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Abstract

Sufficient conditions for first order based sequent calculi to admit cut elimination by
a Schiitte-Tait style cut elimination proof are established. The worst case complexity
of the cut elimination is analysed. The obtained upper bound is parameterized
by a quantity related with the calculus. The conditions are general enough to be
satisfied by a wide class of sequent calculi encompassing, among others, some sequent
calculi presentations for the first order and the propositional versions of classical
and intuitionistic logic, classical and intuitionistic modal logic S4, and classical and
intuitionistic linear logic and some of its fragments. Moreover the conditions are such
that there is an algorithm for checking if they are satisfied by a sequent calculus.
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1 Introduction

Cut elimination is a central method of structural proof theory that has been
thoroughly investigated for a wide variety of calculi since its introduction by
Gentzen [1]. Despite the extensive research, in most cases, cut elimination
has been studied on a case by case basis. Recently the focus started changing.
There has been a growing interest toward the definition of sufficient conditions
for sequent calculi to admit cut elimination as well as to the characterization
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of necessary conditions for cut elimination [2-9]. The complexity of cut elimi-
nation however has not been studied in this context, despite the interest it has
deserved motivated in part by the relationship between the length of proofs
and computational complexity [10-14].

Sufficient conditions for cut elimination for a wide class of calculi have been
pioneered by Belnap in his work on display logic [8]. There, eight conditions
are presented that when satisfied by a propositional display calculus guaran-
tee that it enjoys cut elimination. Based on that work Restall in [7] showed
that cut is redundant in any propositional consecution system satisfying three
general conditions related with cut propagation, the behavior of principal for-
mulas when eliminating a cut, and with the occurrence of congruent param-
eters and congruent classes of parameters. Later, Miller and Pimentel in [4]
showed that any first order based sequent system, possibly without the weak-
ening or contraction rules, whose encoding has only clauses of a certain type,
admits cut elimination if all its left and right introduction rules are dual. In
a different context Ciabattoni in [3] showed that for a class of (first order)
single-conclusion sequent calculi characterized by its types of rules, a calculus
admits cut elimination if the rules are substitutive, a condition important to
guarantee that a cut can be up propagated when the cut formula is not needed,
and the introduction rules are reductive, important to guarantee that a cut
can be replaced by cuts over subformulas when the cut formula is introduced
by those rules.

Cut elimination proofs, as Gentzen style proofs or Schiitte-Tait style proofs
typically consist of a great deal of case analysis [1,15,12]. When establish-
ing sufficient conditions for cut elimination, those conditions determine and
are determined by the level of detail considered in the case analysis of the cut
elimination proof. Establishing generic sufficient conditions, as in [2,5,3,4,6-9],
has several advantages. One is that it is in general simpler to define conditions
that are satisfied by most of the calculi that actually admit cut elimination in
the class that is being considered, and so are closer to being necessary condi-
tions, than defining conditions with a lower level of detail. Another advantage
is that the cut elimination proof becomes simpler. For instance, for sufficient
general conditions there is no need to analyze which specific rules and provisos
are used by the premises of a cut; it is enough to know for instance that the
rules are introduction rules.

Herein we follow a different approach. We investigate detailed relationships
between the rules and provisos that guarantee cut elimination for a wide class
of first order based sequent calculi by a Schiitte-Tait style cut elimination
proof. The collection of relationships obtained shows deep inter-connections
between the rules and provisos of a calculus and are such that there exists an
algorithm for checking if they hold. The universe of calculi we are concerned
with may have a great variety of rules and provisos and some of them have not



been considered in [2,5,3,4,6-9]. The subformula property is also established
as well as the consistency of these calculi. The sufficient conditions, although
satisfied by a wide class of sequent calculi encompassing, among others, some
sequent calculi presentations for the first order and the propositional versions
of classical and intuitionistic logic, classical and intuitionistic modal logic S4,
classical and intuitionistic linear logic, and many of the linear logic fragments,
may not be necessary conditions.

A hyper-exponential bound for the worst case complexity of cut elimination
is also proved, as well as an interesting relation, as far as we know not yet
explicitly reported in the literature, between the obtained upper bound and
the greatest length of any minimal cut sequence for a pair of left and right
introduction rules in the calculus for a constructor. Intuitively a cut sequence
is formed by the premises of those rules used when a cut over a formula is
replaced by a cut over its subformulas. The non-elementary bound in the
worst case complexity of the cut elimination procedure was expected since it
is a lower bound of cut elimination in sequent calculi for classical first order
logic [16,17] and some of these calculi satisfy the sufficient conditions for cut
elimination established herein.

Outline of the paper. In Section 2 definitions and results needed throughout
the paper are introduced. The section starts by settling the basic notions of
sequent calculus, rule and proviso. Then, the cut rules considered in this work
are introduced, basic cut elimination definitions and results are presented,
and the notion of a (bounded) cutrank decremental operator is defined. In
Section 3 general cut elimination results are proved in the context of calculi
that allow the definition of a cutrank decremental operator. When the cutrank
decremental operator considered is bounded the worst case complexity of the
cut elimination procedure can be estimated as a function of its bound. Cut
suitable calculi are introduced in Section 4. This class is interesting since each
calculus in the class allows the definition of a cutrank decremental operator
bounded by its cut length, as it is shown in Section 5. The subformula property
and the consistency of cut suitable calculi are briefly analysed in Section 6,
and in Section 7 several sequent calculi described in [18,15,1] are considered
in order to check which satisfy the conditions stated herein and which do not.
Finally concluding the paper a brief comparison with related work is done in
Section 8 and future work is outlined in Section 9.

2 Basics



2.1 Sequent calculi

In order to define sufficient conditions for cut elimination for a wide class
of sequent calculi, those calculi must be presented using a common meta-
theoretic language. Only in this way can the conditions refer uniformly to
common properties and aspects of different calculi.

A sequent calculus C is a pair composed by a signature and a finite set of
rules. A signature is a tuple (F, C, Q) where F', C' and @ are families {F; };en,,
{Ci}ien, and {Q; }ien, respectively, of sets. Given n in Ny the elements of F), are
function symbols of arity n and the elements of C), are connectives of arity n.
The elements of ), are quantifiers of arity n for each n in N. By a constructor
we mean either a quantifier or a connective. We assume given once and for all
the set {x; : i € N} of quantification variables. Given a signature and the set
of quantification variables it is possible to define in the usual way the language
of formulas and the language of terms. A sequent is a pair, written ¥ — A,
where U and A are finite multisets of formulas.

In order to present a definition of rule general enough to be used in the context
of a wide class of calculi, we introduce meta-variables. Meta-variables will be
only used in the context of rules, and their role is to indicate the places where
a term, a formula or a multiset of formulas can appear when using that rule
in a deduction. So we assume given once and for all three denumerable sets:
the set {0; : i € N} of term meta-variables, the set {&; : i € N} of formula
meta-variables, and the set {I'; : i € N} of multiset meta-variables. Meta-
formulas and meta-terms are defined as expected from a signature, the set
of quantification variables and the sets of meta-variables. Meta-sequents are
pairs of finite multisets of meta-formulas and of multiset meta-variables. A
rule is a triple ({s1,...,sp},s,m) written 222 <7 where s and s1,...,5,
are meta-sequents and 7 is a proviso, that is, a predicate on substitutions of
meta-variables. A deduction of a sequent s from a set S of sequents, in the
context of a sequent calculus C, written S k¢ s is defined in the usual way,
see [15], as a finite tree labelled with sequents such that the label of the root
is s and the label of any node either is in S and the node is a leaf or it and
its immediate successors constitute an instance of a rule in the calculus (when
presenting the deduction tree the name of the rule is written near the node).

