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Instituto de Informática – UFRGS
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Abstract

Category Theory is becoming an useful tool to formalize abstract concepts making easy to construct proofs and

investigate properties while graphs are commonly used to model systems. Partiality is a important mathematical

concept used in Mathematics and Computer Science. In this paper we define a category where objects are partial

graphs whose arcs may have source and/or target nodes undefined and morphisms are total homomorphisms of

partial graphs and prove that this category, named Grp is bicomplete.
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1 Introduction

Category Theory is becoming an useful tool to formalize abstract concepts making easy to construct
proofs and investigate properties in many areas, speccially in Semmantics and Type Theory. The con-
structions about universal mappings like limits and adjunctions are getting usefull interpretations in
terms of compositionality of systems.

Graphs are commonly used to model systems, either by simple graphs or by graph-based structures
like automata [7, 1] and Petri nets [11, 10, 9].

The notion of partiality appears naturally in the main concepts from Computer Science and also in
many other mathematical formalisms. In Computer Science, it can be used to express computations that
don’t terminate and to define partial recursive functions (due to partiality the class of partial recursive
functions becomes equivalent to Turing Machines).

We defined a category where objects are partial graphs whose arcs may have source and/or target
nodes undefined and morphisms are total homomorphisms of partial graphs. Our goal is to prove that the
category of partial graphs with total morphisms, named Grp, is bicomplete. In graphs, limits and colimits
can be used to compose systems like a syncronous composition, but interpretations of these constructions
and examples are out of the scope of this paper.

In literature, partial graphs are not very common (compared to total graphs). Moreover, as far as
we know, the proposed category is new. In [13] partial graphs (but with different morphisms) are used
to modelling flow control of programs and in [5] partial functions in automata (in a different categorical
approach) are used to allow the possibility of computations that do not terminate.

In section 2, we give the formal definitions of the category of partial graphs and in section 3 we give
the proof of bicompletness, also given an overview of how to construct limits and colimits in this category.
Finnaly, we give the conclusions and some future works.

2 Partial Graphs

A partial graph is a graph whose arcs can have source and/or target nodes undefined. Traditionally, a
graph has a set of vertices, a set of arcs and two total functions named source and target that takes an
arc and go to the respective source or target vertice. In partial graphs, the source and target functions
are partial functions. We can see an arc without source but with a target defined as an entry-point of
the graph (or the systems that this graph represents), an arc without target but with source defined is
an exit-point, and an arc without source and target can be seen as an transaction of the system. This
last interpretation can be confirmed when we give semmantics to the computations of a graph through
span composition of graphs [6].

To define the category of partial graphs is needed to define first the Partial Comma Category, that is
used to partial graphs. The resulting category has objects with partiality in its internal structure. We
used comma category in the sense of [2].

Definition 2.1 (pComma)
Consider the finitely complete category C and the functors incp : C → pC (the canonical inclusion
functor), f : F → C and g : G → C.

Therefore, pComma(f ,g) is such that:

• the objects are triples S = 〈F, s, G〉, where F is a F-object, G is a G-object and s : incp ◦ fF →
incp ◦ gG is a pC-morphism;
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Figure 1: Diagram of Partial Comma Category

• a morphism h : S1 → S2 where S1 = 〈F, s1, G〉, S2 = 〈F, s2, G〉 is a pair h = 〈hF : F1 → F2, hG :
G1 → G2〉 where hF and hG are morphisms in F and G respectively, and are such that in pC (see
figure 1) (incp ◦ ghG) ◦ s1 = s2 ◦ (incp ◦ fhF )

• the identity morphism of an object S = 〈F, s, G〉 is ιS = 〈ιF : F → F, ιG : G → G〉;

• the composition of u = 〈uF , uG〉 : S1 → S2, v = 〈vF , vG〉 : S2 → S3 is v ◦ u = 〈vF ◦ uF , vG ◦ uG〉 :
S1 → S3

Definition 2.2 (Category of Partial Graphs)
The category of partial graphs with total homomorphisms, named Grp, is the partial comma category
pComma(∆,∆) (beeing ∆ : Set → Set2 the diagonal functor).

