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Abstract

Using quantum networks to distribute symmetric keys has become
a usable and commercial technology available under limitations that are
acceptable in many application scenarios. The fact that the security is im-
plemented directly at the hardware level, and moreover, relies on the laws
of physics instead of conjectured hardness assumptions, justifies the use of
quantum security in many cases. Limitations include 100 km communica-
tion range and installation of quantum channels between each pair of users
of the network. Presently, with the current lack of trust in commercial
security solutions, mostly due to the Snowden crisis, there is the need to
improve such solutions. In this paper we discuss how quantum networks
can be used to setup secure multiparty computation (SMC), allowing for
instance for private data mining, electronic elections among other secu-
rity functionalities. SMC relies mostly on establishing an efficient oblivi-
ous transfer protocol. We present a bit-string quantum oblivious transfer
protocol based on single-qubit rotations that can be implemented with
current technology based on optics and whose security relies only on the
laws of physics.

1 Introduction

Security is the most important factor for building trust and confidence between
consumers/population and companies/State; this trust has been severely dam-
aged with many recent events such as the “Snowden crisis” and the Open SSL
critical bug, and as such, private companies and state providers are pressured to
improve the security of their products. In this paper we discuss how quantum
security protocols can be integrated in a classical setting to provide multiparty-
secure computation.

Two seminal works have driven most of the research in the area quantum
security: the quantum polynomial time factorization algorithm proposed by
Shor [7]; and the quantum public key agreement protocol BB84, proposed by
Bennett and Brassard [1]. While Shor’s algorithm raises the threat of making
widely used cryptographic systems (via classic communication channels) com-
pletely obsolete by a breakthrough in quantum hardware, the BB84 protocol
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shows that quantum communication channels allow public perfect security in
the context of an authenticated channel.

Due to Shor’s factoring algorithm, research on (asymmetric) cryptography
shifted significantly. Presently, one of the most important problems in the area is
to find one-way functions robust to quantum attacks. Indeed, Shor’s algorithm
is able to attack all cryptosystems based on factorization and discrete logarithm,
even in the elliptic curve setting, which accounts for essentially everything that
is used in practice and is based on asymmetric keys.

On the other hand, BB84 is already commercially available through peer-to-
peer optical networks. It is worth pointing out that quantum channels sending
an arbitrarily amount of quantum information can already be produced using
cheap technology. Moreover, much research is being done to develop quantum
networks and routers using traditional optical fibers and laser satellite commu-
nications. It is expected that quantum networks will be available much sooner
than quantum computers and thus, it is fundamental to understand which se-
curity and distributed protocols can benefit from quantum technology.

Secure multiparty computation is an abstraction of many security functional-
ities, including private data mining, e-voting, verifiable secret sharing, verifiable
computing, among others. In general terms, the goal of secure multiparty com-
putation among n parties is to compute a function of n secret inputs, one for
each party, such that at the end of the computation the output of the function
is known to all parties, while keeping the inputs secret.

It is well known that to setup secure multiparty computation it is enough
to establish oblivious transfer (OT) protocol between two-parties using Yao’s
garbled circuits [8] (see a more modern discussion in [3]). The first OT protocol
was presented by Rabin [6] and its security relies on the hardness assumption
that factoring large integers is difficult in polynomial time. OT can be seen as
a game played by two parties, Alice and Bob. Alice wants to share a number
of secret messages with Bob such that, on average, Bob receives half of those
messages (the protocol is concealing), while keeping Alice unaware to which
messages Bob got (the protocol is oblivious). A protocol achieving these prop-
erties is called an OT Protocol. An OT protocol is made out of two parts: the
transferring phase and the opening phase. In the former Alice sends the secret
message to Bob; in the latter Alice unveil enough information that allows Bob
to recover the secret with probability 1/2.

The main contribution of this paper is to propose an OT protocol that can
be implemented over quantum optical networks using currently available tech-
nology. Such OT protocol can then be used to establish a secure multiparty
computation using classical infrastructure. We introduce a quantum oblivi-
ous transfer protocol for bit-strings, based on the recently proposed public key
crypto-system in [5]. Each bit of the string to be transferred is encoded in a
qubit (quantum bit), a particular quantum state, in such a way that states cor-
responding to bit-values 0 and 1, respectively, form an orthonormal basis. The
key point of the protocol is that for each qubit, the encoding basis is chosen at
random, from some discrete set of bases.

Next section provides a brief survey of quantum information, including ba-
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sic definitions and important results necessary for understanding our proposal.
Section 3 describes our proposal for a bit-string oblivious transfer protocol and
discusses its correctness and security. Finally, we summarize the results and
discuss future directions of research.

2 Preliminaries

In this section, we provide notation, necessary definitions and results for defining
and reasoning about the security of our proposal.