The following notations

D
v—-A |

D —7r
U — A U — A

mean, from left to right: the deduction D with conclusion ¥ — A, and a
deduction obtained from the deduction D by successive applications of rule r



until the conclusion ¥ — A’ is obtained. Note that it may be the case that
it is not even necessary to apply r in order to obtain W' — A/

We denote by ¢(¢@') formulas or meta-formulas whose main constructor is c.
For instance V(') may denote the formula Vzyp;. We will use the symbols
x and y in rules and in provisos to denote term meta-variables that can be
instantiated only by quantification variables.

2.2 Cut rules and cardinality provisos

Since it is not feasible to consider in this work all the vast diversity of cut rules
present in the literature, we decided to concentrate on a significant collection
of such rules. So, herein, cut elimination is investigated for the following cut
rules:

F1_>F2a€1 glvFll_)FIQ

n n A Ted;
Fl,Fl — FQ,FQ

o the cut rule, named Cut, with the form

o the generic multicut rule, in the sequel named Multicut, with the form
[y — T, 6™ 6", T =T

Fl,Fll — FQ,FIQ

dTed, My,n > 0;

o the left or right generic multicut rule which are similar to the generic multi-
cut rule but with the restriction that either m or n is equal to 1, respectively;

o the left multicut rule for a u-ary quantifier (Q, named LMulticut (), with the
1—‘1 _>F27Qx(£17"'7§u) Q$(£1,,£u)n,r,1 —>F/2
', T — Iy, T

form dTeq, M > 1;

o the right multicut rule for a quantifier and the left or right multicut rule for
a connective which are rules similar to the left multicut rule for a quantifier;

where
Ted

denotes a collection of provisos containing only cardinality provisos, that is,
provisos like

I''<a  or Il =a
that imposes an upper bound or a value, a, on the number of formulas in the

multiset assigned to I' when instantiating the rule where the proviso is. The
value a is a non-negative integer.



2.3 Clut elimination notions

We now briefly recall some basic notions needed throughout the paper. Our ref-
erence is [15]. The function hyp is defined by hyp(zx, 0, z) = z and hyp(z, Sk, z) =
2P@Hk2) The value hyp(x, k, ) is denoted by 7. The depth of a formula ¢,
denoted by |¢|, is defined as follows: if ¢ is atomic then |¢| is 0, otherwise if ¢
is ¢(p1, ..., ¢p) for some connective ¢ then || is max(|e1], ..., |pn]) + 1 and
similarly for quantifiers. The depth of a deduction D is the maximum length of
a branch in D minus 1. The logical depth of a deduction D, denoted by ||D]],
is the depth of D not counting the contractions and weakenings. The level of
a cut is the sum of the depths of the deductions of the premises. The rank of
a cut over a formula ¢ is |p| + 1. The cutrank of a deduction D, denoted by
cr(D), is the maximum of the ranks of cuts in D. If there are no cuts in D
then the cutrank of D is 0.

In the context of first order based sequent calculi, for the cut elimination
procedure to be applied to a deduction it is necessary that the deduction
satisfies some conditions with respect to the occurrence of fresh variables and
of bound and free variables. A deduction satisfying these conditions is named
a pure-variable deduction.

A pure-variable deduction is a deduction where i) any quantification variable
used as a fresh variable in a premise by a rule application occurs free only in
the sub-deduction of that premise, and ii) no quantification variable occurs
both bound and free in the deduction.

Condition i) on fresh variables is important in the cut elimination process
since there are cases where it is necessary to consider a deduction where a rule
should be applied with a context coming from some other part of the original
deduction. Condition ii) on the bound and free variables of a deduction is
important in order to avoid situations where cuts can not be eliminated since
it is not possible to rename in an appropriate way all occurrences of a free
variable because some of them may become bound.

Proposition 1. In the context of a sequent calculus C, given a deduction D
for k¢ s, there is a pure-variable deduction D’ for ¢ s’ where s’ may differ
from s only in the names of bound variables, and D’ may differ from D only
in the names of quantification variables.

2.4 Clutrank decremental operator

There are several types of cut elimination proof methods, ranging from local
methods, which are based on local transformations of the deduction, like for



instance the proofs based on the pioneer work of Gentzen [1,19], or based on the
proof of Schiitte-Tait [20,21,19,15], and the global methods of cut elimination
as the one presented in [12]. There are also proofs obtained by generalizing
cut elimination to the problem of redundancy elimination performed by a
resolution method [22]. Note that most of the case analysis present in a local
cut elimination proof method is common to other local methods.

In this work we consider a Schiitte-Tait style cut elimination proof since it
is well suited to the simultaneous analysis of complexity. We propose a for-
mulation of this method with an operator for reducing the cutrank of certain
deductions. Typically this reduction is proved as a lemma. Besides improving
the readability of the cut elimination proof this approach has the advantage
of reducing cut elimination to the existence of such an operator, that is, once
we define, such an operator enjoys cut elimination in the context of a calculus,
see Section 3.

Definition 2. A cutrank decremental operator R over a sequent calculus C
is an operator on C-deductions that given a pure-variable C-deduction D° for
e s where s is obtained by a cut from deductions D and D’ with a lower
cutrank than D°, gives as result a pure-variable C-deduction R(D°) with the
same endsequent and with lower cutrank than D°. A cutrank decremental
operator is b-bounded whenever ||R(D°)|| < b(||D|| + ||D'|])-

3 Cut elimination with complexity analysis

We now show that a certain calculus with a given cutrank decremental op-
erator enjoys cut elimination by a Schiitte-Tait style cut elimination proof.
Moreover if the cutrank decremental operator is bounded then it is possible
to bound the complexity of the cut free deduction. Before proving the cut
elimination theorem it is shown that it is possible to reduce the cutrank of
any deduction with non-null cutrank.

Lemma 3. Given a pure-variable deduction D° for ¢ s with non-null cutrank,
where C is a sequent calculus with a cutrank decremental operator, there is
a pure-variable deduction D* for ¢ s with lower cutrank than D°. Moreover
|D*|] < (2b)P°II'if the cutrank decremental operator is b-bounded.

The proof of Lemma 3 is completely standard and so we omit it. Applying
successively the previous lemma it is possible to obtain deductions with a
decreasing cutrank until finally obtaining a deduction without cuts. The neg-
ative side is the worst case exponential increase of the logical depth each time
Lemma 3 is applied. This is the cause of the hyper-exponential worst case
complexity of this cut elimination process.



Theorem 4. Given a pure-variable deduction D° for ¢ s where C is a se-
quent calculus with a cutrank decremental operator there is a pure-variable
deduction D* for k¢ s without cuts. Moreover ||D®|| < (2b)|c|§;|l) if the cutrank
decremental operator is b-bounded.

Theorem 4 is an obvious consequence of Lemma 3 and so its proof is omitted.
A result similar to Theorem 4 can be established for deductions not necessarily
pure-variable if the end-sequent is allowed to differ from the end-sequent of
the original deduction by the name of bound variables, see Proposition 1.

4 Cut suitable calculi

The reduction from the cut elimination problem to the problem of defining
a cutrank decremental operator, see Theorem 4, increases the importance of
establishing classes of sequent calculi over which that operator can be defined.

