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We study the fidelity approach to quantum phase transitions (QPTs) and apply it to general
thermal phase transitions (PTs). We analyze two particular cases: the Stoner-Hubbard itinerant
electron model of magnetism and the BCS theory of superconductivity. In both cases we show that
the sudden drop of the mixed state fidelity marks the line of the phase transition. We conduct a
detailed analysis of the general case of systems given by mutually commuting Hamiltonians, where
the non-analyticity of the fidelity is directly related to the non-analyticity of the relevant response
functions (susceptibility and heat capacity), for the case of symmetry-breaking transitions. Further,
on the case of BCS theory of superconductivity, given by mutually non-commuting Hamiltonians, we
analyze the structure of the system’s eigenvectors in the vicinity of the line of the phase transition
showing that their sudden change is quantified by the emergence of a generically non-trivial Uhlmann
mixed state geometric phase.
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One of the main characteristics of quantum mechanics that makes it different from any classical physical theory
is that in quantum mechanics two different quantum states, being either pure or mixed, are in general not fully
distinguishable. By fully distinguishable we mean that it is possible, upon a result of a single-shot measurement of a
suitable observable, to infer with probability one in which of the two given quantum states the observed system has been
prepared. In particular, two pure quantum states are fully distinguishable if and only if they are orthogonal to each
other. Otherwise, the maximal probability to unambiguously distinguish between two non-orthogonal pure quantum
states is always strictly smaller than one. The reason for this lies in the fact that, while the outcomes of measurements
on classical systems are, at least in principle, given with certainty, quantum measurements in general generate non-
trivial probability distributions. This feature of quantum mechanics has found numerous applications within the
field of quantum information and computation, in particular in quantum cryptography, quantum communication
complexity, designing novel quantum algorithms, etc. (for an overview, see [1]).

Within the field of quantum information, the function widely used to quantify the distinguishability between two
quantum states ρ̂1 and ρ̂2 is fidelity [2], given by the expression:

F (ρ̂1, ρ̂2) = Tr

√

√

ρ̂1ρ̂2

√

ρ̂1. (1)

Note that in the case of pure states ρ̂1 = |ψ1〉〈ψ1| and ρ̂2 = |ψ2〉〈ψ2|, the above expression reduces to
F (|ψ1〉〈ψ1|, |ψ2〉〈ψ2|) = |〈ψ1|ψ2〉|, which is nothing but the square root of the probability for a system in state
|ψ2〉 to pass the test of being in state |ψ1〉. The fidelity (1) between two quantum states, given for two systems 1 and
2, quantifies the statistical distinguishability between them, in a sense of classical statistical distinguishability between
the probability distributions obtained by measuring an optimal observable in states ρ̂1 and ρ̂2. In other words, for

every observable Â, we have F (ρ̂1, ρ̂2) ≤ Fc({p1(i|Â)}, {p2(i|Â)}) ≡
∑

i

√

p1(i|Â)p2(i|Â), where {pα(i|Â)}, α ∈ {1, 2},
is a probability distribution obtained measuring the observable Â in the state ρ̂α, and Fc({p1(i|Â)}, {p2(i|Â)}) is the
classical fidelity between the two probability distributions {p1(i|Â)} and {p2(i|Â)}. For an overview of the results on
distinguishability between quantum states and its applications to the field of quantum information, see [3] and the
references therein.

Quantum mechanics was originally developed to describe the behavior of microscopic systems. Therefore, most of
its applications are focused on the study of the properties and dynamics of quantum states referring to such systems,
where quantum features dominate. On the other hand, it is a common assumption that classical behavior emerges in
the thermodynamical limit, when the number of degrees of freedom of the system becomes large (in the limit of a large
number of microscopic sub-systems). Yet, there is no special objection why quantum mechanics should not be generally
applicable, even to macroscopic systems. Indeed, macroscopic phenomena such as magnetism, superconductivity or
superfluidity, to name just a few, can only be explained by using the rules of quantum mechanics. As in these, as well
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as in many other, highly physical relevant cases, the macroscopic features of matter are given through the features
of its quantum states, the question of quantifying those macroscopic properties given by many-body quantum states
arises as a relevant problem in physics.

In this study, we are interested in those macroscopic features of matter that define its thermodynamical phase.
Different phases of matter are separated by the so-called regions of criticality, regions in parameter space where the
system’s free energy becomes non-analytic. As the free energy is a function of the system’s states, it is precisely the
features of its states that determine the phase the system is in. Indeed, different phases have different values of the
order parameter, given by the expectation value of a certain observable. As in the case of general quantum states,
here as well, fidelity can be used as a function whose behavior can mark the regions of criticality (and therefore the
phase transitions).

In the case of quantum phase transitions (QPTs) [4], which occur at zero temperature and are driven by purely
quantum fluctuations, the study of the ground state fidelity has been first conducted on the examples of the Dicke
and XY models [5]. Note that in this case, the ground states are pure quantum states, so the fidelity is given by a
simple overlap between two pure states. It was shown that approaching the regions of criticality the fidelity between
two neighboring ground states exhibits a dramatic drop [26]. Subsequently, the fidelity approach to QPTs was applied
to free Fermi systems and graphs [6] and to the Bose-Hubbard model [7]. The connection between fidelity, scaling
behavior in QPTs and the renormalization group flows was introduced in [8] and further discussed in [9]. Also, it
was shown that the fidelity can mark the regions of criticality in systems whose QPTs can not be described in terms
of Landau-Ginzburg-Wilson (LGW) theory: when the ground states are given by the matrix product states [10],
in the case of a topologically ordered QPT [11], and in the Kosterlitz-Thouless type of transition [12] as well. The
formal differential-geometry description of the fidelity approach to QPTs was first introduced in [13] and subsequently
developed in [14], where the connection to the Berry phase approach to QPTs (see [15]) was also established. Further,
on the example of the spin one-half XXZ Heisenberg chain, it was shown that the fidelity does not necessarily exhibit
a dramatic drop at the critical point, but that the proper finite-size scaling analysis allows for correct identification
of the QPT, see [14]. An interesting example of a Heisenberg chain where the fidelity approach fails when applied to
the ground states, but does mark the point of criticality when applied to the first excited states, was discussed in [16]
(note that the numerical results were obtained for up to 12 spins only, which leaves open the question of the ground
state fidelity behaviour in the thermodynamic limit). Introducing the temperature as an additional parameter, QPTs
were studied in [17] and it was shown that extending the fidelity approach to general mixed (thermal) states can still
mark the regions of criticality as well as the cross-over regions at finite temperatures. Finally, the genuine thermal
PTs were discussed in [13] and [18], where the connection between the singularities in fidelity and specific heat or
magnetic susceptibility was explicitly shown for the cases of systems given by mutually commuting Hamiltonians and
symmetry-breaking PTs of LGW type.

In this paper, we apply the fidelity approach to general thermal phase transitions [27]. We analyze in detail two
particular examples given by the Stoner-Hubbard model for magnetism and the BCS theory of superconductivity.
In general, a system is defined by a Hamiltonian Ĥ(U) which is a function of a set of parameters representing the
interaction coupling constants generically denoted as U . In thermal equilibrium, a system’s state is given by a density
operator ρ̂(T,U). Thus, in discussing the general, thermal as well as quantum phase transitions, we can consider
the coupling constant(s) U and the temperature T to form a “generalized” parameter q = (T,U). We consider
the behavior of the fidelity F (ρ̂(q), ρ̂(q̃)) between two equilibrium thermal states ρ̂(q) and ρ̂(q̃) defined by two close
parameter points q = q(T,U) and q̃ = q+δq = (T+δT, U+δU). We show that in both models considered, the PTs are
marked by the sudden drop of fidelity in the vicinity of regions of criticality - a signature of enhanced distinguishability
between two quantum states defining two different phases of matter, based on both short-range microscopic as well
as long-range macroscopic features. For the general case of mutually commuting Hamiltonians, we analytically prove
in detail that the same holds for PTs which fall within the symmetry-breaking paradigm described by the LGW
theory (see also [13] and [18]). Further, for the case of mutually non-commuting Hamiltonians, on the example of
BCS theory of superconductivity we show that the non-analyticity of the fidelity is accompanied by the emergence of
a generically non-trivial Uhlmann geometric phase [19], the mixed-state generalization of the Berry geometric phase
(for the relation between QPTs and Berry phases, see [15], [13] and [14]).
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STONER-HUBBARD ITINERANT ELECTRON MODEL FOR MAGNETISM

