, we can chose ¢ as above
such that ¢(&,) = ¢ and therefore conclude that also §) - (¢ = o). Equivalently,
this means that [p] < [6o] and the d-rule is sound. Assume now that r is a g-rule.
We need to show that if {[y10],...,[yn0]} € 0€ then also [§o] € 0€. In this case, it
is easy to see that (€ has precisely one element, corresponding to the equivalence
class of all theorems of C; ® Cs. Thus, if all ;0 are theorems, then by using the dR
rule r we can conclude that also do is a theorem, and the g-rule is sound. Therefore,
as a consequence of fullness, the structure belongs to the fibred room R; ® R». Now,
if () /9 this structure clearly shows that ) & ). O

One may wonder why the construction fails if we want to go beyond weak com-
pleteness. If @ I/ ¢, in the structure built above, we would need to find a sentence
that would imply all the formulae in @ but not 4. This, in general, can only be
solved in the presence of some form of infinitary conjunction, since ¢ may very well
be an infinite set. However, we can still improve the result a little bit by also dealing
with the finite case.

A proof-calculus C = ({{¢}, O),dR, gR) is said to have a conjunction connective
if there exists A € Oy24 such that, for every set of schema formulae I" and all schema
formulae 01, 62, it is the case that

'u{é;,8:}F~ifand only if "'U{(61 Ad2)} F 7.
This condition can be easily shown to be equivalent to requiring
{GA&)F&
{&n&)}E &

and

{1,863 F (&1 A &2).



Theorem 5. Completeness Preservation - Partially Ordered Structures II.

Let the c-rooms Ry and Ra equipped with the proof-calculi C1 and Cy be full with
respect to the class of all partial-order closure operations. If both C1 and Cy are
congruent, there is a shared implication connective and at least one of them has a
conjunction connective, then the fibred proof-calculus C1 ® Cs is finite complete for
the fibred c-room Ry ® Ro.

Proof. Consider exactly the same structure as in the previous proof, and suppose
that {¢1,-..,9n} I/ 9. In that case, just consider the sentence ¢ = (o1 A ... A pp).
It is trivial to check that 0 F (¢ = ;) for each i = 1,...,n. However, as easily, it is
also the case that 0 I/ (¢ = ¢) and the structure shows that {¢1,...,on} F¢. O

Being unfeasible to require an infinitary conjunction connective and therefore
obtain completeness, we now just point out to an alternative. The following result,
that we just state, is an instance of the one proved in [28] and concerns algebras of
sets in the style of general frames for modal logic (see [16]) and uses a Henkin-style
construction. For a powerset lattice (p(U),C), the cut closure ¢ induced by the
polarities as above is such that B¢ = {b C p(U) : (N B) C b}. We have already
used such closures in the examples. A closure operation (A4, ¢) is said to be a general
powerset closure operation if A C p(U), U € A and ¢ is the closure induced by c
on A, i.e., B¢ = B¢ N A for each B C A.

Theorem 6. Completeness Preservation - General Powerset Structures.

Let the c-rooms Ry and Ra equipped with the proof-calculi C1 and Ca be full with
respect to the class of all general powerset closure operations. If both C, and Cy are
congruent and there is a shared implication connective, then the fibred proof-calculus
C1 ® Cs is complete for the fibred c-room R; ® Rs.

Other approaches to completeness preservation, namely via encoding in a suit-
able meta-logic have already been employed in the specific context of paraconsistent
non-truth-functional logics [8] but should of course be also workable in this setting.
Some forms of conditional equational logic, namely rewriting logic [17], seem to be
good candidate meta-logics for this process of algebraization.

7 Conclusion

We have introduced the novel notion of c-parchment, by enriching the structure
of interpretation algebras, as a means of presenting an institution, and we have
shown how it can be used to bring the combination mechanism of fibring to the
institutional setting. Moreover, c-parchments were shown to correspond to indexed
categories of c-rooms and their fibring characterized as a colimit. Furthermore, we
have put the construction into practice by exploring partial equational logic as a
fibred logic. The example is even more interesting since we also obtain a proof-
calculus for partial equational logic by fibring calculi for equational logic and the
logic of partiality adopted. In fact, although in the simplest case of propositionally
based logics, we have established a collection of soundness and completeness preser-
vation results for fibring, thus showing that the successfulness of the example is not
just a mere coincidence.

Of course, this line work is far from over. The most important topic to be followed
is precisely the extension of these preservation results to a more general context.
Namely, the work reported in [24] seems to bring ideas that can also be explored in
this context. This comment applies not only to preservation results but, first of all,
also with the way we should deal with more complex notions of proof-calculus than



the one used here. Work in this direction has already been done in [23], including
ways of representing constrained schematic rules such as those used in many logics
with terms and quantifiers. Two well known such examples appear in classical first-
order logic’s axioms ((Vz(p = 9)) = (¢ = (Vz¢))) and ((Vz ¢) = ¢%). However, in
both cases there are well known constraints. Namely, in the first case, there is the
requirement that x must not occur free in ¢ and, in the second, the requirement
that ¢ must be free for z in .

Another interesting possibility to be pursued is to explore a process of algebraiza-
tion using a suitable meta-logic, as mentioned above. This alternative does not only
bring us closer to the realm of algebraic logic [10,5,1], but it also has the advan-
tage of being able to deal, at an adequate level, with non-truth-functional logics.
In fact, several interesting paraconsistent and paracomplete logics, with meaning-
ful applications in computer science, fail to be truth-functional in the sense that
some of its operators are not congruent. Some preliminary work also in the setting
up of a meaningful notion of non-truth-functional parchment can be found in [9].
However, in this context, there is still a lot of research work to be done in order
to extend the usual algebraic techniques of logic to cope with the possible absence
of congruence. We are also interested in studying the representation of fibring in
logical frameworks. Namely, capitalizing on Meseguer’s theory of general logics [18],
we aim at characterizing the mechanism of fibring of logics within rewriting logic
[17]. In particular, general representation preservation results are envisaged, that
may determine the exact extent to which representations of fibred logics can be
obtained out of representations of the logics being fibred. Last but not least, future
work should also cover the characterization of fibring of logics presented by other
means, either model or proof-theoretic, as well as the search for transference re-
sults for other interesting properties, such as decidability, the finite model property,
interpolation and amalgamation.
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