Herein we propose a class of sequent calculi for which, in Section 5, a cutrank
decremental operator is proposed. That class is composed of calculi satisfying
some conditions and belonging to a certain universe of calculi. As in [5,6,2,4,3]
the universe of sequent calculi is characterized by the rules and provisos that
they may have. Although the types of rules considered in those papers are
equal to the ones we consider: axiom rule, structural rules, cut rules and
introduction rules, there are differences. For instance we allow structural and
cut rules over constructors, and rules with provisos like the closure proviso or
the cardinality proviso which were not considered in any of those papers. And,
differently from [5,6,2,7,8] and as in [3,4] it is possible to consider introduction
rules for first order quantifiers.

4.1 Universe of sequent calculi

The calculi in which we are interested in studying sufficient conditions for the
definition of a cutrank decremental operation, and so for cut elimination, are
characterized by the rules and provisos that they may have. We denote by U
the collection of such calculi.

Provisos

Besides the cardinality provisos introduced in Subsection 2.2 the following
provisos may be used:

- & is &[x /0] where 0 is free for x in &



- I' is ¢ closed;
- &isn L
- & is &l /y] where y is free forx in &, y & FV(I'1,Ts), y=x ory & FV(§);

called substitution proviso, ¢ closure proviso, restriction to L proviso and fresh
proviso, respectively, where ¢ is a constructor in the underlying signature and
L is a set of formulas in the underlying language of formulas. A closure proviso
requires that all the formulas in the instance of a multiset meta-variable have
a certain constructor as main constructor and a restriction to a set proviso
requires that the instance of a formula meta-variable is in a certain set. In the
context of a fresh or a substitution proviso, the formula meta-variable £ is
said to be related or constrained by &, and in the context of a fresh proviso,
the variable y is said to be the fresh variable.

Rules

In general a rule may have characteristics that can change with the calculi
where the rule is. For instance the axiom rule may have or not contexts,
depending on the calculus that is being considered. So, it is important to
clearly define for each rule which are the characteristics that can change and
how can they change. Most of these characteristics are established by the
provisos the rule may have.

Besides cut rules, introduced in Subsection 2.2, the following rules may appear:

I'n—-T
o the left generic weakening rule, named Lw, with the form ﬁ Ted;

o the right generic weakening rule, named Rw. Similar to Lw;

o the left weakening rule for a u-ary connective ¢, named Lw ¢, with the form
Fl — Fg

qATed;
Fl,c(fl,...,fu) —>F2

o the right weakening rule for a connective and the left or right weakening rule
for a quantifier which are similar to the left weakening rule for a connective;

o the axiom rule, named Ax, with the form =———F = <7 where m maybe
'8 =810

composed by cardinality provisos over I'y or I's and by a restriction to a set
proviso over &;;

. . . ', 6,6 — T :
o the left generic contraction rule, named Lc, with the form ATed;
', 6 — Ty

o the right generic contraction rule, named Rec. Similar to Lc;



o the left contraction rule for a u-ary quantifier ), named Lc (), with the form

Flan(gh s 7§u)>Qx(§17 s 7£u) - I‘2
Fl?Qx(Ela s ,gu) - FQ

A Ted;

o the right contraction rule for a quantifier and the left or right contraction
rule for a connective which are similar to the left contraction for a quantifier;

o multiplicative or additive introduction rules for constructors. Given an n-ary
quantifier () an additive left rule for () has the form

', ¥ — A, T2 ... Fl,‘I’kHAk,quW
Fvax(Sla"'agn)_)FZ

and a multiplicative left rule the form

P, W — A Tar s Ty, W — Ay, Ty
Fll)’"arlkax(fla"'afn) _)F217'-‘7F2k
and are named L () and are such that k is greater than or equal to 0 and

7 does not have restriction to a set provisos. Similarly for right rules and for
rules for connectives. These rules satisfy the conditions:

7

- if a formula meta-variable appears in more than one premise then it appears
in the same side in each of the premises;

- U; and A; for ¢ = 1,...,k are multisets of either i. the formula whose
connective was introduced by the rule, at the same side, or ii. formula meta-
variables either in &1,...,&,, or related to a meta-variable in &, ...,&, by a

substitution or fresh proviso in 7;

- if a substitution or fresh proviso for z is in 7 then the rule is for a quantifier
and x is the bound variable of the quantifier;

- any formula meta-variable constrained by other variable in a substitution
or fresh proviso is not in the conclusion of the rule;

- if a fresh proviso is in 7 then its multiset meta-variables and the constrained
formula meta-variable are in the same premise;

- a formula meta-variable is not constrained by other variable in more than
one substitution or fresh proviso, and if it is in a fresh proviso then it requires
that the only place, in the premise(s) with the formula meta-variable, where
the fresh variable can appear free is precisely in that formula meta-variable.

Ezamples

It is possible using the rules and provisos introduced above to present sequent
calculi for a wide variety of logics. For illustration purposes we now consider
a sequent calculus presentation for intuitionistic modal logic S4 and a se-
quent calculus presentation for the classical multiplicative fragment of linear

10



logic [23,15].

Example 5. Consider the following sequent calculus for classical multiplica-
tive linear logic constituted by a signature with a countable set of propositional
symbols, the 0-ary connective 1, the unary connectives ~, !, 7, the binary con-
nectives x, —o and the unary quantifier V, and with the following rules:

Ax T E e, M =0and |2 =0 RMulticut? Flﬂmiﬂ(i{;/jzr;%f&HFé dm>1
LMulticut! FIHF?’!EIF,I 2?2)71:; 1712 g Cut Flﬂgfﬁi H?Q”FF&,;FIQ

L! % R! 3:172’}22 < T is ! closed, and I's is ? closed
Rw? et Re? Dftals

L? % T is ! closed, and I's is 7 closed R? Il:‘ll_—:?i%ii

L1 % R1 i, JITil=0and [T2[ =0
3 e s

L I'1,81,62—1 Rx [i—6 Ty T—60Y

I'1,61%62—T2 Iy, —&1x€2,I2, T

1—&,0y T &e—TY ', &1—=6,00

—0 o ——1,617762,0 2

L 'y I 61 —o€2—T2,TY R 'y —&1—62,I'2
LV il &3 is &1 [x/0] where 0 is free for = in &

,Vz§1—T2

I I
RV #ﬁgl’é Q&2 is &1]z/y] where y is free for z in &1,y & FV(I'1,T2),y=x ory € FV(&1).

Example 6. Consider the following sequent calculus for intuitionistic modal
logic S4 constituted by a signature with a countable number of propositional
symbols, the unary connectives —,[], &, the binary connectives A, V,= and
the unary quantifiers V, 4, and by the rules

AX mﬂﬁ‘ﬂ:ﬂandﬁ‘ﬂ:ﬂ LL WQ‘Fl‘ZOand‘FQ‘ZO

- &7, =T

LMulticut DRSS i) 2 dn>0,|l2| =0and T} <1

',61,61—1
L _ M-l 4Tl <1 W Sl GITo| = L 21,681,611 2 4l <1
w ,61—T2 IT2| < R T1—&1,I2 T2 =0 ¢ ',61—Tl2 T2 <

11



I'y—&,y T ,6—T)

L= Iy, 61=82—T2, T,

Ty =0 and 14| < 1

LA ,6i—ls

S lein2 <1(i=
v I',&ange—To izl <1 G=1,2)

I,62—T9

1,6 —8,I

R= M—6=62,2

40y =0

RA =&,y I'h—&,

Iy B
I1—&1/E2, 2 2| =0

I'i,&i—T L1 —&i I )
< P Al = =
LV o eavat, o dIrel<t RVi mogvg s el =0 =12
I I . . .
LV % < &o is &1 [z /0] where 0 is free for z in & and [Tz <1

RV Ti—€a.ly &3 is &1[z/y] where y is free for z in &1,y € FV(I'1,T2),y=zory & FV(£1),|T2] =0

I'1—Vz£1,Is

I1,60—1"
LE' I'1,3x€1 -T2

< &2 is &1[z/y] where y is free for z in &1,y € FV(I'1,T2),y=zory & FV(£1),|T2| <1

R4 Liobals < &o is &1 [x/0] where 0 is free for « in &1, and [I'2| =0

I'i—3x&1,02
I'h—&,I . . ,6—rls

RO FIT&»M < T is O closed, I'y is < closed, and |[T'2] =0 LO m 2] <1
I',&6 -0 . . Mm—&,l

LO m T is O closed, I'p is < closed, and |[I'2| <1 R,<> m < I'2| = 0.