First, we discuss the case of the Stoner-Hubbard model for itinerant electrons on a lattice given by the Hamiltonian
[20]:

ĤSH =
∑

k

εk

(

ĉ†k↑ĉk↑ + ĉ†k↓ĉk↓
)

+ U
∑

l

ĉ†l↑ĉl↑ĉ
†
l↓ĉl↓. (2)

The anti-commuting fermionic operators ĉ†kσ represent the free-electron momentum Bloch modes (σ ∈ {↑, ↓}), while

the on-site operators ĉ†lσ = V −1/2
∑

k e
−ikxl ĉ†kσ are given by their Fourier transforms, where xl represents the position

of the l-th lattice site. The coupling constant U > 0 defines the on-site electron Coulomb repulsion. There are in
total N electrons and they occupy the volume V (such that in the thermodynamic limit, when N,V → ∞, we have
N/V → const). Finally, we assume for simplicity that the kinetic energy is given by εk = ~

2k2/(2m), while the

number operators are n̂kσ = ĉ†kσ ĉkσ and n̂lσ = ĉ†lσ ĉlσ = V −1
∑

qk e
iqxl ĉ†kσ ĉk+qσ. Thus,

ĤSH =
∑

kσ

εkn̂kσ + U
∑

l

n̂l↑n̂l↓. (3)

In order to obtain the mean-field effective Hamiltonian, we neglect the term quadratic in the fluctuations δn̂lσ =
n̂lσ − nlσ, where nlσ = 〈n̂lσ〉, in the potential written as n̂l↑n̂l↓ = δn̂l↑δn̂l↓ + nl↑n̂l↓ + nl↓n̂l↑ − nl↑nl↓. Expressing the

number operators in terms of the Bloch momentum operators, and using 〈ĉ†kσ ĉk′σ〉 = δkk′〈n̂kσ〉 (which expresses the
translational invariance in a ferromagnetic ground state), the mean-field linearized effective Hamiltonian becomes:

Ĥeff
SH =

∑

k

(Ek↑n̂k↑ + Ek↓n̂k↓) − V Un↑n↓. (4)

Here, nσ = Nσ/V is the density of electrons with spin projection along z-axis given by σ ∈ {↑, ↓} (Nσ =
∑

k〈n̂kσ〉
being the total number of electrons with spin σ). The one-particle electron energies in this effective model are obtained
by shifting the free-electron energies εk by an amount depending on the particle’s spin:

Ek↑ = εk + Un↓,

Ek↓ = εk + Un↑. (5)

Since the one-particle energy modes are decoupled, the overall ground state is obtained by filling the electrons up to
the Fermi level εF :

|g〉 = ⊗k≤kF↑
ĉ†k↑ ⊗k≤kF↓

ĉ†k↓|0〉, (6)

where |0〉 represents the vacuum state with no electrons and kF↑ the maximal value of the momentum for spin up
electrons, given by EkF↑

= εF (and analogously for kF↓) [28]. Note that, due to the different dispersion formulas
(5) for particles with spin up and spin down, in general the values of kF↑ and kF↓ that minimize the ground state
energy, and therefore define the state (6) itself, are different and consequently the number of up and down electrons
will be different. This is precisely the reason for the existence of magnetism in this model. As soon as the energy of
the “biased” (magnetic) state, for which for example kF↑ > kF↓, becomes lower than the energy of the “balanced”
(paramagnetic) state (kF↑ = kF↓), a magnetic phase transition will occur. Obviously, for reasons of symmetry, the
magnetic state can be reversed with the kF↑ > kF↓ and kF↑ < kF↓ cases having the same energy, in the absence of

an external symmetry breaking field ~H. The qualitative picture of the emergence of magnetic features can be seen
already from looking at the original Hamiltonian (2): in the U → 0 limit, when the Coulomb interaction is negligible,
the Hamiltonian represents a system of free electrons that exhibits no magnetic order (all Bloch states are doubly
occupied); in the opposite U → ∞ limit, the second term of the Hamiltonian becomes the dominant one and is
minimized by one of two possible states for which either N↑ = 0 or N↓ = 0.

The quantitative analysis of the zero-temperature critical behavior of the effective Hamiltonian (4) can be done
by looking at the divergence of the magnetic susceptibility, using the one-particle energy dispersion relations (5). At
T = 0 it leads to the well known Stoner criterion for the emergence of magnetism [20]:

DFUc = 1, (7)
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where Uc is the critical value of the coupling constant above which the system is in a magnetic phase and DF = D(εF )
is the density of states around the Fermi energy. From this, one can obtain (see Appendix 1) the critical value Uc of
the coupling constant [29]:

Uc =
4

3
εF

V

N
, (8)

where N is the total number of electrons, V is the volume of the system and m is the electron mass.
Alternatively, the above result can be derived by minimizing the overall ground state energy, thus obtaining the

explicit dependencies kF↑ = kF↑(U) and kF↓ = kF↓(U) which determine the ground state (6) and Uc in particular (the
maximum value of U for which kF↑ = kF↓) [30]. The total number of electrons in the system is given by N = N↑+N↓,
and thus:

N

V
=

1

6π2
[(kF↑)

3 + (kF↓)
3], (9)

since the up and down electrons occupy spheres of radius kF↑ and kF↓, with volumes V (kF↑) and V (kF↓), in momentum
space, with a density of states V/(2π)3, as follows from the periodic boundary conditions for the Bloch functions.
From EkF↑

= EkF↓
(see Appendix 1), using the energy dispersion formulas (5), we obtain the second equation that

determines the Fermi momenta kF↑ and kF↓ (with α = 3
2kFUc):

(kF↑ − kF↓)[(kF↑ + kF↓) −
U

α
(k2

F↑ + kF↑kF↓ + k2
F↓)] = 0. (10)

We see that the above two equations always have the trivial solution kF↑ = kF↓ ≡ kF , which from (9) is kF =
(

3π2 N
V

)1/3
. Yet, it is not necessarily the only possible solution, as the quadratic term in equation (10) can also be

satisfied, (kF↑ + kF↓)− U
α (k2

F↑ + kF↑kF↓ + k2
F↓) = 0. It turns out that precisely for U > Uc this term has non-trivial,

“non-balanced” solutions that are energetically more favorable than the “balanced” one and that give rise to magnetic
order (see Appendix 1).

Thus, equations (9) and (10) define kF↑ = kF↑(U) and kF↓ = kF↓(U) functions which, via (6), give the ground
state as a function of the external parameter U , |g〉 = |g(U)〉. This enables us to analyze the fidelity between two
ground states |g〉 ≡ |g(U)〉 and |g̃〉 = |g(U + δU)〉 in two close parameter points U and U + δU . The fidelity is then
F (|g〉〈g|, |g̃〉〈g̃|) = |〈g|g̃〉|, and for U < Uc (and δU sufficiently small, i.e. δU < Uc − U) we see that the fidelity is
identical to 1. This is a simple consequence of our mean-field approximation based on a simplified description in terms
of single particle energy states. On the magnetic side of the phase diagram, the ground states are indeed different
from each other, which follows from the relation kF↑(U) 6= kF↓(U). In fact, from equation (6) it follows that any

two ground states with different numbers N↑ and N↓ are orthogonal to each other. Since this is precisely the case
in the thermodynamic limit, the fidelity between any two different ground states (in two different parameter points)
is identically equal to zero. This is the famous Anderson orthogonality catastrophe, discussed in more detail in [5].
For systems with infinitely many degrees of freedom, such as those taken in the thermodynamic limit are, every two
ground states are generally orthogonal to each other. Therefore, in order to infer the points of criticality, we are
forced to either analyze the finite-size scaling behavior (see [5]), or to introduce the fidelity per lattice site and work
directly in the thermodynamic limit (see [8], [9] and [21]).

