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Abstract

Several types of automata, such as probabilistic and quantum automata, require to

work with real and complex numbers. For such automata the acceptance of an input is

quantified with a probability. There are plenty of results in the literature addressing the

complexity of checking the equivalence of these automata, that is, checking whether two

automata accept all inputs with the same probability. On the other hand, the critical

problem of finding the minimal automata equivalent to a given one has been left open

(C. Moore, J.P. Crutchfield, Theoretical Computer Science 237 (2000) 275-306, p. 304,

Problem 5). In this work, we reduce the minimization problem of probabilistic and quan-

tum automata to finding a solution of a system of algebraic polynomial (in)equations. An

EXPSPACE upper bound on the complexity of the minimization problem is derived by

applying Renegar’s algorithm. More specifically, we show that the state minimization of

probabilistic automata, measure-once quantum automata, measure-many quantum au-

tomata, measure-once generalized quantum automata, and measure-many generalized

quantum automata is decidable and in EXPSPACE. Finally, we also solve an open prob-

lem concerning minimal covering of stochastic sequential machines (A. Paz, Introduction

to Probabilistic Automata, Academic Press, 1971, Page 43).
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1. Introduction

The seminal work by Tarski [22] opened a wide area of research on algorithms for algebraic

geometry. Indeed, when Tarski showed that the first-order theory of real ordered fields was

decidable (a somewhat opposite result to Godel’s incompleteness theorem for Peano’s arith-

metic), the decision algorithm that was proposed was very inefficient. Throughout the last

century several improvements were made [2] but, curiously, these results are fairly unknown,

except by the core researchers of the field. In this work, we show that these algorithms can

be used to solve several open problems concerning probabilistic and quantum automata.

Four decades ago, many computation models using probabilities flourished and are, pre-

sently, well accepted. Among the motivations for such models we can find fault modeling,

environment modeling, quantification of non-determinism, randomization as a computational

resource, and others. The literature on this topic is large (e.g. see [18]), and there is a full

spectrum of models for all tastes, for instance, probabilistic automata (a generalization of

finite state automata), stochastic sequential machines (a generalization of Mealy’s machines),

or probabilistic Turing machines (a generalization of Turing machines). Together with these

models several problems were opened concerning the expressivity and complexity of such

devices. Some of those questions remain open today, for instance determining whether there

exists a minimal covering of stochastic sequential machines (SSM) (see [18], Page 43).

The practical interest for minimizing stochastic automata decreased with the engineering

breakthrough that made memory very cheap. Presently, there is no interest in finding a

classical automaton that can be modeled with less than 100 bits or so, as it is easy and cheap

to produce devices with much more memory. However, quantum information emerged and

this scenario changed. Indeed, it is still far beyond the reach of today’s technology to make

quantum memory with 100 entangled qubits and so, it is important to understand what tasks

can be implemented using minimal quantum memory. Thus, minimizing quantum machines

is a relevant problem in practice since we might not be able to have arbitrary large quantum

memory in the near future.

One of the most appealing aspects for the introduction of quantum models is that we

expect them to surpass their classical counterparts in time efficiency. Naturally, the study of

theoretical models of computation complying with quantum mechanics has become an im-

portant research field. Quantum computers were first suggested by Benioff [3], and Feynman

[8] and then further formalized by Deutsch [7]. Their power has been successfully shown by

Shor’s quantum algorithm for factoring integers in polynomial time [21], and afterwards, by

Grover’s algorithm for searching in a database of size n with only O(
√
n) memory accesses [9].

As we know, these algorithms are based on quantum Turing machines which seem compli-

cated to implement using today’s technology. Therefore, after it has turned out that building

powerful quantum computers is still a long-term goal, it become clear that there is a need to
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study “small-size” quantum processors using variations of the models that have shown their

relevance in the classical cases [10], namely automata.

Quantum finite automata (QFA) were first studied by Moore and Crutchfield [16], Kondacs

and Watrous [12], Ambainis and Freivalds [1], Brodsky and Pippenger [5], and other authors.

The study of QFA is mainly divided into two areas: one is one-way quantum finite automata

(1QFA) whose tape head moves one cell only to right at each evolution step; and the other

is two-way quantum finite automata (2QFA), in which the tape head is allowed to move right

or left, or remain stationary. There are two types of 1QFA: measure-once 1QFA (MO-1QFA)

initiated by Moore and Crutchfield [16], and measure-many 1QFA (MM-1QFA) studied first

by Kondacs and Watrous [12]. In MO-1QFA, there is only a measurement for computing each

input string, performed after reading the last symbol; in contrast, in MM-1QFA, measurement

is performed after reading each symbol.