4.2 Cut suitable calculi

Having settled the universe U of sequent calculi we now present sufficient
conditions for a calculus in that universe to allow the definition of a bounded
cutrank decremental operator, and so to enjoy cut elimination by a Schiitte-
Tait style cut elimination proof. In order to simplify the presentation, the
conditions are written in compact form. So, when writing a condition like for
instance, if a left (right) introduction rule r for a constructor c is in the calculus
then all the left (right) introduction rules for ¢ have the same provisos, we in
fact mean two conditions: 1. if a left introduction rule r for a constructor c is
in the calculus then all the left introduction rules for ¢ have the same provisos,
and 2. if a right introduction rule r for a constructor c is in the calculus then
all the right introduction rules for ¢ have the same provisos.

Cut suitable pair of rules

We consider first the specific case where the deduction ends in a cut inference
with the main constructor of the cut formula introduced in both premises. In
this case it is important to guarantee the existence of a deduction with the
same end-sequent but with cuts over subformulas of the original cut formula.
In [5,6] that deduction is guaranteed to exist by a condition requiring that the
clauses associated to the premises of any pair of rules that introduce a same

12



constructor in different sides are classically inconsistent (the empty sequent
is deduced) using only the cut rule. Since the calculi considered in that work
have all the standard structural rules that condition is enough to guarantee
that the original end-sequent is derived. The calculi we are interested in may
not have all the standard structural rules so to deduce the original end-sequent
it is not enough to deduce the empty sequent. The same happens in [2,3] where
the condition provided refers not to the deduction of the empty sequent but to
the deduction of the original end-sequent by the use of the axiom rule and the
structural rules in the calculus besides the cut rule. In [4] capitalizing on the
characteristics of the encoding of the object-calculi and on the fixed number
of combinations of structural rules allowed, it was sufficient to require only
that the collection of premises of the object-level rules are inconsistent.

Herein we adopt an approach in between [5,6] and [2,3]. By one side we provide
conditions to impose that the empty sequent is deduced, and by the other side
we guarantee that it is possible to recover the contexts of the original end-
sequent by means of additional specific conditions. This has the advantage that
there is an algorithm to check these conditions, see Remark 8. The deduction
of the empty sequent is required in the context of a calculus C* obtained by
enriching the original calculus C with a countable set of new propositional
symbols, one for each formula meta-variable. In the context of C* the clause
associated with a meta-sequent p, denoted by p*, is the instance of p obtained
by instantiating the multiset meta-variables with the empty multiset and the
formula meta-variables with the corresponding new propositional symbols.

Definition 7. A right and a left introduction rule for the same constructor
constitute a cut suitable pair in the context of a sequent calculus C with ei-
ther the cut rule or a generic multicut rule (referred to below as cut) whenever
there is a sequence (p1; .. .;pu), called a cut sequence, of premises of both rules,
with no repetitions, for a natural u, such that

1. for ¢ from 2 to u there are deductions D, _; in CT obtained by applying cut
to the end-sequent of D; ;4 and to pi, where Dy is pf and such that the
conclusion of Dy, is the empty sequent;

2. each formula meta-variable in (p;;...;p,) constrained in a rule by a sub-
stitution proviso is constrained in the other rule by a fresh proviso, moreover
if a formula meta-variable appears repeated in the same side of a premise in
(p1;...;pu) then C has a multicut rule either generic or generic for that side;

3. if the left (right) introduction rule, denoted by r, does neither have closure
provisos nor cardinality provisos requiring that both contexts are empty then
a.

Rw (Lw) if np < cnp
C has
Re (Le)  if np > cnp
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b. if C does not have a cardinality proviso over the left (right) side then

Lw (Rw) if np < cnp
C has
Le (Re)  if np > cnp

where cnp is either the number of premises of r if r is multiplicative or is 1 if
r is additive and np is the number of premises of  in (py;...;p.) plus a X cnp
where a is the number of premises in (py;...;p,) of the other rule with the
formula whose connective was introduced by 7.

Intuitively, condition 1 of Definition 7 is important to guarantee that the cuts
over the suformulas of the original cut formula do not leave a subformula in
the end-sequent. For the sake of an example consider the sequent calculus
presented in Example 5, for a fragment of linear logic. Rules R — and L —o
constitute a cut suitable pair, (I'1,& — &, 9,17, & — T T — &, Ty) con-
stitute a cut sequence for that pair, D; is the deduction composed by the
sequent pf — p3, Do is the deduction
P —ps Py —

+
b —

Cut

and
D12
+ +
1 — ! Cut

is the deduction D; 2 3. So when eliminating a cut over a formula introduced
by R—o and L —o, for instance, in the deduction

D D Dy
©1 — P3, P2 Pa*xPe — P11 P2 — Y5

R— L—o
— P3,$1 —° P2 Y1 —° P2, P4 * P — P5 Cut

Pa*Pe — ©3,¥5

it is possible to consider the deduction

o o D D,

1 1 — ¥3,P2 P2 —¥5

P4 * P — P1 901—></73,905Ct
P4 *x Y6 — P3,P5 u

Cut

which has a meta-structure similar to D; 23 and so has no subformulas of the
original cut formula in the end-sequent. Condition 2 is important to guarantee
that cuts can be considered even over subformulas constrained by substitution
provisos. Finally condition 3 ensures that the original contexts are obtained
after performing the cuts over the subformulas. Conditions 2 and 3 do not
appear explicitly in any of the works [2-9].

Remark 8. Given a calculus and a right and a left introduction rule for the
same constructor note that i) the number of possible sequences of premises
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that can be a cut sequence is finite and for each such sequence there is an
algorithm to test if the empty sequent is derived in the enriched calculus
according to condition 1 of Definition 7; ii) checking if a formula meta-variable
is constrained by certain specific provisos, if provisos are in rules and if rules
are in the calculus is immediate. So there is an algorithm for testing if that
pair of rules is a cut suitable pair.

Sufficient conditions

Cut suitable calculi are now introduced as the members of U that satisfy the
collection of conditions described below. Those conditions are organized in
terms of the rules and provisos to which they mainly apply. Note that the
conditions could be obtained by requiring, without going into the detail of the
relationship between the rules and provisos, that the calculus is such that the
crucial cases of the definition of a cutrank decremental operation hold or that
certain deductions adequate for those cases exist. This approach, which was
followed in [2,5,3,4,6-9], has several advantages as was outlined in Section 1.

Herein we follow a different and hard way. We investigate relationships between
the rules and provisos that guarantee that a calculus admits the definition
of a cutrank decremental operator and so cut elimination by a Schiitte-Tait
style proof. Working at this level of detail and concentrating on that specific
proof has several advantages and some disadvantages. One of the advantages
is to bring to clarity deep relationships between rules and provisos sufficient
for a calculus to admit the definition of such an operator. Another is the
possibility of conceiving of algorithm for checking if a given calculus satisfy
the conditions we propose. Another advantage is that it is possible to study
the complexity of the cut elimination procedure and to establish a relation
as far as we know not yet explicitly mentioned between this complexity and
the parameter that bounds the cutrank decremental operation considered. Yet
another advantage is that a better understanding of the characteristics and
potentialities of that specific cut elimination proof method is achieved. One of
the disadvantages is that the conditions are typically in a greater number than
those other conditions. Another consequence is that there may exist calculi
that admit cut elimination by other cut elimination proof methods and that
do not satisfy the sufficient conditions obtained herein.