In our case though, even for finite systems the ground state is discontinuous at the point of criticality. This is due to
the fact that the unperturbed and the symmetry-breaking perturbation Hamiltonian commute with each other, which
results in a first-order quantum phase transition at the point of level-crossing between the ground and the first excited
state. In other words, in the case of finite systems (N,V <∞), the small enough changes of the parameter U → U+δU
will result in small changes of volumes V (kF↑) → V (kF↑) + δV (kF↑) such that |δV (kF↑)| < V0 = (2π)3/V (V0 is the
volume occupied by each one-particle state in momentum space): infinitesimal changes of the volumes V (kF↑) and
V (kF↓) are small enough to cause a change in the numbers N↑ and N↓, and thus in the ground state. Therefore, for
finite systems, the fidelity between two ground states is either one or zero – it is not a continuous function of and its
rate of change can not be analyzed directly.

Yet, we can use the rate of change of V (kF↑), the derivative
dV (kF↑)

dU , to quantify the change of fidelity itself (note

that, due to the fixed total number of electrons N , we have that
dV (kF↓)

dU = −dV (kF↑)
dU ). Lengthy, but elementary

algebra (see Appendix 1) shows that precisely at U = Uc, the derivative
dV (kF↑)

dU diverges to infinity, thus marking
the macroscopic distinguishability between the states from paramagnetic and magnetic phase (see Fig. 1).

Next, we discuss the general case of T 6= 0 phase transitions. First, we transform the Hamiltonian Ĥeff
SH to a form

with the explicit symmetry breaking term that drives the phase transition. Using M = (N↑−N↓)/2 = 〈Ŝz〉 =
∑

k〈Ŝz
k〉,
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FIG. 1: (color online) The explicit dependencies kF↑ = kF↑(U) (black, solid line) and kF↓ = kF↓(U) (red, dashed line)

determining the ground state (6). Note that at the point of QPT, given by Uc = 1, the two derivatives
dkF↑

dU
and

dkF↓

dU
become

infinite, marking the non-analyticity in the ground state fidelity. The plot is given in rescaled quantities U → DF U and
kFσ → kFσ/kF .

with Nσ = 〈N̂σ〉 =
∑

k〈n̂kσ〉, n̂k = n̂k↑ + n̂k↓ and Ŝz
k = 1

2 (n̂k↑ − n̂k↓) = Ψ̂† σz

2 Ψ̂, where Ψ̂†
k = [ĉ†k↑ ĉ

†
k↓] and σz is the

z-component of the vector ~σ of Pauli matrices, we get:

Ĥeff
SH =

∑

k

[(

εk +
UN

2V

)

n̂k − 2
UM

V
Ŝz

k

]

− U

V

(

N2

4
−M2

)

. (11)

In thermal equilibrium, the state of the system is given by ρ̂ = 1
Z e

−β(Ĥeff
SH

−µN̂), where Z = Tr[e−β(Ĥeff
SH

−µN̂)] is
the grand canonical partition function, β = 1/(kBT ), with kB being the Boltzmann constant and T the absolute

temperature and µ = µ(T ) is the chemical potential. Using the above expression for the Hamiltonian Ĥeff
SH , we can

write:

−β(Ĥeff
SH − µN̂) =

∑

k

(

αkn̂k + hzŜ
z
k

)

+ C. (12)

Here, αk = −βEk (with Ek = ε̄k + UN
2V and ε̄k = εk − µ), hz = 2β U

V M and C = β U
V (N2

4 −M). Note that the
coefficients αk, hz and C are functions of both the coupling constant U and, through β and the chemical potential
µ = µ(T ), of the temperature T as well, so that the “generalized” parameter is q = (T,U). Using the obvious
commutation relations [n̂k, n̂k′ ] = [n̂k, Ŝ

z
k′ ] = [Ŝz

k , Ŝ
z
k′] = 0 (for k 6= k′), the equilibrium state can be expressed as:

ρ̂=
1

Z
e−β(Ĥeff

SH
−µN̂) =

e
P

k(αkn̂k+hzŜz
k)+C

Tr
[

e
P

k(αkn̂k+hzŜz
k)+C

] =

∏

k

(

eαkn̂kehzŜz
k

)

∏

k Tr
[

eαkn̂kehzŜz
k

] . (13)

We next choose two parameter points qa = (Ta, Ua) and qb = (Tb, Ub) defining the Hamiltonians Ĥa = Ĥeff
SH (Ua)

and Ĥb = Ĥeff
SH (Ub) and the corresponding equilibrium states ρ̂a = ρ̂(qa) and ρ̂b = ρ̂(qb) respectively. The fidelity

between the two states is then given by:

F (ρ̂a, ρ̂b) = Tr[(ρ̂1/2
a ρ̂bρ̂

1/2
a )1/2] = Tr[

√

ρ̂aρ̂b] =
Tr
[

e
βaĤa+βbĤb

2

]

√

Z(Ĥa)Z(Ĥb)
. (14)

Using (13) and the expression Tr[e(αkn̂k+hzŜz
k)] = 2eαk(coshαk + cosh hz

2 ) (for the proof, see Appendix 2), the fidelity
between two different equilibrium states ρ̂a and ρ̂b finally becomes:

F (ρ̂a, ρ̂b) =
∏

k

cosh ᾱk + cosh h̄z

2
√

[

cosh(ᾱk + ∆αk

2 ) + cosh( h̄z

2 + ∆hz

2 )
] [

cosh(ᾱk − ∆αk

2 ) + cosh( h̄z

2 − ∆hz

2 )
]

, (15)
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with ᾱk = (αk(qa) + αk(qb))/2, ∆αk = αk(qa) − αk(qb), and similarly for h̄z and ∆hz. If we choose the two points
to be close to each other, ∆αk << 1 and ∆hz << 1, then the fidelity can be seen as a function of ᾱk and h̄z, with a
fixed parameter difference.

In order to evaluate the fidelity (15), we need to determine the magnetization M = M(T,U) and the chemical
potential µ = µ(T,U), given by the pair of self consistent integral equations:

N = V DF

∫ +∞

0

dε

√

ε

εF
[f(Ek↑) + f(Ek↓)] ,

M = V DF

∫ +∞

0

dε

√

ε

εF

1

2
[f(Ek↑) − f(Ek↓)] , (16)

where f(Ekσ) = [exp(βEkσ) + 1]−1 is the usual Fermi distribution. We used the subroutine hybrd.f from MINPACK
[22] to solve the above system numerically. In the T → 0 limit, the above system reduces to equations (9) and (10)
that determine the T = 0 ground state. The result for the magnetization is given on Fig. 2. The line of the phase
transition Uc = Uc(T ) is clearly marked, and is plotted on Fig. 3. Finally, using the numerical results for M and
µ, we obtain the fidelity, depicted on Fig. 4. We clearly see the same line of the phase transition as the line of a
sudden drop of F . Note that all the plots are given in rescaled quantities T → kBT , U → DFU and M →M/N , with
δT = 0, δU = 2×10−3. We have evaluated the fidelity for δT = 2×10−3 and δU = 0, as well as for δT = δU = 2×10−3

and the results are qualitatively the same.

           
         T

0.0

0.2

0.4U        
1.0

1.1

1.2

M
        

0.0

0.2

0.4

FIG. 2: (color online) Magnetization M = M(T, U) as a function of the temperature T and the coupling constant U . The plot
is given in rescaled quantities T → kBT , U → DF U and M → M/N .

0.0 0.1 0.2 0.3 0.4

1.00

1.05

1.10

1.15

T

U

Uc(T)

FIG. 3: The critical line of the magnetic phase transition Uc = Uc(T ). The plot is given in rescaled quantities T → kBT and
U → DF U .
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0.996

0.998

1.000

FIG. 4: (color online) The fidelity F = F (T, U). The plot is given in rescaled quantities T → kBT and U → DF U , with
δT = 0, δU = 2 × 10−3.