Further generalizations of MO-1QFA and MM-1QFA are measure-once one-way general

quantum finite automata (MO-1gQFA) and measure-many one-way general quantum finite

automata (MM-1gQFA) [15], respectively. These generalizations are obtained by replacing

pure states with mixed states and by replacing unitary operators with trace-preserving quan-

tum operations. More specifically, in a 1gQFA, each symbol in the input alphabet induces a

trace-preserving quantum operation, instead of a unitary transformation, and the states are

mixed states instead of pure states. In an MO-1gQFA, as in an MO-1QFA, a measurement

deciding to accept or reject is performed at the end of a computation, while in an MM-

1gQFA, a similar measurement is performed after each trace-preserving quantum operation

on reading each input symbol, as in an MM-1QFA.

The minimization of states for classical and probabilistic automata has been thoroughly

studied [11, 19, 18, 4]. However, for probabilistic automata, the chief results focus only on

reducing states or establishing sufficient and necessary conditions for an automaton to be

minimized (see a systematical introduction by Paz [18] and by Bukharaev [4]). For quantum

automata, the minimization problem has not been addressed yet. Here we recall an important

problem regarding the minimization of MO-1QFA proposed by Moore and Crutchfield ([16],

p. 304, Problem 5): Is each quantum regular language (QRL) recognized by a unique QFA

(up to isomorphism) with the minimal number of dimensions? Here QFA means MO-1QFA,

and the number of dimensions is the number of quantum basis states of QFA. Therefore, this

problem is essentially that of minimizing the number of states of MO-1QFA.

In this work, we address this problem for several types of probabilistic and quantum finite

automata and give an EXPSPACE algorithm to find a minimal automaton equivalent to a

given one. More specifically, we show that the state minimization of probabilistic automata,

MO-1QFA, MM-1QFA, MO-1gQFA, and MM-1gQFA, is decidable. Therefore, we solve the

minimization problem for all these cases. In addition, our method for minimizing probabilistic

automata is new and different from other approaches. Finally, we solve an open problem
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proposed by Paz (see [18], page 43), that according to Paz, and as far as the authors know,

is still open today. The problem consists of determining the decidability (and upper-bound

for the complexity) of the minimal covering of SSM.

The paper is organized as follows. In Section 2, we recall the basic notions and relevant

results that will be used in the sequel. There we also present the main idea of the minimization

procedure and depict the general algorithm for minimizing automata. In Section 3 we present

in detail the minimization of probabilistic automata. Subsequently, in Section 4 we address

the minimization of MO-1QFA. For the sake of completeness, in Section 5 we solve the

minimization of MM-1QFA and then, in Section 6, we solve the minimization of MO-1gQFA

and MM-1gQFA. Although the minimization method for these models is more or less similar

that of MO-1QFA, there are subtle differences and issues that deserve to be clarified. Finally,

in Section 7 we solve an open problem concerning the covering minimization of SSM proposed

by Paz [18]. To conclude, we summarize the main achievements in Section 8.

2. Preliminaries

In this section we introduce the basic notions and results concerning quantum information.

Then, we present the main idea for the minimization procedure, which is adapted to several

types of quantum and probabilistic finite automata throughout the rest of the paper.

2.1. Basic notions and relevant results

For a matrix or a linear operator A, we use A∗, A> and A† to denote its conjugate,

transpose, and conjugate transpose, respectively. Tr(A) denotes the trace of matrix (operator)

A. Generally, we use H to denote a finite-dimensional Hilbert space. Let L(H) denote the

set of all linear operators from H to itself. A mapping Φ : L(H) → L(H) is called a super-

operator on H.

A detailed overview of quantum information can be found in [17], and here we just present

some relevant notions. According to the postulates of quantum mechanics, the state of a

closed quantum system is represented by a unit vector |ψ〉 in a Hilbert space H, and the state

evolution of a closed quantum system is described by a unitary transformation on H. A more

general tool to describe the states of a quantum system is based on density operators. A

density operator ρ on Hilbert space H is a linear operator satisfying the following conditions:

(1) (Trace condition) ρ has trace equal to 1, that is, Tr(ρ) = 1;

(2) (Positivity condition) ρ ≥ 0, that is, for any |ψ〉 ∈ H, 〈ψ|ρ|ψ〉 ≥ 0.