Although the definition of the cutrank decremental operator in Section 5 is
the place where the conditions really show their importance, we decided to
illustrate the significance of some of the conditions by an example immediately
after its introduction. In that example a sequent calculus will be described that
does not satisfy the condition, and thus we will present a deduction with a
cut whose elimination illustrates the kind of problems the condition prevents.
Although the proposed calculi seem in some cases artificially designed to show
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the significance of the conditions, they are nevertheless calculi in ¢. In order to
simplify the presentation only the aspects of the calculi and of the deductions
relevant to the cut elimination situation are described. Only space limitations
prevent us from presenting examples for all the conditions.

Definition 9. A sequent calculus C in U is cut suitable whenever the following
conditions are satisfied:

C1. if the aziom rule is in C, and
- the generic weakening rule over side [ is not present,
- C does not impose a cardinality proviso over side [,
- there exists a rule with a closure or a cardinality proviso over side [
then the axiom rule has a proviso requiring that the [ context is empty;

Ezxample: condition C1 is concerned with the interplay between the axiom rule
and rules with provisos. For the sake of an example note that C1 is not satisfied
by a calculus in U including the cut rule, the rules

Al'm and Lquu‘ﬂ:O and |T'2| =0

and whose weakening rules are all over constructors. Note further that the
elimination of the cut in the deduction

@17%0270_>S0370 Az 0— Lo
Cut

©1,92,0 — @3

contributes to illustrate the importance of this condition since the deduction
0o 0

©1,92,0 — 3
18 not a correct deduction because Lw and Rw are not in the calculus.

C2. weakening rules are such that:
1. if the left (right) weakening rule for a constructor c is in the calculus then
i) there is a right (left) introduction rule for ¢ with closure provisos,
ii) the right (left) weakening rule for ¢ is not in the calculus,
iii) the left (right) generic weakening rule is not in the calculus;
2. if a generic weakening rule is in C then the other generic weakening rule
is in C except if C imposes that the number of formulas at the other side
is 1;
3. the cardinality provisos in these rules are the ones imposed by the calculus;

Example: condition C2.2 is concerned with the interplay between the generic
weakening rules. The significance of this condition is illustrated in the following
example. Consider a calculus in U whose rules include the cut rule, the rule

16



Ry ' — &,6,T
' =& VE, Ty

and the left generic weakening rule, and that do not include the right generic
weakening rule. Then the elimination of the cut in the following deduction

D, D}
©3 — P4,P1, P2 — ¥5
P3 — 4,01V P2 RV p1V s — s éwt
©3 — P4, P5 u

contributes to illustrate the importance of this condition since the deduction

2
— ¥5
Y3 — ¥5
Y3 — P4, P5

Lw
Rw

1s not possible because rule Rw is not in the calculus.

C3. contraction rules are such that:

1. the left contraction rule and the right contraction rule for a same con-
structor are not simultaneously in C;

2. if the left (right) contraction rule, either generic or for a constructor, is
in C then C has no cardinality proviso over the left (right) side;

3. a contraction rule for a constructor over side [ is in the calculus only if
the generic contraction rule for that side is not;

4. the cardinality provisos in these rules are the ones imposed by the calculus;

C4. cut and multicut rules are such that:

1. if the left (right) multicut rule for a constructor ¢ is in the calculus then i)
introduction rules with closure provisos, the axiom rule and generic weak-
ening rules, are the only rules in the calculus with the principal formula
in the right (left) side of the conclusion with the possibility of having ¢ as
main constructor, ii) Cut is in C, iii) the left (right) contraction rule for ¢
is in C, and iv) the right (left) generic contraction rule is not in C;

2. if the generic multicut rule is in the calculus then the left and the right
generic contraction rules are in the calculus;

3. if the left (right) generic multicut rule is in the calculus then i) the left
(right) generic contraction rule is in C and the right (left) generic contrac-
tion rule is not, and ii) C has a right (left) cardinality proviso;

4. the cardinality provisos in these rules are the ones imposed by the calculus;

Example: we now illustrate the significance of condition C4 item 3. Consider
a calculus in U including the rule RMulticut, the rules
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61—l T,6e—TY I —&,0
L ) 1 2 L_‘ 1 1,12
+ Iy, T 614+E—T2,T) and 1,=€1—T2

the right generic contraction rule, and no other contraction rules. Note that
Cy4 item 3 is not satisfied by this calculus. Consider the following deduction

P1 — P4 802—>;504L+ 03 — P4 .
P1+ P2 — Ty —p4, P3 — R;\Wulticut
p1+ Y2,p3 —

then, although the cut can be propagated to the premises of L+, it is not possible
to consider the deduction

D] D]
D, ¥3 — P4 I Dy ¥3 — P4 I
— - — - — T - e -
21 ;’;47 3 ffh L RMulticut P2 ;;4’ 73 ffh 3 RMulticut
p1+ Y2,P3,p3 — I I+
p1+ 2,93 = ¢

C5. if an introduction rule r for a constructor ¢ at side [ is in C then:
1. one of the following conditions holds
i) r does not have any cardinality proviso,
ii) r has the cardinality proviso imposed by the calculus,
iii) r has a cardinality proviso requiring that all the contexts are empty,
iv) if r does not have premises and has a proviso requiring that the I’
context is empty then C has a generic weakening rule over side [’;
2. if r does not have premises and if the generic weakening rule over side I’
is not in the calculus then r does not have closure provisos over side I’;
3. all the [ introduction rules for ¢ have the same provisos;

C6. if a rule r with a closure proviso is in C then its number is at most 2 and
1. if it is 2 then the provisos are over opposite sides and, assuming that one
is for ¢ at left and the other for ¢’ at right then
i) either r is a right introduction rule for ¢ or a left rule introducing ¢,
ii) if r is a right (left) introduction rule then all the left (right) intro-
duction rules for ¢’ (¢) in the calculus have the same provisos as r;
2. if it is 1 and the proviso is for a constructor ¢ at left (right) then
i) 7 is a right (left) introduction rule for ¢,
ii) the calculus imposes a cardinality proviso over the right (left) side;
3. if r has a ¢ closure proviso over side [ then there are in the calculus
i) a contraction rule over side [ generic or for the constructor ¢ if C does
not impose a cardinality proviso over side [,
ii) a weakening rule over side [ generic or for the constructor ¢ if C does
not impose that the number of formulas at side [ is 1;
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C7. each pair of rules with closure provisos is such that either they have for
each side the same closure provisos, or the closure provisos are all over
different constructors;

Example: to illustrate condition C7 consider a calculus in U with the cut rule,
the generic multicut rule, the generic weakening rules, the rules

I I I I
R' [‘11:'755117,1"22 <TI'y is! closed, 'y is O closed }%D1-‘11__))?%1”132 < T'y is O closed, I'y is < closed

and the generic contraction rules. Suppose the goal is to eliminate the cut in
the following deduction:

D, D,
—Zeu0es o Dps, Ops — o
—lp1, Ops * Tps, Opsg — Upg gSt
Opg —lp1, Opg
so, consider
Dy
— 1,03 Rl D,
—lp1,0p3 °" Oz, Opg — @2
0 T Cut
P4 =01, P2

Opg —lp1, Opg

but this is not a correct deduction since rule RO can only be applied when all
the formulas in its right context are closed for <;

C8. if C has a cardinality proviso for side | then either it requires that the
number of formulas at side [ of any sequent in a rule is at most 1 or it
requires that the number of formulas at side [ of any sequent in a rule is 1;

C9. each pair of rules formed by a right and a left introduction rule for the
same constructor is cut suitable.