THE GENERAL CASE OF MUTUALLY COMMUTING HAMILTONIANS

The above singular behavior of the fidelity indeed marks the regions of phase transitions, not only for the case of
the Stoner-Hubbard model but also for the broad class of systems given by a set of mutually commuting Hamiltonians
Ĥ(q) and whose critical behavior is explained by the LGW theory, as can be seen by the following analysis. Using

the mean Hamiltonian ˆ̄H = (Ĥa + Ĥb)/2 and the difference ∆Ĥ = Ĥa − Ĥb, from equation (14) the fidelity can be
written as:

F (ρ̂a, ρ̂b) =
Z( ˆ̄H)

√

Z( ˆ̄H + ∆Ĥ
2 )Z( ˆ̄H − ∆Ĥ

2 )
. (17)

Within the LGW theory, PTs occur as a consequence of the emergence of a symmetry-breaking term in the Hamil-
tonian, given by an operator Ŝ. Thus, we can write the overall Hamiltonian as a sum of unperturbed and symmetry-

breaking terms, Ĥ = Ĥ0 − hŜ, with h = h(q). Using [31] Z(Ĥ) = Tr[e−β(Ĥ0−hŜ)] (note the implicit depen-
dence of partition function Z on temperature T , through β), for the first and the second derivative we obtain
∂ ln Z

∂h = βTr[ρ̂(Ĥ)Ŝ] = β〈Ŝ〉 = βM and ∂2

∂h2 (lnZ) = βχ. Here, M = M(h) and χ = χ(h) = β(〈Ŝ2〉 − 〈Ŝ〉2) are the
generalized “magnetization” and “susceptibility” respectively. Thus, for the logarithm of the partition function (free
energy) we obtain lnZ(Ĥ)|h+∆h = lnZ(Ĥ)|h + βM(h)∆h + 1

2βχ(h)∆h2 + o(∆h2). Finally, in the vicinity of the
points of parameter space where the self-consistent field h vanishes, the fidelity (17) reads as:

F |h=∆h ' e−
1
2
βχ(0)∆h2

. (18)

According to the LGW theory, at the phase transition, the zeroth-field “susceptibility” χ(0) becomes non-analytic
and diverges. Thus it follows that the fidelity F will itself become nonanalytic and experience a sudden drop.

When interested in the system’s behavior at PTs, we usually simplify the problem by taking the unperturbed
Hamiltonian to be constant. Yet, in general, the unperturbed Hamiltonian is also a function of the parameters,

Ĥ0 = Ĥ0(q). This gives the correction to the above formula for the fidelity which, introducing ˆ̄H = ˆ̄H0 − h̄Ŝ and
∆Ĥ = ∆Ĥ0 − ∆hŜ, reads as:

F |h=∆h ' Z( ˆ̄H0)
[

Z( ˆ̄H0 + ∆Ĥ0

2 )Z( ˆ̄H0 − ∆Ĥ0

2 )
]1/2

e−
1
2
βχ(0)∆h2

. (19)

The “correction” term in the above product is responsible for “short-range” local correlations, while the second one
quantifies the global “long-range” correlations giving rise to macroscopic phase distinguishability. Note though that
even within a single phase, a system can be in different macroscopically distinguishable states – phase distinguishability
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is not the only form of macroscopic distinguishability. Yet, it is in some sense the “extreme” version of it, which clearly
affects the behavior of fidelity.

Finally, we note that in the above discussion we focused on PTs driven by the local order parameter Ŝ. Therefore,
we analyzed the Taylor expansion of F with respect to ∆h deviations only, which at the second order are given by
the generalized susceptibility χ(h). In the general case, considering the temperature deviations as well, one would
include additional terms involving the specific heat C = C(q), again resulting in a singular behavior of the fidelity.

BCS SUPERCONDUCTIVITY

Next, we discuss the BCS theory for superconductivity [20], providing us with an example of a model with mutually
non-commuting Hamiltonians. The one-electron Bloch momentum modes are given by the fermionic anti-commuting
operators ĉkσ (label σ ∈ {↑, ↓} represents spins with projections up and down along, say z-axis), with the one-particle
kinetic energies taken to be, again for simplicity, εk = ~

2k2/(2m). The BCS superconducting Hamiltonian that
represents the sum of one-particle kinetic and Cooper-pair interaction energies can be written in the following way
(Vk′k = V ∗

kk′ are the coupling constants):

ĤBCS =
∑

kσ

εk ĉ
†
kσ ĉkσ +

∑

kk′

Vkk′ ĉ†k′↑ĉ
†
−k′↓ĉ−k↓ĉk,↑. (20)

By n̂kσ = ĉ†kσ ĉkσ we denote the one-particle number operators, while by b̂†k = ĉ†k↑ĉ
†
−k↓ and b̂k = ĉ−k↓ĉk↑ we define the

Cooper-pair creation and annihilation operators respectively. Analogously to the previous case, using b̂k = 〈b̂k〉+ δb̂k
and neglecting the term quadratic in the fluctuations, we obtain the effective mean-field BCS Hamiltonian:

Ĥeff
BCS =

∑

k

εk(n̂k↑ + n̂−k↓) −
∑

k

(∆k b̂
†
k + ∆∗

k b̂k − ∆∗
kbk), (21)

with ∆k = −∑k′ Vkk′bk′ and bk = 〈b̂k〉. We will use the usual assumption that the lattice-mediated pairing interaction
is constant and non-vanishing between electrons around the Fermi level only, i.e. Vkk′ = −V for |ε̄k| and |ε̄k′ | < ~ωD,

and zero otherwise (ωD is the Debye frequency). Using the Nambu operators [20] ~̂T k = ψ̂†
k

~σ
2 ψ̂k, where ψ̂†

k = [ĉ†k↑ ĉ−k↓]

and ~σ is the vector of Pauli matrices [32], the operators are given by T̂+
k = b̂†k, T̂−

k = b̂k and 2T̂ 0
k + 1 = (n̂k↑ + n̂−k↓)

and form a su(2) algebra (see the Appendix 3). Using this notation, the Hamiltonian takes the form:

Ĥeff
BCS =

∑

k

(2εkT̂
0
k − ∆kT̂

+
k − ∆∗

kT̂
−
k ) +

∑

k

(εk + ∆∗
kbk). (22)

As before, the thermal equilibrium state is given by ρ̂ = 1
Z e

−β(Ĥeff
BCS

−µN̂) and, using the above expression for the

Hamiltonian Ĥeff
BCS , we can write:

−β(Ĥeff
BCS − µN̂) =

∑

k

~̃
hk
~̂T k +K, (23)

where
~̃
hk = (h̃+

k , h̃
−
k , h̃

0
k) = (2β∆∗

k, 2β∆k,−2βε̄k), ~̂T k = (T̂+
k , T̂

−
k , T̂

0
k ), K = −β∑k(ε̄k + ∆∗

kbk) and ε̄k = εk − µ(T ).

The norms of the vectors
~̃
hk are given by h̃k = 2βEk, with Ek =

√

ε̄2k + |∆k|2. Similarly to what we had before, the

coefficients
~̃
hk =

~̃
hk(T, V ) are functions of both the coupling constant V and the temperature T , through the gap

parameters ∆k = ∆k(T, V ) and the chemical potential µ = µ(T ). Thus, we can talk of the “generalized” parameter

q = (T, V ). Since [ ~̂T k, ~̂T k′ ] = 0, for k 6= k′, we have:

ρ̂ =
1

Z
e−β(Ĥeff

BCS
−µN̂) =

e
P

k
~̃
hk

~̂T k+K

Tr[e
P

k
~̃
hk

~̂T k+K ]
=

∏

k e
~̃
hk

~̂T k

∏

k Tr[e
~̃
hk

~̂T k ]
. (24)

We wish to evaluate the fidelity between two thermal states ρ̂a and ρ̂b, given for two different parameter points

qa = (Ta, Va) and qb = (Tb, Vb). Using definition (1) and ~ak =
~̃
hk(qa) and ~bk =

~̃
hk(qb), we have:

F (ρ̂a, ρ̂b) = Tr[(ρ̂1/2
a ρ̂bρ̂

1/2
a )1/2] =

Tr[(
∏

k e
~ak
2

~̂T ke
~bk

~̂T ke
~ak
2

~̂T k)1/2]
∏

k(Tr[e~ak
~̂T k ]Tr[e~bk

~̂T k ])1/2
. (25)
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As for every k the operators ~̂T k form a su(2) algebra, and therefore by exponentiation define a Lie group, we can

write e
~ak
2

~̂T ke
~bk

~̂T ke
~ak
2

~̂T k = e2~ck
~̂T k . Also (see Appendix 3), we have that Tr[e~ak

~̂T k ] = 2(1 + cosh ak

2 ). Therefore, we
finally have (see Appendix 3) that F (ρ̂a, ρ̂b) =

∏

k Fk(ρ̂a, ρ̂b) with [33]:

Fk(ρ̂a, ρ̂b)=
Tr[e~ck

~̂T k ]
√

Tr[e~ak
~̂T k ]Tr[e~bk

~̂T k ]

=
1 +

√

1
2 (1 + cosh ck)

√

(1 + cosh ak

2 )(1 + cosh bk

2 )
, and (26)

cosh ck =cosh(βaEa
k) cosh(βbEb

k)

{

1 + tanh(βaEa
k) tanh(βbEb

k)
ε̄a
kε̄

b
k + Re[∆a

k(∆b
k)∗]

Ea
kE

b
k

}

. (27)

Here, we used the relation ε̄a
k = εa

k − µa and ak = 2βaEa
k , Ea

k =
√

(ε̄a
k)2 + |∆a

k|
2
, so that cosh ak

2 = cosh(βaEa
k) (and

analogously for qb = (Vb, Tb)). Note the explicit dependence of all the quantities on the temperature and the coupling
strength, given through the superscripts a and b, denoting two parameter points qa = (Ta, Va) and qb = (Tb, Vb).

Assuming that the chemical potential is also constant (µ = εF ) in the region of interest, where the phase transition
takes place, the gap parameter reduces to ∆k = ∆, for |ε̄| < ~ωD (and zero otherwise). Thus, the self consistent

equation for the gap ∆k = −
∑

k′ Vkk′
1−2f(Ek′ )

2Ek′
∆k′ reads as (1 − 2f(Ek′) = tanh βEk′

2 ):

1 = DFV

∫

~ωD

−~ωD

dε
tanh β

2

√

ε2 + ∆2(T, V )

2
√

ε2 + ∆2(T, V )
, (28)

with f(E) being the Fermi distribution.
In the T → 0 limit, we obtain the expression for the ground state fidelity F (|ga〉〈ga|, |gb〉〈gb|) = |〈ga|gb〉|. At zero

temperature, the chemical potential is equal to the Fermi energy εF , µ(T = 0) = εF . Further, the gap equation reduces
to ∆(V ) = ~ωD/(sinh 2

DF V ) ' 2~ωD exp(−2/DFV ), where DF is the density of states around the Fermi level. The

zero temperature ground state fidelity is F (|ga〉〈ga|, |gb〉〈ga|) =
∏

k
1√
2

(

1 + (εk−εF )2+∆(Va)∆(Vb)√
(εk−εF )2+∆(Va)2

√
(εk−εF )2+∆(Vb)2

)1/2

,

which matches the expression one obtains for T = 0. In other words, we see that, as in the case of the Stoner-
Hubbard model, the point of criticality of the T = 0 QPT can be inferred from the mixed state fidelity between the
thermal states. The phase transition from superconductor to normal metal happens at V = 0. Thus, for Va → 0+

and Vb = Va + δV → δV > 0, the fidelity between the corresponding ground states of Fermi sea |gF 〉 and the BCS

superconductor |gBCS〉 becomes: |〈gF |gBCS〉| =
∏

k
1√
2

(

1 + |εk−εF |√
(εk−εF )2+∆(δV )2

)1/2

. We see that the BCS model at

T = 0 features the Anderson orthogonality catastrophe, just as the Stoner-Hubbard model.
As in the previous case, in obtaining the numerical results for the fidelity, we used the subroutine hybrd.f from

MINPACK [22]. Again, all the numerical results are given in rescaled quantities T → kBT/(~ωD), V → DFV and
∆ → ∆/(~ωD). The result for the gap is given on Fig. 5. The line of the phase transition is clearly marked as the line
along which the gap becomes non-trivial, and is presented on Fig. 6. Finally, the fidelity, with δT = 0, δV = 10−3,
is plotted on Fig. 7. We varied the parameter differences δT and δV , and all the results obtained show the same
qualitative picture – the fidelity exhibits a sudden drop from F = 1 precisely along the line of the phase transition.

As already discussed, in the case of mutually commuting Hamiltonians, the fidelity reduces to the quantity

C(ρ̂a, ρ̂b) =
Z( ˆ̄H)

√

Z( ˆ̄H + ∆Ĥ
2 )Z( ˆ̄H − ∆Ĥ

2 )
(29)

which, through relation (18), establishes the connection between the singular behavior of the fidelity and the corre-
sponding susceptibility (or the heat capacity, etc.). In the non-commuting case, the same relation between C(ρ̂a, ρ̂b)
and χ is still valid (see Appendix 4), yet the fidelity is in general not identically equal to C.

If we approach a line of the phase transition along a curve q = q(α), α ∈ R, we find: F = C(1 + Fdα2), where
dα defines the difference δq. For reasons of simplicity, we omit here the explicit, lengthy expression for F . Although
relatively complicated and difficult to study directly, it is evident that, apart from the Hamiltonian’s eigenvalues, it
is also explicitly given by the rate of change, with respect to α, of the Hamiltonian’s eigenbasis. This is also evident
from the fact that for the case of mutually commuting Hamiltonians, when the eigenbasis is common, C ≡ F and
thus F ≡ 0. In the commuting case, the change of state is given by the change of the Hamiltonian’s eigenvalues
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FIG. 5: (color online) The gap ∆ = ∆(T, V ) as a function of the temperature T and the coupling constant V . The plot is given
in rescaled quantities T → kBT/(~ωD), V → DF V and ∆ → ∆/(~ωD).
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FIG. 6: (color online) The critical line Vc = Vc(T ) as a function of the temperature T . The plot is given in rescaled quantities
T → kBT/(~ωD) and V → DF V .

only, while in the non-commuting case, the overall change of state is given by the change of both the eigenvalues
and the eigenvectors. Thus, the singularity of F can on its own mark the drastic change in the structure of the
system’s eigenbasis, thus bringing about the finite difference between C and F . This is indeed the case for BCS
superconductors, where the difference C − F becomes non-trivial precisely along the line of the phase transition,
where C < F , see Fig. 8. We see that, as intuitively expected, the state of a system exhibits an abrupt change in its
structure along the line of the phase transition both in terms of its eigenvalues, as well as in terms of its eigenstates
(for the structural analysis of the system’s eigenstates given by a parametrized Hamiltonian Ĥ(q), see for example
[23] and [24]).

Another way to quantify the structural change of the eigenvectors is through the Uhlmann connection and the
corresponding mixed-state geometric phase [19], the mixed-state generalization of the Berry connection and phase.

The fidelity F (ρ̂a, ρ̂b) = Tr
√√

ρ̂aρ̂b

√
ρ̂a can also be expressed as F (ρ̂a, ρ̂b) = Tr

[

|
√
ρ̂a

√
ρ̂b|
]

, where |Â| = (ÂÂ†)1/2

represents the modulus of the operator Â (see [25]). The Uhlmann parallel transport condition (i.e. the connection)

is given by the unitary operator Ûab, such that F (ρ̂a, ρ̂b) = Tr
[√

ρ̂a

√
ρ̂bÛab

]

(see equation (9) from [25]). In other

words, the connection operator defining the parallel transport is the inverse of the unitary V̂ab, given by the polar
decomposition [1]

√
ρ̂a

√
ρ̂b = |

√
ρ̂a

√
ρ̂b|V̂ab, i.e. Ûab = V̂ †

ab. Note that the parallel transport condition (the connection),

given by Ûab, induces both the local Uhlmann curvature two-form, as well as the global mixed-state geometric phase
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FIG. 7: (color online) The fidelity F = F (T, V ) as a function of the temperature T and the coupling constant V . The plot is
given in rescaled quantities T → kBT/(~ωD) and V → DF V , with δT = 0, δV = 10−3.
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FIG. 8: (color online) The difference C(T, V )− F (T, V ) as a function of the temperature T and the coupling constant V . The
plot is given in rescaled quantities T → kBT/(~ωD) and V → DF V , with δT = 0, δV = 10−3.