For a complete study of quantum information we suggest the reading of [4].
Here we present some relevant notions. According to the postulates of quantum
mechanics, the state of a closed quantum system is represented by a unit vector
from a complex Hilbert space H, and its evolution is described by a unitary
transformation onH. In this paper we work only with finite-dimensional Hilbert
spaces reflecting the realistic examples of systems with finite number degrees of
freedom (strings of quantum bits, i.e. qubits).

Contrarily to the classical case where a bit can only have values 0 or 1, in
the quantum case, a qubit can be in a unit superposition of 0 or 1 denoted by
α |0〉 + β |1〉 with complex coefficients α and β such that |α|2 + |β|2 = 1. The
Dirac notation |0〉 and |1〉 denotes vectors forming an orthonormal basis of a
2-dimensional complex vector space. Note that we can define many orthonormal

bases for that space, such as
{

1√
2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉)

}
, but it is common to

distinguish the basis {|0〉 , |1〉} from all the others, and call it the computational
basis.

The state of two qubits is from the tensor product of single-qubit spaces,
that is,

|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉

with |α|2 + |β|2 + |γ|2 + |δ|2 = 1. The state |ψ〉 is said to be separable if

|ψ〉 = (α |0〉+β |1〉)⊗ (α′ |0〉+β′ |1〉) = αα′ |00〉+αβ′ |01〉+α′β |10〉+ββ′ |11〉 .

Otherwise, it is called entangled. Although entangled states are particularly
important in quantum information, in this paper we only work with separable
states. Note that a system with k qubits can be described by a unit vector over
a space with dimension 2k.

One of the most important results of quantum information states that the
maximal information that can be stored in a qubit is the same as that contained
in a bit. This means that we cannot extract more than a bit of information
from a qubit, although there is potentially an infinite number of states available
to encode in a qubit. The reason for this is that it is impossible to obtain
coefficients α and β from a single qubit in a state |ψ〉 = α |0〉+β |1〉. Indeed, what
is possible is to perform a measurement given by an orthogonal decomposition
of the Hilbert space H =

⊕d
i=1Hi, with Pi being the projectors onto Hi. Then,

upon performing such a measurement on a qubit in state |ψ〉 ∈ H, there are d
possible outcomes {1, . . . , d}, where the probability of observing i ∈ {1, . . . , d} is
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given by ‖Pi |ψ〉 ‖, and then the state evolves to Pi |ψ〉 /‖Pi |ψ〉 ‖. For instance,
the outcome of a measurement of a qubit can only take two possible values.

To understand the protocol we need to consider a function that is easy
to compute, but, without the help of a secret trapdoor, it is impossible to
invert with non-negligible probability according to the laws of quantum physics.
One candidate for such a function was proposed in [5] which uses sinlge-qubit
rotations and is given by

f(s) = R(sθn) |0〉 = cos (sθn/2) |0〉+ sin (sθn/2) |1〉

where, for some fixed n, s ∈ {0, . . . , 2n−1}, θn = π/2n−1 and {|0〉 , |1〉} is a fixed
computational basis (i.e., f is not a function of a quantum state). Moreover, f
can be used to construct a quantum trapdoor function F (s, b), where s is the
trapdoor information for learning an unknown bit b [5]:

F (s, b) = R(bπ)f(s) = R(bπ)R(sθn) |0〉 = R(sθn + bπ) |0〉 .

Note that inverting F (learning both s and b) is at least as hard as inverting f .
In [5] it was shown that every binary measurement that could be used to infer
unknown bit b would outcome a completely random value. Nevertheless, if s is
known, by applying the rotation R(−sθn) to F (s, b) and measuring the result
in the computational basis, one obtains b with certainty.

Using the properties of f and F a secure public key cryptographic protocol
was proposed in [5]: using the private key s, the public key is generated by
computing f(s); the encryption of a secret message corresponds to computing
F (s, b); and the decryption of the message corresponds to inversion of F (s, b),
using the trapdoor information s.

Finally, in order to guarantee that at the end of the OT protocol Bob knows
if he got the message m or not, Alice is required to send both m and h(m), where
h is a universal hash function. A hash function maps strings to other strings of
smaller size . Bellow, we present a definition of universal hash function and a
basic result.

Definition 2.1 Consider two sets A and B of size a and b, respectively, such
that a > b, and consider a collection H of hash functions h : A→ B. If

Pr
h∈H

[h(x) = h(y)] ≤ 1

b

then H is called a universal family of hash functions.

Theorem 2.1 Let H be a collection of hash functions h : A→ B, where A and
B are sets of size a and b, respectively, such that a > b. The size of a set Ax of
strings x ∈ A mapped to the same hash value h(x) is at most N/b.