Example: we now illustrate the importance of condition C8. Consider a calcu-
lus in U imposing that the maximum number of formulas in the right side of
a sequent appearing in a deduction is 2, and including the rules

=&, T,6—TY
L —o 1,1 & —oa—T,T)

1,61 -8,
I'1—&1—82,'2

A|2| <1 and [ToTh <2 R —o Ara| <1

and the cut rule with the appropriate cardinality proviso. Then, the elimination
of the cut in the deduction

D 2 D)
Y1 — ¥3, P2 R Y1 P2 — P4,P5 $6 — I—o
— 3,1 —° P2 P1 —° P2,P4 —° Y6 — P5 Cut

P4 —° Y6 — P3,¥5
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contributes to understand better the significance of this condition since

D /
P1 — P3, P2 . D;
— 3,91 —° P2 P1 —° Y2 — P4, P5

— ©3, P4, P5 Cut

1s not a correct deduction. It is not difficult to imagine similar deductions with
the same problem in calculi that have a cardinality proviso imposing a fired
limit, greater than 2, to the number of formulas at a certain side.

4.3 Cut length of a calculus

The cut length of a calculus indicates how many cuts over subformulas have to
be considered in the worst case in order to eliminate a cut in a deduction ending
in it and where the cut formula is introduced in both premises. This quantity
bounds the cutrank decremental operator for cut suitable calculi defined in
Section 5 and so it appears as a parameter in the worst case complexity cost
of eliminating cuts in these calculi, see Theorem 4.

Definition 10. The cut length of a calculus C is the greatest length minus 1
of any minimal cut sequence for any cut suitable pair of rules in C.

Example 11. The cut length of both the sequent calculus for intuitionistic
modal logic S4 presented in Example 6 and the sequent calculus for classical
multiplicative linear logic presented in Example 5 is 2. Note that the sequence
(T',&,8 — To; Ty — &, Ty; T — &, 1Y) is a cut sequence for Lk and Rx in
the calculus for classical multiplicative linear logic presented in Example 5.

5 Cutrank decremental operator

Once we define a cutrank decremental operator on a sequent calculus we can
conclude by Theorem 4 that it enjoys cut elimination. Moreover when that
operator is b-bounded it can be established that the logical depth of the cut-
free deduction will be, in the worst case, hyper-exponentially greater, with
base 2b, than the logical depth of the original deduction.

We now propose a cutrank decremental operator R for each cut suitable se-
quent calculus C. Moreover we show that the operator is bounded by the cut
length of the calculus or by 1 in the case the cut length is less than 1. As far
as we know, this fact was not already reported in the literature.
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During the definition of the cutrank decremental operator it is explained for
some important cases why the deduction returned by the operator is well
defined. The conditions a cut suitable calculus has to satisfy are most of the
times crucial. The analysis of why the operator proposed is bounded by the
cut length of the calculus is presented at the end of the section. To simplify
the presentation, since a rule may be present in some cut suitable calculi and
not in others, when presenting a deduction by

D
v— A
v S AT

we are requiring that the underlying calculus has rule r only if the conclusion
of D is not ¥ — A’. So, if the calculus does not have rule r then we are con-
sidering that D ends in ¥’ — A’. The name of the rule used in a single sequent
deduction is sometimes omitted when more than one rule can instantiate to
that sequent.

We define R inductively on the level of the cut that ends the deduction given.
Let D° be the pure-variable deduction

D D’
U — A em " — A
R ANY cut
where D is
Dl Dk
Uy — A, ™ W — Ay, M ,
YA
U — A ™
and D’ is
D; D,
ML U — AL e T, — A
Son—i—a’ 0 — A/ r

(’Dn U — A ctr®

both with lower cutrank than D°, and where k, k', a and o are greater than
or equal to 0, and r and 7’ are not contractions of the cut formula. Let

D;
\I/i - AZySOmZ - Dl
. ROw — Aypmian 7 gl - Y . ) ifmi #0
bi = Ui, U — Ay, A o
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and

D’
J
- o \11; — A;‘ o '
R( WA spni_a;' v A ctr'i ) ifn; #0
DF = : i ! cut’,
J \Il,\I/;- — A,A; J
/ ] Jp—
\ D ifn; =0

where q; is the minimum number of contractions such that m; — a; is less
than or equal to m, and similarly for a}, for i = 1,...,k and j = 1,... K"
Denote by W_,, the multiset ¥ \ ¢. Consider the following cases:

1. ¢ is not needed, neither by r nor by /. Then

( — 7
%Lw* if k=0, Lwisin C and Rw is not in C
U0 — A A (similarly if k' =0 and for the other cases of Lw
and Rw)
DYoL, Dy y
R Vo, — A% A" if k#£0, K #0, and either cut is a right multicut
R(D°) == NN ¢ for a constructor and r and 7’ do not have closure
provisos or r does and 7’ does not have closure
provisos
Dy ... Dj .
W, 0% — AA”  otherwise
R NN

\

We now briefly explain why the deduction R(D°) is well defined. Namely we
analyse the impact in R(D°) of the contexts in the  and r’ inferences and of
the presence or not presence of the contraction or the weakening rules in C.

a. contexts. a.1. Suppose C has a cardinality proviso over the left side and
k # 0 and k" # 0. The sequents in R(D°) that could violate the proviso are
either the end-sequent of the r or r’ inference or a premise with m; # 0 or
n; # 0 respectively. But those premises satisfy the proviso since either W’ or
U’ is empty by C8. The end-sequent does not violate the proviso when the
rule applied is ' since n = 1 and so o = 1. If the rule applied is r the proviso
is not violated by the end-sequent because ¥’ is empty. a.2. k = 0, Lw is in C
and Rw is not. Suppose r is Ax. Then r does not have a cardinality proviso
imposing that the right context is empty and C does not impose a cardinality
proviso over the right side. So C does not have a rule with a cardinality proviso
by C1. If r is a left introduction rule then r does not have a proviso imposing
that the contexts are empty. Moreover if C imposes a cardinality proviso over
the right side then A is empty. Note that r does not have a cardinality proviso
requiring that the right context is empty by C5.1. a.3. fresh provisos are not
an issue since deductions are pure-variable. a.4. Closure provisos are not a
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problem if £ = 0 or £’ = 0 due to C5.2. Otherwise if » and 7’ have closure
provisos, by C6 both rules have provisos for the main constructor ¢” of the
cut formula for different sides, so by C7 both rules have two provisos for that
constructor. Moreover r and 7’ are introduction rules for ¢”. If r has closure
provisos and 7’ does not, 7’ can be applied, see C6.

b. contraction rules. Suppose rule Lc is not in C and k, k' # 0. Then Multicut
and LMulticut are not in C by C4.2 and C4.3 respectively. Denote the main
constructor of the cut formula by ¢”. b.1. rule r does have, and 7’ does not
have, closure provisos. If r has one closure proviso then n = 1 and o = 1 by
C6.2. If r has two closure provisos then consider C6.3.i. If C has a generic
right contraction rule then it does not have a left multicut rule for ¢” by
C4.1.iv. Otherwise if C has a right contraction rule for ¢ then Lc¢” is not
in C by C3.1 as well as LMulticut ¢” by C4.1.iii. So in both cases n = 1
and o = 1. If C has a cardinality proviso over the right side then A is empty
and 7 is a left introduction rule for ¢” in a certain formula by C6.1.i. If n
is greater than 1 than that formula can be contracted since the cut formula
can be contracted. The other formulas in ¥ can be contracted by C6.3.i. b.2.
both r and 7’ do not have closure provisos. If the cut shown in D° is a right
multicut for a constructor then n = 1 and o = 1. Otherwise if it is a generic
right multicut than Rec is in C by C4.3 and ¥’ is empty. b.3. both r and r’ have
closure provisos. By C6 both rules have provisos for ¢” for different sides, so
by C7 both have two provisos for ¢”. Moreover r and r’ introduce .