Note that the objects are partial graphs, i.e., graphs where source and target functions are partial

functions, and morphisms are total homomorphims of partial graphs.
A homomorphism h : G → H (where G and H are two partial graphs) in Grp is a triple 〈hV , hD, hT 〉

where hV : VG → VH , hD : DG → DH and hT : TG → TH are total functions mapping vertices (hV ), arcs
(hT ) and the domain such that the source and target functions are defined (hD), such that source and
target functions are preserved. By simplicity, we usually omit the function hD, that is obvious.

3 Bicompletness of Grp

In this section, we describe the constructions about limits and colimits of Grp and prove the bicompletness
of this category.

3.1 Colimits

Theorem 3.1
Grp is cocomplete.

Proof : The proof that Grp is cocomplete is given by the inheritance of colimits in comma categories [3].
In this case, the categories involved to the definition of Grp must be cocomplete and the functor incp ◦ f
must preserve colimits. Both Set and pSet are cocomplete, and both ∆ and incp has right-adjoint [8, 4].
If a functor has right-adjoint, then the functor preserves colimits [12] and the composition of left-adjoints
is a left-adjoint, thus, the proof is done. �

Due to the inheritance, the colimits in pComma(∆, ∆) are calculated in Set, as illustrated in figure 2
for coproduct.
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Figure 2: Coprodut in Grp

The cocompleteness is an important property to define, p.g., pushouts. With this construction we
can use graph grammars (with double-pushout approach, since morphisms are total) and define systems
that evolves during their computation (see [6]).

3.2 Limits

The proof of the completeness of Grp is not by inheritance since incp does not preserve limits, as shown
before. But there are constructions for products and for equalizers in Grp, therefore the category is
complete. In this paper we give the construction and the proof for binary product, terminal object and
equalizers.

Calculate the binary product of partial graphs is not trivial, so is necessary follow some steps. Consider
the partial graphs G = 〈VG, TG, ∂0G

, ∂1G
〉 and H = 〈VH , TH , ∂0H

, ∂1H
〉, the steps are:

1. Calculate VG × VH , the product of the vertices in Set;

2. Separate the arcs of each graph in four distinct classes: arcs with both source and target, arcs
without source and without target, arcs that have only source and arcs that have only target;

3. Calculate the product in Set of each class of arcs.

The resulting partial graph will be the graph with vertices being the set VG × VH , arcs being the
union of the four products of the classes of arcs, and the source and target functions are given unically
by the calculated projections of the products in Set.

Definition 3.1 (Division of T )
Let G = 〈V, T, ∂0, ∂1〉 a partial graph, ∅ : T → {∗} the empty partial function, totT : T → {∗}, totV :
V → {∗} both total functions and ∂∗

0 = totV ◦ ∂0, ∂∗

1 = totV ◦ ∂1. The following subobjects are given by
the equalizers in pSet like in figure 3:

• 〈K0,¬∂0〉 equalizer of ∂∗

0 and ∅. Arcs of G with source undefined;

• 〈K1,¬∂1〉 equalizer of ∂∗

1 and ∅. Arcs of G with target undefined;

• 〈E0, ‘∂
′

0〉 equalizer of ∂∗

0 and tot. Arcs of G with source defined;

• 〈E1, ‘∂
′

1〉 equalizer of ∂∗

1 and tot. Arcs of G with target defined.

The pullbacks of figure 4 give the division of T in four classes, where:
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Figure 3: Equalizers in pSet
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Figure 4: Division of Arcs

• 〈V V, vv〉, being vv = ‘∂ ′

0 ◦ vv0 = ‘∂′

1 ◦ vv1, arcs with ∂0 and ∂1 defined;

• 〈V F, vf〉, being vf = ‘∂ ′

0 ◦ vf0 = ¬∂1 ◦ vf1, arcs with ∂0 defined only;

• 〈FV, fv〉, being fv = ¬∂0 ◦ fv0 = ‘∂′

1 ◦ fv1, arcs with ∂1 defined only;

• 〈FF, ff〉, being ff = ¬∂0 ◦ ff0 = ¬∂1 ◦ ff1, arcs with ∂0 and ∂1 undefined;

Theorem 3.2
Let 〈V V, vv〉, 〈V F, vf〉, 〈FV, fv〉, 〈FF, ff〉 a division of T . Then, V V , V F , FV and FF are pairwise
disjoint and V V ∪ V F ∪ FV ∪ FF = T .