In our particular case we consider A and B as the sets of strings of length ` and
`/2 respectively. Hence, there are 2`/2 different strings for each hash value (for
an overview see [2]).
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3 Oblivious Transfer

Having set the required definitions and results, our protocol works as follows:

Protocol 1 (Oblivious transfer)

Message to transfer m = m1 . . .mk;

Security parameter n, θn = π/2n−1 and a hash function h : {0, 1}k → {0, 1}k/2;

Secret key s = (s1, . . . , s3k/2), where each si ∈ {0, . . . , 2n − 1}.

Transfer phase:

1. Alice chooses uniformly at random a bit a ∈ {0, 1} and prepares the
following state:

|ψ〉 =

k⊗
i=1

R(miπ + (−1)a × siθn) |0〉
k/2⊗
i=1

R(hi(m)π + (−1)a × si+kθn) |0〉

(Note that hi(m) represents the ith bit of the binary string h(m)).

2. Alice sends the state |ψ〉 to Bob.

Opening phase:

3. Alice sends s = (s1, . . . , s3k/2) and n to Bob.

4. Bob checks if s is likely to be a possible output of a random process
by performing a statistical test.

5. Bob chooses uniformly at random a′ ∈ {0, 1} and applies R((−1)a
′
siθn)

to each qubit of |ψ〉.
6. Bob applies the measurement operatorM = (0×|0〉 〈0|+1×|1〉 〈1|)⊗3k/2.
7. Let m′ ·h′ be the message that Bob recovers. He checks if h′ = h(m′).

If that is the case then Bob is almost sure that m′ = m, otherwise he
knows that m′ is not the correct message.

In the following, we discuss the security of our oblivious transfer protocol,
showing that: if both agents are honest, Bob will obtain the message m with
probability 1/2 (the protocol is sound); if Alice plays fair, Bob is not able to
recover m before the opening phase (the protocol is concealing); if Bob is honest,
then Alice is unaware if Bob got m or not (the protocol is oblivious).

To state the results we need the notion of negligible function. ε : N→ R, a
nonnegative function is called negligible if for every polynomial p and sufficiently
large k we have ε(k) ≤ 1/p(k).

First, we provide the reasoning for the soundness of our protocol.
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Theorem 3.1 If both parties are honest, then with probability 1/2 + ε(k) Bob
will get the right message, where ε(k) is negligible function on the size of the
message m = m1 . . .mk.

Notice that if Alice and Bob are honest then the choice of rotation direction
of both will differ with probability 1/2. Only when they are different, i.e., Bob
undo Alice’s rotation and obtains the states in computational bases, Bob is
ensured to recover the message. When Bob rotates in the same direction of
Alice, the results of Bob’s measurement are random and hence the probability
of recovering m in this case is a negligible function on the size of the message
m.

We proceed by discussing the concealing property of the protocol.

Theorem 3.2 If Alice is honest, the probability of Bob recovering Alice’s mes-
sage before the opening phase is negligible. Furthermore, after the opening phase
Bob recovers the message, up to a negligible value, with probability 1/2.

The first part of the theorem follows directly from the security of the public
key encryption schemes presented in in [5]: without knowing the secret key s
and the rotation direction a, Bob’s description of a message m is given by a
completely mixed state. The second part follows from a similar argument to
the previous theorem.

To finish the security discussion we argue that the protocol is unconditionally
oblivious for practical attacks.

Theorem 3.3 The Protocol 1 is oblivious, i.e., at the end of the protocol Alice
does not know whether Bob received the right message of not.

During the execution of the protocol, there is no information traveling from
Bob to Alice. Therefore, in order to increase the probability of learning if Bob
received the message m or not, Alice has to perform the following cheating
strategy: instead of sending |ψ〉, Alice sends a cheating state |ψch〉 for which
Bob will open the desired message with a probability greater than 1/2 (possibly
with certainty). This is impossible, unless with negligible increase ε(l), bounded
above by 1

2

(
1 + cos2l(π/8)

)
, where l is the number of si’s for which siθn ∈

[π/8; 3π/8].1

4 Conclusions

In this paper we proposed a scheme for oblivious transfer of a bit-string message.
Its security is based on laws of quantum physics. We reasoned about its security
and showed that the protocol is unconditionally oblivious and concealing for
practical attacks. Our protocol can be implemented with today’s technology
using optical equipment. Moreover, the protocol can be integrated with existing

1Since the values of si’s are required to be random, the expected value of l is k/4, with

the standard deviation σ =
√
k/4.
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classical networks to achieve secure multiparty computation, and promote an
extra level of security on such functionality.

Using single-qubit rotations have been proved useful in designing quantum
security protocols, such as the presented oblivious transfer and the previously
proposed public key cryptographic scheme [5]. This opens a number of possible
future applications of single-qubit rotations in designing several secure protocols
such as quantum bit-string commitment protocol and undeniable signatures.
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