2. ¢ is needed by r and not needed by 7’. Then

Lw* if ¥ =0, Lw is in C and Rw is not in C

U0 — A A (similarly for the other cases of Lw and Rw)
DU, |0]
", U — A
T o A c* if ¥ #0, r is Ax, Lw is not in C and Rw is in C
—————— Rw*  (similarly for the other cases of Lw and Rw)
R(DO) = \I/, v — A,A
S S— w* if k' # 0 and either r is Rw or 7/ has closure
/ /
v,U—AA provisos and r is a weakening rule not generic
DY ... Dy
Vo U — A° A/ T* otherwise
U0 AN C

c. contexts. ¢.1 Lw is not in C and Rw is. The case when &’ = 0 is omitted
since a similar case was analysed in a. Suppose k' # 0, r is Ax and V_,, is not
empty. Then C does not impose a cardinality proviso over the left side, see C8,
and does not have a rule with either a cardinality or a closure proviso by C1.
c.2. k' # 0 and r is an introduction rule. ¢.2.1. cardinality provisos. Suppose C
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has a cardinality proviso over the right side. Note that both the end-sequent of
the resulting deduction and the premises for which n; # 0 satisfy the proviso
since A is empty. ¢.2.2. fresh provisos are not an issue since the deductions are
pure-variable. ¢.2.3. rule r’ has closure provisos. Then 7’ has a closure proviso
for the left side for the main constructor ¢ of the cut formula by C6.2. If 7’
has one closure proviso then it is a right introduction rule for ¢” by C6.2.1,
and so r has the same provisos as ' by C5.3. Hence 7’ can be applied with
the contexts of the r inference. If 7' has two closure provisos and is a left
introduction rule then r has the same provisos as ' by C6.1.ii.

d. contraction and weakening rules. d.1. Lw is not in C. d.1.1. k' # 0 and r
is Rw. Then C imposes a cardinality proviso over the left side by C2.2. So ¥’
is empty by C8. d.1.2. k' # 0, r is a right weakening rule for a constructor ¢,
r’ is a rule with closure proviso(s) and m; = 0. If " has one closure proviso
then by C6.2 it introduces ¢ at the right side, C has a cardinality proviso for
that side, the proviso is for ¢ at the left side, and by C6.3.ii either Lw or
Lw c are in C, which is impossible by C2.1.ii, or C has a cardinality proviso
for the left side which implies that ¥’ is empty by C8. The case when 7’
has two closure provisos is analogous since 7’ is a right introduction rule. d.2.
generic contraction rules are not in C. d.2.1. k' £ 0 and r is Ax. Cut formulas
can be contracted as can be seen by case analysis on multicut rules in C, see
C4.1, C4.2 and C4.3. d.2.2. k' # 0 and r is an introduction rule. d.2.2.1.
cut shown in D° is LMulticut. Then C has a cardinality proviso for the right
side by C4.3, so A is empty, and Lc is in C by C4.2. d.2.2.2. cut shown in
D° is LMulticut c¢. Hence r has closure provisos by C4.1.i and so for each side
[ either C has an appropriate contraction rule for the [ context of r or it is
empty, see C6.

3. ¢ is needed by 7’ and not needed by r. Omitted (it is similar to case 2).

4. ¢ is needed by r and by r’. Then

D[W’|0]
U0 — A ™
TV oA C if " is Ax, Lw is not in C and Rw is in C
Btk 4 Rw* (similarly if r is Ax and for the other
U0 — AA cases of Lw and Rw)
R(D°) = Dy

if r’ is a weakening and r is not Ax

T A W
U U — AA (similarly if r is a weakening)

D
Wo, we — A° A% S if ¥/ and r are introduction rules for the
Uw— AA cTw same constructor

where, when r and 7’ are a pair of introduction rules for the same constructor
and (p1;...;pu) is a cut sequence with minimal length for them, D is the
pure-variable deduction corresponding to the deduction whose end-sequent is
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empty in Definition 7, defined using the deductions

( Dyt /y1s-- - ty/ys] if p; is the I-th premise of 7 and y1, ..., y, are the ins-
tantiation of the fresh variables of p;, if any, in D and

X t,...,t, the instantiation of those variables in D’
D; =
D*t1/yi, - to/y,) if p; is the I-th premise of " and 1, ...,y are the ins-
tantiation of the fresh variables of p;, if any, in D’ and
t1,...,t, the instantiation of those variables in D
for e =1,...,u. For example, the deduction D may be
~ * ~ *
P D1 D2
3 51 S
ok ——— cuty
S3 51,2
5123 cute R
14y DZ
%
u
S1,...u Cutu_l

e. contexts. e.1. Cut rules with additional contexts when r and r’ are intro-
duction rules for the same constructor. The case where C imposes a cardinality
proviso over side [ and after applying a cut rule the corresponding end-sequent
violates it, see C4.4, is not possible since by C8 both premises have at most
one formula at side [ and one of them is the cut formula. e.2. v is Ax, Lw is
not in C and Rw is. Suppose ¥’ is not empty. Then C does not impose a left
cardinality proviso. So by C1 there is not a rule in C with either a cardinality
or a closure proviso.

f. contraction and weakening rules. In the case that r and " are introduction
rules for the same constructor, C9 and the definition of cut suitable pair of
rules, Definition 7, ensures that C has the appropriate contraction and weak-
ening. Suppose ' is Lw, r is not Ax and Rw is not in C. Note that r is an
introduction rule. Then C has a cardinality proviso over the right side by C2.2.
So A is empty. If 7’ is Lw ¢ then r has closure provisos by C2.1.i. Moreover
the cut formulas can be contracted if m or n is greater than zero by C4.1,
C4.2 and C4.3.

We now briefly explain why R is a bounded operator, see Definition 2, and
satisfies the cutrank and the bound conditions with respect to the cut length of
C. For that we do a case analysis on R(D°). We distinguish three major forms
of R(D°): 1. R(D°) is D or D’ possibly enriched with additional contexts and
with weakenings or contractions at the end. In this case cr(R(D°)) < cr(D°)
since cr(D),cr(D’) < cr(D°) by hypothesis. Moreover ||R(D°)|| < b(||D|| +
|D'[]); 2. R(D°) either is Dj or D, or is obtained from those deductions
by application of r or r’, possibly with weakenings and contractions at the

end. Note that cr(Dj), cr(Dj7) < cr(D°), and if r or 7’ is a cut it has cutrank
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lower than cr(D°). So cr(R(D°)) < cr(D°); 2.1 R(D°) is obtained from r
and ||D;|| = ||D|| for some j. Then r is a weakening or contraction and so
IR(D°)|| < b(||D|| + [|D'|]). Similarly for r'; 2.2 R(D°) is obtained from r
and [|D;|| < [|D]|. Then [|D;[| < b(||D|| + [|D']|) — b for all j and so the
result follows since ||[R(D°)|| < b(||D|| + ||D’||) — b+ 1 and b is greater than
1. Similarly for 7’; 3. R(D°) is D possibly with weakenings and contractions.
Then cr(R(D°)) < cr(D°) since cr(Dj), cr(D}) < cr(D°) and the remaining
cuts are over subformulae of the original cut formula. Note that ||D,|| < ||D||.
So [[Dj]] < b([| P[] + |[D'[]) = b. Hence [[R(D?)]] < b(||D[| + ||D']|) since the
cuts over subformulae of the original cut formula are at most cl(C).