We denote the set of all density operators on Hilbert space H by D(H).
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In practice, absolutely closed systems do not exist, because every system interacts with

its environment, and thus is open. In this case the state evolution of an open quantum system

is characterized by a quantum operation [17]. A quantum operation, denoted by E , has an

operator-sum representation given by

E(ρ) =
∑
k

EkρE
†
k, (1)

where ρ is a density operator on the input spaceHin, E(ρ) is a completely positive operator on

the output space Hout, and the set of {Ek}, known as operation elements, are linear operators

from Hin to Hout. Furthermore, E is said to be trace-preserving if the following holds:∑
k

E†kEk = I, (2)

where I is the identity operator onHin. Any physically allowed operation is a trace-preserving

quantum operation (also called a completely positive trace-preserving mapping).

In the following, we introduce a useful linear mapping vec which maps a matrix A ∈ Cn×n

to an n2-dimensional column vector, defined as follows:

vec(A)((i− 1)n+ j) = A(i, j). (3)

In other words, vec(A) is the vector obtained by taking the rows of A, transposing them to

form column vectors, and stacking those column vectors on top of one another to form a

single vector. For example, let

A =

(
a b

c d

)
, (4)

then we have that

vec(A) =


a

b

c

d

 . (5)

If we let |i〉 be an n-dimensional column vector where the i’th entry is 1 and all the others

are 0’s, then {|i〉〈j| : i, j = 1, · · · , n} form a basis of Cn×n. Therefore, the linear mapping

vec can also be defined as follows:

vec(|i〉〈j|) = |i〉|j〉. (6)

Let A,B,C be n × n matrices, and let u, v be n-dimensional column vectors. Then the

linear mapping vec satisfies the following properties [24, 26]:

vec(ACB) = (A⊗B>)vec(C), (7)

Tr(AB) = vec(A>)>vec(B), (8)

vec(uv†) = u⊗ v∗. (9)
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This minimization method is based, on one hand, on the decidability of the equivalence

of the considered automata and, on the other hand, on the decidability of the theory of real

ordered fields [2, 6, 20]. So, we further introduce the concepts and results concerning the

decidability of the theory of real ordered fields [2, 6, 20].

The decision problem for the existential theory of the reals [20] is the problem of deciding

if the set S = {x ∈ Rn : P(x)} is nonempty, where P(x) is a predicate defined as Boolean

function of atomic predicates either of the form fi(x) ≥ 0 or fj(x) > 0, f ′s being real

polynomials (with rational coefficients). For this decision problem it is important to know

three parameters: the number of atomic predicates m (i.e., the number of polynomials), the

number of variables n, and the highest degree d among all atomic predicates forming P(x).

Canny [6] developed a PSPACE algorithm in n,m, d for the above problem, but its time

complexity is very high. Later, Renegar [20] designed an asymptotically optimal algorithm

of time complexity (md)O(n). Furthermore, to find a sample of S requires τdO(n) space if all

coefficients of the atomic predicates use at most τ space (see [2], page 518). Here, to find a

sample of S means to discover a solution of P(x). We summarize these results in the following

theorem.

Theorem 1 ([2, 6, 20]). Let P(x) be a predicate which is a Boolean function of atomic

predicates either of the form fi(x) ≥ 0 or fj(x) > 0, with f ′s being real polynomials. There

is an algorithm to decide whether the set S = {x ∈ Rn : P(x)} is nonempty in PSPACE in

n,m, d, where n is the number of variables, m is the number of atomic predicates, and d is

the highest degree among all atomic predicates of P(x). Moreover, there is an algorithm of

time complexity (md)O(n) for this problem. To find a sample of S requires τdO(n) space if all

coefficients of the atomic predicates use at most τ space.

We will use the above theorem to deal with the state minimization of QFA. However,

since QFA are usually defined over the field of complex numbers, we need to transform a

problem over the field of complex numbers to one over real numbers. This transformations

will be based on the following observation.

Remark 2. Any complex number z = x + yi is determined by two reals x and y, and any

complex polynomial f(z) with z ∈ Cn can be equivalently written as f(z) = f1(x, y)+ if2(x, y)

where (x, y) ∈ R2n is the real representation of z, and f1 and f2 are real polynomials. Thus,

the set S′ defined over the field of complex numbers with n complex variables and m complex

polynomials can be equivalently described by S over the field of real numbers with 2n real

variables and 2m real polynomials.

6



2.2. The main idea of state minimization

In this work we show that the state minimization problem of various types of quantum

finite automata and probabilistic finite automata is decidable. As mentioned before, our

results are based on the decidability of the equivalence of these automata and, moreover, on

the decidability of the theory of real ordered fields [2, 6, 20]. Thus, we start by recalling

the equivalence problem of various types of QFA’s and probabilistic automata and then, we

present the main idea for minimizing such automata.