Proof : To prove that V V , V F , FV and FF are pairwise disjoints we prove that V V ∩ V F = ∅. The
proof of the other pairs are similar.

To prove V V ∩ V F = ∅ we need to show that the pullback of vv and vf is the empty set. Let
〈P, p1, p2〉 the pullback of vv and vf illustraded in figure 5.

Let 〈Q, q1, q2〉 the pullback of ‘∂′

1 and ¬∂1, illustraded in figure 6. Taking 〈E1, ‘∂
′

1〉 the equalizer in
Pfn of 〈tot, ∂1〉 and 〈K1,¬∂1〉 the equalizer in Pfn of 〈∂1, ∅〉, we have that

〈Q, q〉 is a cone of 〈tot, ∂1〉 (1)
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Figure 5: Pullback of 〈vv, vf〉
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Figure 6: Pullback of 〈‘∂ ′

1,¬∂1〉

〈Q, q〉 is a cone of 〈∂1, ∅〉 (2)

Therefore, by (1), tot ◦ q = ∂1 ◦ q and by (2), ∂1 ◦ q = ∅ ◦ q, thus tot ◦ q = ∅ ◦ q. Since ∅ ◦ q = ∅,
tot ◦ q = ∅. As tot is a total funtion, q = ∅. It’s q also a monomorphism, so Q = ∅, i.e., E1 ∩ K1 = ∅.

With this we know that 〈∅, ∅, ∅〉 is the pullback of 〈‘∂ ′

1,¬∂1〉. The pair 〈P, vv2 ◦ p1, vf2 ◦ p2〉 is a
cone of 〈‘∂′

1,¬∂1〉 as illustrated in figure 7.
Thus, there is a unique morphism from P to ∅. In Set there is only one morphisms with the empty

set as target: the identity of the empty set. Therefore, P = ∅.
V V ∪ V F ∪ FV ∪ FF = T (by contradiction):
Suppose that a ∈ T ∧ a /∈ V V ∪ V F ∪ FV ∪ FF .

1. If a /∈ V V , then ∂0(a) or ∂1(a) are undefined.
If only ∂0(a) is undefined, then a ∈ V F ;
if only ∂1(a) is undefined, then a ∈ FV ;
if ∂0(a) and ∂1(a) are undefined, then a ∈ FF .

2. If a /∈ V F , ento ∂0(a) indefinido ou ∂1(a) definido.
If only ∂0(a) is undefined, then a ∈ FF ;
if only ∂1(a) is defined, then a ∈ V V ;
if ∂0(a) is undefinedo and ∂1(a) is defined, then a ∈ FV .

6



T

E1

>>

‘∂′

1

>>}}}}}}}
K1

``

¬∂1

``AAAAAAA

∅

``!

``AAAAAAA >> !

>>}}}}}}}

P
XX

vv1◦p1

XX00000000000000

OO�
�
� FF

vf2◦p2

FF��������������

Figure 7: A Cone of 〈‘∂ ′

1,¬∂1〉 in Set

3. If a /∈ FV , then ∂0(a) is defined or ∂1(a) is undefined.
If only ∂0(a) is defined, then a ∈ V V ;
if only ∂1(a) is undefined, then a ∈ FF ;
if ∂0(a) is defined and ∂1(a) is undefined, then a ∈ V F .

4. If a /∈ FF , then ∂0(a) or ∂1(a) are defined.
If only ∂0(a) is defined, then a ∈ V F ;
if only ∂1(a) is defined, then a ∈ FV ;
if ∂0(a) e ∂1(a) are defined, then a ∈ V V .

Therefore, a ∈ T ⇒ a ∈ V V ∪ V F ∪ FV ∪ FF .
Now suppose that a ∈ V V ∪ V F ∪ FV ∪ FF ∧ a /∈ T .

1. if a ∈ V V . Since V V ⊆ T , a ∈ T ;

2. if a ∈ V F . Since V F ⊆ T , a ∈ T ;

3. if a ∈ FV . Since FV ⊆ T , a ∈ T ;

4. if a ∈ FF . Since FF ⊆ T , a ∈ T .