6 Subformula property and consistency

By induction on the depth of a deduction one easily sees that every cutfree
deduction in a cut suitable calculus satisfies the subformula property. Together
with Theorem 4 this yields that any cut suitable calculus is consistent.

7 Sequent calculi in the literature

The results established in this paper can also be seen as providing conditions
for a sequent calculus to enjoy cut admissibility. Using the results of this
paper, a cut is admissible in a calculus if there is an enrichment, with cut rules
and possibly with admissible weakening or contraction rules, of the original
calculus, in order to make it cut suitable. The cut elimination proof can then
be replaced by a decidable check of whether the enriched calculus satisfies the
cut suitable conditions. For the sake of an illustration we now consider the
calculi proposed by Gentzen in his pioneering work [1] and some of the calculi
proposed in [18] and in [15].

The Gentzen system Glc was shown to admit cut elimination in [15] by prov-
ing the elimination of the rule Multicut in the calculus obtained by enriching
G1c with that rule. Capitalizing on the results presented herein it would not
be necessary to explicitly prove cut elimination in G1lc+Multicut since this
calculus is cut suitable. Moreover the upper bound obtained in [15] for the
complexity of cut elimination in Glc+Multicut coincides with the bound we
establish herein using the general concept of cut length of the calculus. Anal-
ogously, the Gentzen systems G2c, G[12][mi], G3[c], G3[mi], G[ic]l, G3s
and G[12]s admit cut elimination since the calculi

e G2c+Multicut
e G[12][mi]+LMulticut
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G3[c]+Lc+Re+Cut
G3[mi]+Lc+Cut
Glic]l4+LMulticut!4+RMulticut?
G3s+Lc+Re+Cut

G[12]s+Cut

are cut suitable and the contraction rules are admissible in G3[mic] and in
G3s. Note that the calculus presented in Example 6 is an intuitionistic version
of the calculus G1s enriched with the rule LMulticut and is cut suitable, as
well as the calculus presented in Example 5 which is a multiplicative fragment
of the calculus Gel enriched with LMulticut! and RMulticut?.

Cut admissibility is studied in [18] for several sequent calculi. The Cut rule was
shown to be admissible in GO[i], GO[c], as well as in G3][ic][p] after having
proved admissibility of contraction. The results presented herein can be seen
as applying to these calculi since GO[i]4+Cut, GO[c]+Cut, G3[i][p]+Lc+Cut,
G3|c][p]+Lc+Rc+Cut are cut suitable. The calculi GN, GM and G3im and
its enrichments do not belong to the universe of sequent calculi studied herein
since some introduction rules in that calculi have a form not considered in this
work.

The pioneer calculi LJ and LK of Gentzen [1] are cut suitable modulo the
Interchange rule which can be seen as being hidden in the multiset data struc-
ture.

8 Comparison with related work

It is a common aspect of the papers [2-4,6,9] and of our paper to start by
defining the universe of calculi under study and only after that to establish
sufficient conditions or characterization conditions for cut elimination in the
context of that calculi. In all those papers, that universe is defined by the
types of rules and provisos that can be present in the calculi. The papers [7,8]
are concentrated on display and on consecution systems.

As in [3,4] we consider sequent calculi that can have rules for first order quan-
tifiers. Propositional based systems are considered in [2,5-9]. Structural rules
and cut rules that apply only to formulas with a specific main constructor
can be in the calculi considered herein. The papers [2,3,6,9] do not consider
calculi with such kinds of rules. With respect to provisos we consider calculi
with rules that may have cardinality and closure provisos. Rules with these
types of provisos are not allowed in [5,3,6-9]. In [2] due to conditions (log2)
and (log3) in the definition of simple calculus we conclude that those calculi
can not have introduction rules with cardinality or closure provisos.
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There are a number of differences between the previous work [2,5,3,4,6-9] and
the work of this paper, with respect to level of detail, names, and presentation
of sufficient conditions; however, there are several common aspects. This was
expected since there are crucial cases common to most of the cut elimination
proofs. One such crucial case is the propagation of cut to the subformulas of
the original cut formula if it is introduced by a left or a right introduction
rule. All the works have a condition for guaranteeing that there is such a
deduction. That condition changes accordingly with the universe of calculi
that is being considered. For instance Avron and Lev in [5,6] in the context of
a canonical propositional calculus require that for every left and right logical
rules for the same connective, the set of clauses obtained from its premises is
classically inconsistent, that is, the empty clause can be derived from them
using cuts. A similar notion had previously appeared in the work of Baaz and
Leitsch on CERES, a cut elimination by resolution method for classical first
order logic [22]. In the work of Ciabattoni and Terui in [2] the derivation of
the empty sequent is not enough to guarantee the deduction of the original
end-sequent since the calculi considered may not have all the structural rules.
So they require that there is a deduction for the end-sequent using the identity
axiom, the structural rules and the cut rule. The condition we propose herein
can be seen as staying between those two kinds of conditions. We require that
it is possible to derive the empty sequent by using only cut rules, as in [5,6], but
also require additional conditions related with the presence of the structural
rules so that it is possible to derive the contexts of the end-sequent by using
them.

Another crucial case present in almost all the cut elimination proofs is the
propagation of the cut over the cut formula to the premises of a rule. This
case appears when the cut formula is not needed by the rule used in one of
the premises. In [2] the authors propose the weak substitutive condition to
take care of it. In our work we guarantee that that case is not problematic
by requiring a condition for each specific subcase of that crucial case. Note
however that there is a difference in the level of detail in our condition and
the similar condition proposed for instance by [2]. In general the conditions
we propose are more specific than in the other related works.

The study of the complexity of cut elimination in a class of calculi, as well
as the possibility of checking the conditions by a computer program, was not
considered in the works [2,5,3,4,6-9].

9 Concluding remarks

Besides the results about the sufficient conditions for cut elimination and its
complexity analysis, this work also provides another point of view concerning
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the intimate relationships between the rules and the provisos in a calculus
that guarantee that it admits cut elimination by a Schiitte-Tait style cut
elimination proof. A complete characterization of cut elimination for the class
of calculi described in this paper is not straightforward but is one of the most
interesting directions of future work that we intend to pursue. For this we
would like to start by characterizing the semantics of the logics with calculi
in this class or in a large subclass of it. Another interesting direction of future
work is the refinement of the complexity analysis of cut elimination done herein

by differentiating between propositional connectives and quantifiers as studied
in [24-28].

General modularity results like the ones obtained in [9] is another very inter-
esting goal to pursue in the future. The idea is to study under which conditions
cut elimination is preserved when a certain calculus enjoying cut elimination is
enriched with rules of a certain type. Another possible direction of future work
is to generalize the type of calculi considered, e.g. to infinitary systems, and
the universe of rules and provisos [29-33]. Taking into account that the con-
ditions presented are proved based on a specific type of cut elimination proof
it would also be interesting to identify sufficient conditions for cut elimination
when the cut elimination proof method is different from the one considered in
this work.

Finally note that the approach followed in this paper can be applied to other
properties like for instance the Beth definability property and the Craig inter-
polation property.
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