(see equations (11) and (12) from [25]). Let us define

H(ρ̂a, ρ̂b) = Tr
[

√

ρ̂a

√

ρ̂b

]

. (30)

Obviously, in the case of mutually commuting Hamiltonians H = F (= C) and the Uhlmann connection is trivial,
Ûab = Î. In the case of the BCS model, we have evaluated the quantity H − F , and the result is qualitatively
the same as for C − F . In other words, along the line of the phase transition we have found the strict inequality

H −F = Tr
[

|
√
ρ̂a

√
ρ̂b|(Ûab − Î)

]

< const < 0. From the Cauchy-Schwarz inequality it follows then that Ûab − Î 6= 0,

or Ûab 6= Î – a clearly abrupt change of the connection operator Ûab occours and it becomes non-trivial in the vicinity
of the line of the phase transition. Since the two parameter points qa and qb are taken to be close to each other, such a
behavior implies the non-analyticity of the local Uhlmann curvature form along the line of the phase transition, which
in turn results in generally non-trivial global Uhlmann mixed-state geometric phase (see for example the discussions in
[13] and [14]). This can be seen as a mixed thermal state generalization of recent results [15] on the relation between
QPTs and Berry geometric phases. Further, we have that along the line of the phase transition we have C < H < F ,
while C ' H ' F ' 1 otherwise.
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CONCLUSION

In this paper we analyzed the fidelity approach to both zero temperature (quantum) as well as finite temperature
phase transitions. It is based on the notion of quantum state distinguishability, applied to the case of macroscopic
many-body systems whose states determine the global order of the system and its phase. We focused on the two
particular cases of the Stoner-Hubbard model for itinerant electron magnetism and the BCS theory of superconduc-
tivity, as representatives of two distinct classes of physical systems: those defined by a set of mutually commuting
Hamiltonians and those defined by mutually non-commuting Hamiltonians, with respect to a given parameter space.
We found that in both cases the fidelity can mark the regions of PTs by its sudden drop in the vicinity of the transition
line. We discussed in detail the general case of mutually commuting Hamiltonians, where in the case of symmetry-
breaking LGW type of transitions the non-analyticity of fidelity is a direct consequence of the non-analyticity of the
corresponding “generalized” susceptibility. The case of mutually non-commuting Hamiltonians is more complex as
there the structure of the Hamiltonian’s eigenvectors directly affects the system’s thermal state thus introducing a
novel feature relevant for the macroscopic phase distinguishability. On the example of the BCS superconductivity we
showed that the phase transition is accompanied by the abrupt change of the Hamiltonian’s eigenvectors, quantified
by the differences C−F and H−F . The second one is of particular interest as it determines the Uhlmann connection
and the associated mixed-state geometric phase, which generically becomes non-trivial in the vicinity of the phase
transition only – a mixed state generalization of the emergence of non-trivial Berry geometric phase in the vicinity of
criticality for QPTs.

There are two main extensions of this work. First, the study of more general phase transitions that fall outside the
standard symmetry-breaking LGW paradigm. Second, the general study of the structural analysis of the system’s
eigenstates in the case of mutually non-commuting Hamiltonians, given within the framework of the mixed state
fidelity and the Uhlmann geometric phase.
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APPENDIX 1

In this Appendix we prove various technical statements relevant for the analysis of the ground state fidelity in the
Stoner-Hubbard model.

• Proving the relation εF = ε̃kF↑
= ε̃kF↓

:

Using Nσ =
∫ Nσ

0
dNσ, the ground state energy can be written as:

Eg =

∫ N↑

0

Ek↑dN↑ +

∫ N↓

0

Ek↓dN↓ − U
N↑N↓
V

=

∫ N↑

0

εkdN↑ +

∫ N↓

0

εkdN↓ + U
N↑N↓
V

. (31)

Since it is the local minima, for given N = N↑ +N↓ we have that:

∂(Eg − µN)

∂N↑
= εkF ↑ − µ+ U

N↓
V

= 0,

∂(Eg − µN)

∂N↓
= εkF ↓ − µ+ U

N↑
V

= 0, (32)

and we immediately get EkF↑
= εkF ↑ + Un↓ = εkF ↓ + Un↑ = EkF↓

= εF , with µ = εF , for T = 0.

• Deriving Uc from Stoner criterion:

The density of states is defined as D(ε) = 1
V

dNσ

dε in the paramagnetic phase, where ε is the one-particle energy
and Nσ(ε) is the number of states for each spin direction whose energy is smaller or equal than ε. For each
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spin projection, we have Nσ/V = k3
F /(6π

2), while from ε(k) = ~
2

2mk
2 we have that k = (2m

~2 ε)
1/2. Thus,

Nσ(ε)
V = 1

6π2 ( 2m
~2 ε)

3/2 and:

D(ε) =
1

V

dNσ(ε)

dε
=

3

2

1

6π2

(

2m

~2

)3/2 √
ε =

3

2ε

Nσ

V
=

3

4ε

N

V
. (33)

The difference between the up and down single particle energies Ek↑ and Ek↓ defines the self consistent magnetic

field ∆ = 2U M(∆)
V . The phase transition occurs when ∆ becomes non-zero, leading to the equation 1 =

2Uc

V
∂M
∂∆ |∆=0, which also gives the vanishing of the susceptibility denominator in the random phase approximation

(Stoner enhancement factor) [20]. One has then UcDF = 1, and therefore we find Uc = 1
DF

= 4
3εF

V
N .

• Deriving Uc from (9) and (10):

Using x = kF↑, y = kF↓, equation (9) can be rewritten as f(x, y) ≡ x3 + y3 − a = 0, with a = 6π2 N
V ≡ 2k3

F .
Also, the quadratic term from equation (10) that is for U > Uc responsible for non-trivial magnetic solutions

reads as g(x, y;U) ≡ (x+ y) − U
α (x2 + xy + y2) = 0, with α = 3π2 ~

2

m ≡ 3
2kFUc.

First, we show that for U > Uc (see equation (8)), curves f and g have intersection in two points, symmetric
with respect to the y = x line, while for U = Uc they touch precisely in the point (x, y) = (kF , kF ). In the
coordinate system (x̄, ȳ), rotated by the angle ϕ = π/4 and translated by the vector (A,0) from the system
(x,y), the curve g(x̄, ȳ;U) = 0 becomes [34]:

x̄2

A2
+
ȳ2

B2
= 1, (34)

with A =
√

2
3

kF

U and B =
√

2
3

kF

U – a real ellipse with the main axes A = A(U) and B = B(U). As the

parameter U increases from 0 (when A,B → ∞), the main axes A and B decrease and eventually the ellipse
g touches the curve f in the point (x̄, ȳ) = (2A, 0), which in the original coordinate system correspond to the
point (x, y) = (kF , kF ). In other words, 2A =

√
2kF and U = Uc. Further increase of U beyond Uc results in

even smaller ellipses that intersect the curve f in two symmetric points (note that the curve f is itself symmetric
along the y = x line).

To show that for U > Uc the “balanced” solutions of (9) and (10) are indeed the physical ones, we calculate the
total ground state energy Eg of the system:

Eg = V

∫ EF↑

E0↑

ε̃k↑D(Ek↑)dEk↑ + V

∫ EF↓

E0↓

Ek↓D(Ek↓)dEk↓ − V Un↑n↓. (35)

Upon evaluating the above integrals, using M = (N↑ −N↓)/2, the total ground state energy reads:

Eg =
V

20π2

~
2

m

(

3π2N

V

)5/3
[

(

1 +
2M

N

)5/3

+

(

1 − 2M

N

)5/3
]

+
UN2

4V

[

1 −
(

2M

N

)2
]

. (36)

From the above expression, we see that for every value of the coupling constant U ,
∂Eg

∂M (U,M = 0) = 0, while
∂2Eg

∂M2 (U,M = 0) changes the sign from positive to negative precisely in U = Uc. Thus, we indeed have that for
U > Uc the “balanced” magnetic solutions with M 6= 0 have lower energy.