Roughly speaking, two automata over the same input alphabet are said to be equivalent

if they accept each input string with the same probability. For example, two probabilistic

automata A1 and A2 on input alphabet Σ are said to be equivalent if they have the same

accepting probability for each input x ∈ Σ∗. The equivalence problem of some type of

automata is to determine whether any two given automata of this type are equivalent or not.

So far, the equivalence problem has been proven to be decidable for probabilistic automata

[18, 23], MO-1QFA [5, 14], MM-1QFA [13], and one-way QFA with mixed states [15]. Indeed,

for each of these automata types, a certain bound on the word length has been derived such

that two automata are equivalent if and only if they have the same accepting probability for

all words with length less than this bound.

Based on the above results, in the subsequent sections we will prove in detail that the

state minimization problem of all the above types of automata is decidable. Although the

details are different for addressing different types of automata, they share the same essential

idea. The main idea can be briefly depicted as follows.

1. Firstly, for a given automaton A of some type (say probabilistic, quantum, etc.) with

n states, we define the set

S(n′)
A = {A′ : A′ has n′ states, is of the same type of A, and is equivalent to A}.

2. Next, we show that S(n′)
A can be described as the solution of a system of polynomial

equations and/or inequations. Then, by Theorem 1 there exists an algorithm to decide

whether S(n′)
A is nonempty or not, and furthermore, if it is nonempty, we can find a

sample of it.

3. Now, the minimization algorithm can be depicted in Figure 1.
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Input: an automaton A with n states

Output: a minimal automaton A′
, of the same type of A, and equivalent to A

Step 1:

For i = 1 to n− 1

If (S(i)A is not empty) Return A′ = sample S(i)A

Step 2:

Return A′ = A

Figure 1. The minimization algorithm

For each type of automaton we need to prove that S(n′)
A can be described as the solution

of a system of polynomial equations and/or inequations whose variables are the entries of the

initial state, transition matrices, and final states of an automaton with n′ states. Although

there are significant differences when defining the systems of (in)equations for each type of

automata, we stress that the definition of such systems shares the following characteristics:

a) The properties of the automata, such as “the initial vector is a probability distribution”,

“matrices are stochastic matrices”, can be expressed as a system of polynomial equa-

tions/inequalities whose variables are the entries of the initial state, transition matrices,

and final states.

b) The acceptance probability of a fixed automaton for a fixed input can be presented as

a polynomial, whose variables are the entries of the initial state, transition matrices,

and final states.

c) For each type of automaton to be handled, there is a bound on the word length such

that two automata are equivalent if and only if they have the same accepting probability

for all input words with length less than the known bound. In this way, the equivalence

between two automata can be represented by a finite set of polynomial equations.

In the subsequent sections, we will adopt the above method to address the minimization

problem of several types of automata, namely, probabilistic automata, MO-1QFA , MM-

1QFA, and one-way QFA with mixed states.

3. Minimization of probabilistic automata

Recall that a probabilistic automaton is a tuple A = (S,Σ, µ0, {Mσ}σ∈Σ, F ) where:

• S is a finite set of states;

• Σ is the input alphabet;
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• µ0 : S → R is called the initial probability distribution and is a stochastic vector over

S, that is,
∑

s∈S µ0(s) = 1 and µ0(s) ≥ 0 for all s ∈ S;

• Mσ is the transition induced by input symbol σ and is a square stochastic matrix of

dimension |S|;

• F ⊆ S is called the set of accepting states.

The above machine A accepts an input string σ1σ2 · · ·σk with probability

PA(σ1σ2 · · ·σk) =
∑
si∈F

(µ0Mσ1Mσ2 · · ·Mσk)si . (10)

Two probabilistic automata A1 and A2 over the same alphabet Σ are said to be equivalent

(resp. k-equivalent) if PA1(w) = PA2(w) for any w ∈ Σ∗ (resp. for any input string w with

|w| ≤ k). The following well-known result will be useful later on.

Theorem 3 ([18, 23, 13]). Two probabilistic automata A1 and A2 with n1 and n2 states,

respectively, are equivalent if and only if they are (n1 + n2 − 1)-equivalent. Furthermore,

there exists a polynomial-time algorithm running in time O((n1 + n2)4) that takes as input

two probabilistic automata A1 and A2 and determines whether A1 and A2 are equivalent.

Now we are in the position to deal with the problem of state minimization of probabilistic

automata. The following result is based on Theorems 1 and 3.