So, a ∈ V V ∪ V F ∪ FV ∪ FF ⇒ a ∈ T , and we conclude that T = V V ∪ V F ∪ FV ∪ FF . �

Definition 3.2 (Binary Product in Grp)
Let G1 = 〈V1, T1, ∂

1
0 , ∂1

1〉 and G2 = 〈V2, T2, ∂
2
0 , ∂2

1〉 partial graphs, a binary product is G1 × G2 =
〈V1 × V2,

⋃
T , ∂0, ∂1〉 where (being k ∈ {0, 1}):

• V1 × V2 is the product in Set of V1 and V2;

•
⋃

T is the object of the product in Set of 〈×V V ,×V F ,×FV ,×FF 〉;

• ∂k is the partial morphism 〈m∂k
:
⋃

D∂k

�
⋃

T , ∂k :
⋃

D∂k

→ V1 × V2〉 where

–
⋃

D∂k

is the pullback of 〈inc×T
, m×D∂k

〉 as in figure 8;
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⋃
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bbm∂k

bbFFFFFFFF
+
� inc×D∂k
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Figure 8: Midle Object of the Binary Product in Grp

– m∂k
:
⋃

D∂k

�
⋃

T is a projection of this pullback in figure 8;

– ∂k :
⋃

D∂k

→ V1 × V2 is the induced morphism by the product V1 × V2, i.e., (being j ∈ {1, 2})

such that πVj
◦∂k = ∂k1

◦πS

D
j
k

where πS

D
j
k

= inc×D∂k

◦πDj
being πDj

the product projection

of D1 × D2;

with the morphisms π1 : G1 × G2 → G1 and π2 : G1 × G2 → G2 such that (being j ∈ {1, 2}) πj =
〈πVj

, πS

Tj
〉 where:

• πVj
: V1 × V2 → Vj is the projection in Set;

• πS

Tj
:

⋃
T → Tj is the morphism such that πS

Tj
◦ im×V V

= vvj ◦ πV V j and πS

Tj
◦ im×V F

=

vf j ◦ πV F j and πS

Tj
◦ im×F V

= fvj ◦ πFV j and πS

Tj
◦ im×FF

= ff j ◦ πFF j

Proof : Let G = 〈VG, TG, ∂G
0 , ∂G

1 〉 a partial graph and the total homomorphisms f : G → G1 (where
f = 〈fV : VG → V1, fT : TG → T1〉) and g : G → G2 (where g = 〈gV : VG → V2, gT : TG → T2〉), there is
a morphism h : G → G1 × G2 where h = 〈hV : VG → V1 × V2, hT : TG →

⋃
T 〉 such that

hV (X) = 〈fV (X), gV (X)〉

hT (x) = 〈fT (x), gT (x)〉

Thus,
πV1

(hV (X)) = πV1
(〈fV (X), gV (X)〉) = fV (X)

πT1
(hT (x)) = πT1

(〈fT (x), gT (x)〉) = fT (x)

πV2
(hV (X)) = πV2

(〈fV (X), gV (X)〉) = gV (X)

πT2
(hT (x)) = πT2

(〈fT (x), gT (x)〉) = gT (X)

Once we have the morphism h, we need to prove its uniqueness.
Suppose m : G → G1 × G2 such that (where m = 〈mV , mT 〉)

πV1
◦ mV = fV (3)

πV2
◦ mV = gV (4)

πT1
◦ mT = fT (5)
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Figure 9: Binary Product in Grp
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V0
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fV
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Figure 11: Equalizer in Grp

πT2
◦ mT = gT (6)

Let mV (X) = 〈Y, Z〉 and mT (x) = 〈y, z〉. So, πV1
(mV (X)) = πV1

(〈Y, Z〉) = Y and by (3), Y = fV (X).
In the same way, by (4), πV2

(mV (X)) = πV2
(〈Y, Z〉) = Z = gV (X); by (5), πT1

(mT (x)) = πT1
(〈y, z〉) =

y = fT (x) and by (6), πT2
(mT (x)) = πT2

(〈y, z〉) = z = gT (x).
Thus, m = h. �

The product of two partial graphs can be seen as syncronous compositions of these systems. Note
that an entry point in the resulting system occurrs only if it is possible to initiate both systems.