• Deriving the maximum fidelity, i.e. the maximum derivative dkF /dU for U = Uc, from (9) and
(10):

From df = 0 and dg = 0, we get (∂f
∂x = fx, dx

dU = ẋ, etc.):

fxẋ+ fy ẏ = 0,

gxẋ+ gy ẏ = −gu. (37)

Solving it for ẋ and ẏ, we obtain:
[

ẋ
ẏ

]

=
gu

fxgy − fygx

[

fy

−fx

]

. (38)
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Finally:

[

ẋ
ẏ

]

=
3

4

kf

DFV 2

x+ y

x− y

1

xy

[

y2

−x2

]

. (39)

Thus, in the limit U → Uc+ (note that g(x, y;U) = 0 is valid for U ≥ Uc), we have that x→ kF+, y → kF− and

ẋ→ +∞, ẏ → −∞ (or vice versa, for the x < y solution branch). In other words,
dV (kF↓)

dU = 4π(kF↓)2
d(kF↓)

dU =

4πx2ẋ→ +∞ and
dV (kF↑)

dU → −∞, or vice versa.

APPENDIX 2

Below, the basic identities of the su(2) algebra of the electron spin operators leading to equation (15) are proven.
We discuss operators having a fixed momentum and drop the index k for convenience.

• ~̂S-algebra identities:

In general, operators defined by Ŝa = ĉ†αS
a
αβ ĉβ , where ĉ†α and ĉβ are either bosonic or fermionic operators and

Sa
αβ is a matrix representation of a spin S algebra, i.e. satisfying [Sa, Sb]αβ = iεabcSc

αβ , define a su(2) algebra.

This is the case of the electron spin operators defined by ~̂S = Ψ̂† ~σ
2 Ψ̂, where Ψ̂† = [ĉ†↑ ĉ

†
↓] and ~σ is the vector of

Pauli matrices, and given by Ŝz = 1
2 (n̂↑ − n̂↓), Ŝ+ = ĉ†↑ĉ↓ and Ŝ− = ĉ†↓ĉ↑ (with Ŝ± = Ŝx ± iŜy).

Using the anti-commutation relations for the one-electron modes ĉ†σ, one can easily obtain the following com-
mutation and anti-commutation identities:

[Ŝz, Ŝ±] = ±Ŝ±, [Ŝ+, Ŝ−] = 2Ŝz, (40)

{Ŝz, Ŝ±} = 0, {Ŝ+, Ŝ−} = Îs.

with Îs ≡ n̂↑ + n̂↓ − 2n̂↑n̂↓ = (2 − n̂)n̂, n̂ = n̂↑ + n̂↓, the projector onto the subspace of the single-occupied

states, being an identity operator for this algebra, since Î2
s = Îs, Îs ~̂S = ~̂SÎs = ~̂S and ( ~̂S)2 = 3

4 Îs. One of the

immediate consequences of the above commutation relations is that {Ŝx, Ŝy, Ŝz} form a su(2) algebra.

Further, we can obtain the traces: Tr[Î] = 4, Tr[Îs] = 2 and Tr[ ~̂S] = ~0.

• Evaluating e
~h~̂S and Tr[e

~h~̂S ]:

e
~h~̂S =

+∞
∑

n=0

1

n!
(~h~̂S)n = Î +

+∞
∑

n=1

1

n!
(~h~̂S)n. (41)

For (~h~̂S)2, we have:

(~h~̂S)2 = [
1

2
(h+Ŝ− + h−Ŝ+) + hzŜ

z]2 (42)

=
1

4
(h+)2(Ŝ−)2 +

1

4
(h−)2(Ŝ+)2 + h2

z(Ŝ
z)2 +

1

4
(h+h−){Ŝ−, Ŝ+} +

1

2
(hzh

+){Ŝz, Ŝ−} +
1

2
(hzh

−){Ŝz, Ŝ+}.

Using the ~̂S-algebra identities (40), we get:

(~h~̂S)2 =
1

4
(hz)

2Îs +
1

4
(h+h−)Îs =

1

4
|h|2Îs, (43)

where [35] |h|2 = (hz)
2 + h+h− ≡ h2. Thus, we obtain:

e
~h~̂S = Î +

+∞
∑

n=1

1

(2n)!

(

h

2

)2n

Îs +

+∞
∑

n=0

1

(2n+ 1)!

(

h

2

)2n

(~h~̂S)
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= (Î − Îs) +

[

+∞
∑

n=0

1

(2n)!

(

h

2

)2n
]

Îs +

[

+∞
∑

n=0

1

(2n+ 1)!

(

h

2

)2n+1
]

2

h
(~h~̂S),

e
~h~̂S = (Î−Îs) + cosh

(

h

2

)

Îs + 2 sinh

(

h

2

)

(~h~̂S)

h
. (44)

Using the trace formulas, we finally obtain:

Tr[e
~h~̂S ] = 2

(

1 + cosh
h

2

)

. (45)

• Evaluating eαn̂ and Tr[eαn̂]:

Enlarging the su(2) algebra of the ~̂S operators to the operator n̂ = n̂↑ + n̂↓ it is useful to know its algebraic
properties and their relation to the other operators. We first evaluate n̂k. Since n̂2

σ = n̂σ and n̂2 = (n̂↑ + n̂↓)2 =
n̂+2n̂↑n̂↓ we find that n̂3 = −2n̂+3n̂2 and in general n̂k = −akn̂+bkn̂

2, where ak and bk satisfy the recurrence
equations ak+1 = 2bk and bk+1 = 3bk − ak, leading to: n̂k = −(2k−1 − 2)n̂+ (2k−1 − 1)n̂2. The exponential eαn̂

is given by:

eαn̂ = Î −
(

e2α

2
− 2eα +

3

2

)

n̂+

(

e2α

2
− eα +

1

2

)

n̂2 = Î + un̂+ vn̂2, (46)

which can be easily verified since n̂ = n̂↑ + n̂↓ can only take the values n = 0, 1, 2.

Using the obvious trace relations Tr[n̂] = 4 and Tr[n̂2] = 6, we also get Tr[eαn̂] = 4 + 4u+ 6v, or:

Tr[eαn̂] = (eα + 1)2. (47)

The number operator commutes with the ~̂S operators, and one has n̂Îs = Îsn̂ = Îs and n̂ ~̂S = ~̂Sn̂ = ~̂S. Finally, one
obtains:

Tr

[

e(αn̂+~h~̂S)

]

=
(

1 + eα+ h
2

)(

1 + eα−h
2

)

= 2 eα

(

coshα+ cosh
h

2

)

. (48)

APPENDIX 3

In the following, we obtain the basic formulas for the su(2) algebra of the Nambu operators ~̂T used in evaluating
equation (26) for the fidelity between two states of a BCS superconductor in thermodynamical equilibrium.