Definition 3.3 (Terminal Object in Grp)
The terminal object in Grp is the graph 1 = 〈{•}, {vv, vf, fv, ff}, ∂0, ∂1〉 illustrated in figure 10.

Proof : Let G = 〈V, T, ∂G
0 , ∂G

1 〉 any partial graph, there is just one possible morphism G → 1, and is such
that all nodes of G are mapped in {•} and the arcs of G are divided in classes (using the division already
given) and will be mapped in the arc vv of 1 if it belongs to the class V V , in the arc vf if it belongs to
V F , in the arc fv if it belongs to FV and in the arc ff if it belongs to FF . �

The construction of equalizers in Grp is based on equalizers in Set. Actually, the equalizer of two
morphisms f and g are induced by the equalizers in Set of each componet function. In figure 11 we have
the diagram of equalizer in Grp.

Definition 3.4 (Equalizer in Grp)
Let two partial graphs G1 = 〈V1, T1, ∂

1
0 , ∂1

1〉 and G2 = 〈V2, T2, ∂
2
0 , ∂2

1〉 and the total homomorphisms
of partial graphs f = 〈fV , fT 〉, g = 〈gV , gT 〉 : G1 → G2, an equalizer of f and g is induced by the
equalizer of the components functions of the homomorphisms in Set, i.e., is the pair 〈G0, eq〉 such that
G0 = 〈V0, T0, ∂

0
0 , ∂0

1〉 and eq = 〈eqV , eqT 〉 where:
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• 〈V0, eqV 〉 is the equalizer in Set of 〈fV , gV 〉;

• 〈T0, eqT 〉 is the equalizer in Set of 〈fT , gT 〉;

• ∂0

k, where k ∈ {0, 1}, is the partial morphism 〈mD
∂0

k

: D∂0

k
→ T0, ∂

0

k : D∂0

k
→ V0〉 where

– 〈D∂0

k
, eqD∂k

〉 is the equalizer in Set of 〈fD∂k
, gD∂k

〉;

– mD
∂0

k

is the morphism induced by the equalizer 〈fT , gT 〉;

– ∂0

k is the morphism induced by the equalizer 〈fV , gV 〉.

Proof : It’s interesting note that mD
∂0

k

really is monic. Every equalizer is a monic and the composition

of monics are monic. Therefore, mD
∂1

k

◦ eqD∂k
is monic. We also know that, if g ◦ f is monic, then f is

monic. Since eqT ◦ mD
∂0

k

= mD
∂1

k

◦ eqD∂k
, then mD

∂0

k

is monic.

We need to prove that there is a unique morphism from a cone to the equalizer G0.
Let X a node of V1 and x an arc of T1. Since eq is a monomorphism we can denote that eqV (X) = X

and eqT (x) = x if X ∈ V0 and x ∈ T0.

Let Q = 〈VQ, TQ, ∂Q
0

, ∂Q
1
〉 a partial graph and q : Q → G1 a total homomorphism of partial graphs

(q = 〈qV , qT 〉) such that f ◦ q = g ◦ q. There is a homomorphism h : Q → G0, where h = 〈hV , hT 〉, such
that hT (x) = qT (x) (with x ∈ TQ) and hV (X) = qV (X) (with X ∈ VQ).

Suppose a morphism j = 〈jV , jT 〉 : Q → G0 such that eqV ◦ jV = qV and eqT ◦ jT = qT . Therefore
eqV (jV (X)) = jV (X) = qV (X) and eqT (jT (x)) = jT (x) = qT (x). Thus, j = h. �

4 Conclusions

In this paper we prove the bicompleteness od a different category of graphs, named Grp, where objects
are partial graphs and morphisms are total homomorphisms. Once Grp is defined using an extension of
Comma Categories we can inherit properties by construction, but in this case we just inherited colimits
while limits must be constructed.

With this result is possible to use this category to construct, p.g., another categories of graph-based
systems like automata and Petri Nets with partiality in the internal structure of the objects. Another
future work is to investigate if Grp is cartesian closed and if it is a topos.
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