• ~̂T -algebra identities:

We now consider the operators defined by ~̂T = ψ̂† ~σ
2 ψ̂, where ψ̂† = [ĉ†↑ ĉ↓] and ~σ is the vector of Pauli matrices,

and given by T̂ z = 1
2 (n̂↑ + n̂↓ − 1), T̂+ = ĉ†↑ĉ

†
↓ and T̂− = ĉ↓ĉ↑ (with T̂± = T̂ x ± iT̂ y). These operators T̂ a are of

the form considered before, since the fermion anti-commutation relations are invariant under the electron-hole

transformation, i.e. under the interchange ĉ ↔ ĉ†. Similarly to the previous case of the ~̂S-algebra, we obtain
the commutation and anti-commutation relations:

[T̂ 0, T̂±] = ±T̂±, [T̂+, T̂−] = 2T̂ 0, (49)

{T̂ 0, T̂±} = 0, {T̂+, T̂−} = Ît.

with Ît ≡ 2n̂↑n̂↓ − (n̂↑ + n̂↓) + 1 = (n− 1)2, the projector onto the subspace of the empty and doubly occupied

states, being an identity operator for this algebra, since Î2
t = Ît, Ît ~̂T = ~̂T Ît = ~̂T and ( ~̂T )2 = 3

4 Ît. One of the

immediate consequences of the above commutation relations is that {T̂ 0, T̂+, T̂−} form a su(2) algebra. Further,
simple algebra gives:

Tr[ ~̂T ] = 0, Tr[Ît] = 2. (50)
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Note that in the above definition of ψ̂†, the operators ĉ†↑ and ĉ↓ have the opposite momenta, k and −k, respec-

tively. Had the momenta been defined to be the same, the two sets of operators ~̂S and ~̂T would commute with
each other, i.e. [Ŝa, T̂ b] = 0. Also, one would have Îs + Ît = Î.

• Evaluating e~a
~̂T and Tr[e~a

~̂T ]:

e~a
~̂T =

+∞
∑

n=0

1

n!
(~a ~̂T )n = Î +

+∞
∑

n=1

1

n!
(~a ~̂T )n. (51)

Similarly to the previous case, for (~a ~̂T )2, we have:

(~a ~̂T )2 = [azT̂
0 +

1

2
(a+T̂− + a−T̂+)]2 =

1

4
|a|2Ît, (52)

where |a|2 = (az)
2 + a+a− ≡ a2. Thus, we obtain (Ẑt = Î − Ît):

e~a
~̂T = Î +

+∞
∑

n=1

1

(2n)!

(a

2

)2n

Ît +

+∞
∑

n=0

1

(2n+ 1)!

(a

2

)2n

(~a ~̂T )

= (Î−Ît) +

[

+∞
∑

n=0

1

(2n)!

(a

2

)2n
]

Ît +

[

+∞
∑

n=0

1

(2n+ 1)!

(a

2

)2n+1
]

2

a
(~a ~̂T ),

e~a
~̂T = Ẑt + cosh

(a

2

)

Ît + 2 sinh
(a

2

) (~a ~̂T )

a
. (53)

Using the trace formulas (50), we finally obtain:

Tr[e~a
~̂T ] = 2

(

1 + cosh
a

2

)

. (54)

• Evaluating e2~c ~̂T = e
~a
2

~̂T e
~b ~̂T e

~a
2

~̂T and Tr[e~c
~̂T ]:

From the above formula (54) and the known trigonometric relation (cosh α
2 )2 = 1

2 (1 + coshα), we have that

Tr[e~c
~̂T ] = 2

(

1 + cosh c
2

)

= 2
(

1 +
√

1
2 (1 + cosh c)

)

. Thus, by evaluating e2~c ~̂T we obtain the result for cosh c

and therefore Tr[e~c
~̂T ]. First, we obtain the general expression for e~a

~̂T e
~b ~̂T . Using the result (53) for e~a

~̂T (and

analogously for e
~b ~̂T ), we get:

e~a
~̂T e

~b ~̂T=Ẑt+

(

cosh
a

2
cosh

b

2

)

Ît+2

[

(

cosh
a

2
sinh

b

2

) ~b

b
+

(

sinh
a

2
cosh

b

2

~a

a

)

]

~̂T+4

(

sinh
a

2
sinh

b

2

)

~a ~̂T

a

~b ~̂T

b
. (55)

In deriving the above expression, we have used the above identities (50). As in (52), using (49) we obtain:

(~a ~̂T )(~b ~̂T ) =
1

4

[

(~a~b)Ît + 2i(~a×~b) ~̂T
]

. (56)

Therefore, we have:

e~a
~̂T e

~b ~̂T = Ẑt +

[

(

cosh
a

2
cosh

b

2

)

+

(

sinh
a

2
sinh

b

2

)

(~a~b)

ab

]

Ît (57)

+ 2

[

(

sinh
a

2
cosh

b

2

)

~a

a
+

(

cosh
a

2
sinh

b

2

) ~b

b
+ i

(~a×~b)
ab

]

~̂T .
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Applying the above result twice, we finally obtain the expression for e2~c ~̂T :

e2~c ~̂T = e
~a
2

~̂T e
~b ~̂T e

~a
2

~̂T = Ẑt +

[

(

cosh
a

2
cosh

b

2

)

+

(

sinh
a

2
sinh

b

2

)

(~a~b)

ab

]

Ît (58)

+

[

(

sinh
a

2
cosh

b

2

)

~a

a
+ 2

(

sinh
b

2

)2 ~b

b
+
(

cosh
a

2
− 1
)

(

sinh
b

2

)

(~a~b)~a

a2b

]

~̂T .

Comparing the above result with the expression (53), we eventually end up with the expression for cosh c:

cosh c =

(

cosh
a

2
cosh

b

2

)

+

(

sinh
a

2
sinh

b

2

)

(~a~b)

ab
(59)

which reduces to (27) for particular values of ~ak =
~̃
hk(qa) and ~bk =

~̃
hk(qb).

APPENDIX 4

In this Appendix we prove that in the case of mutually non-commuting Hamiltonians a relation analogous to (18)
holds between C, given by equation (29), and the susceptibility χ. As in the commuting case, for simplicity, we
consider a Hamiltonian Ĥ = Ĥ0 − hŜ with the symmetry-breaking term Ŝ, and h = h(q). Note that in this case, the
two terms in the Hamiltonian do not commute with each other, [Ĥ0, Ŝ] 6= 0. Thus, we have the following imaginary
time Dyson expansion around the point h = 0 [36]:

e−β(Ĥ0−hŜ) '
{

e−βĤ0 + h

∫ β

0

dτe−βĤ0 Ŝ(τ) + h2

∫ β

0

dτ

∫ τ

0

dτ1e
−βĤ0 Ŝ(τ)Ŝ(τ1)

}

, (60)

with Ŝ(τ) = eτĤ0 Ŝe−τĤ0 . From the above equation, we obtain the expressions for the magnetization M = 〈Ŝ〉 and
the susceptibility χ = ∂M

∂h given by derivatives of the partition function Z. First, the magnetization can be expressed

as (using the commutativity between the partial derivative and the trace, ∂
∂hTr[·] = Tr ∂

∂h [·]):

M =
1

β

∂ lnZ

∂h
=

1

β

1

Z

∂Z

∂h
=

1

β

1

Z

∂

∂h
Tr[e−βĤ ] =

1

β

1

Z

∫ β

0

dτTr[e−βĤ0eτĤ0 Ŝe−τĤ0 ] =
1

β

∫ β

0

dτTr[
e−βĤ0

Z
Ŝ] = 〈Ŝ〉. (61)

The susceptibility is then:

χ =
∂M

∂h
=

∂

∂h

(

1

β

1

Z

∂Z

∂h

)

=
1

β

1

Z

∂2Z

∂h2
− 1

β

1

Z2

(

∂Z

∂h

)2

. (62)

The second term is obviously equal to βM2 = β〈Ŝ〉2, while the first term can be transformed as follows [37]:

1

β

1

Z

(

∂2Z

∂h2

)

0

=
1

β

1

Z

(

∂

∂h

∫ β

0

dτTr[e−βĤ Ŝ]

)

0

=
1

Z
Tr[

(

∂e−βĤ

∂h

)

0

Ŝ] =
1

Z

∫ β

0

dτTr[e−βĤ0 Ŝ(τ)Ŝ] =

∫ β

0

dτ〈Ŝ(τ)Ŝ〉. (63)

Thus, the susceptibility is given by χ =
∫ β

0
dτ [〈Ŝ(τ)Ŝ〉 − 〈Ŝ〉2]. From this, the Taylor expansion for Z,

Z ' Z0

{

1 + βMh+
1

2
β2M2h2 +

1

2
βχh2

}

, (64)

is identical to the one obtained for the case of mutually commuting Hamiltonians, and therefore a relation analog to
equation (18) holds between C and the susceptibility χ.
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