Theorem 4. The state minimization problem of probabilistic automata is in EXPSPACE.

Proof. Given a probabilistic automaton A = (S,Σ, µ0, {Mσ}σ∈Σ, F ), the goal is to find

another probabilistic automaton A′ = (S′,Σ, µ′0, {M ′σ}σ∈Σ, F
′) that is equivalent to A and

has the smallest number of states from all probabilistic automata equivalent to A. Now,

following the idea presented in Subsection 2.2. we present the proof as follows.

For the given probabilistic automaton A with |S| = n, define the set

S(n′)
A = {A′ : A′ is a probabilistic automaton equivalent to A with n′ states}. (11)

The minimization algorithm is now depicted in Figure 2 (which is a straightforward adapta-

tion of that presented in Figure 1).
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Input: a probabilistic automaton A with n states

Output: a minimal probabilistic automaton A′
equivalent to A

Step 1:

For n′ = 1 to n− 1

If (S(n
′)

A is not empty) Return A′ = sample S(n
′)

A

Step 2:

Return A′ = A

Figure 2. Algorithm for the minimization of probabilistic automata.

To analyse the algorithm, we will use Theorem 1 and show that both problems: to

decide whether S(n′)
A is nonempty, and to find a sample of S(n′)

A , are decidable/computable.

By Theorem 1, it is sufficient to show that S(n′)
A is the solution of a system of polynomial

equations and/or inequations.

Let A′ = (S′,Σ, µ′0, {M ′σ}σ∈Σ, F
′). Suppose µ′0 = (x1, x2, · · · , xn′). Since µ′0 is a proba-

bility distribution, it satisfies

n′∑
i=1

xi = 1 and xi ≥ 0 for i = 1, 2, · · · , n′. (12)

Therefore, “µ′0 is a probability distribution over n′ states” can be represented by n′ variables

with n′ + 1 polynomial equations/inequations.

For any σ ∈ Σ, M ′σ is an n′×n′ stochastic matrix. Suppose that M ′σ = [mij(σ)]. We have

n′∑
j=1

mij(σ) = 1 and mij(σ) ≥ 0 for i, j = 1, 2, · · · , n′. (13)

Thus “M ′σ is an n′ × n′ stochastic matrix” can be represented by n′2 variables with n′2 + n′

polynomial equations/inequations. Note that to present A′ we should describe M ′σ for every

σ ∈ Σ. Thus, the number of M ′σ’s is |Σ|.

The accepting state set F ′ can be characterized by an n′-dimensional column vector

η′ = (η1, η2, . . . , ηn′)
> with entries 0 or 1, where ηi = 1 means that the state si is an accepting

state, and ηi = 0 means that the state si is not an accepting state. Thus, the accepting set

F ′ can be represented by n′ variables with polynomial equations as

ηi = 1 or ηi = 0 for i = 1, 2, · · · , n′,

or, equivalently, as the following n′ polynomial equations

ηi(ηi − 1) = 0 for i = 1, 2, · · · , n′. (14)

10



Since A′ is equivalent to A, by Theorem 3 the following equation

PA′(x) = PA(x) (15)

holds for each x ∈ Σ∗ with |x| ≤ (n + n′ − 1). Equivalently, the accepting probability of A′

can be represented as

PA′(x) = µ0Mx1Mx2 · · ·Mx|x|η. (16)

It is clear that the expression in (16) is a polynomial of degree 2 + |x| whose variables are

the entries of µ′0, M ′σ, and F ′.

Thus, for each x ∈ Σ∗ with |x| ≤ (n+n′−1), Eq. (15) is a polynomial equation, since the

left side is a polynomial whose variables are the entries of µ′0, M ′σ, and F ′, and the right side

is a fixed value for the given A. Note that to describe the fact that A′ and A are equivalent,

the total number of polynomial equations like Eq. (15) needed is

P = 1 + |Σ|1 + |Σ|2 + · · ·+ |Σ|n+n′−1. (17)

The above statements and analysis can now be summarized as follows: for a given prob-

abilistic automaton A over an input alphabet Σ, any probabilistic automaton A′ ∈ S(n′)
A

that is equivalent to A can be represented by a vector x ∈ R|Σ|n′2+2n′ , satisfying the poly-

nomial equations/inequations Eqs. (12), (13), (14), (15). The total number of polynomial

equations/inequations needed is

M = (n′ + 1) + |Σ|(n′2 + n′) + n′ + P. (18)

The highest degree in these polynomials is

d = 2 + (n+ n′ − 1). (19)

Thus, by Theorem 1, for every n′ ≤ n there exists an algorithm to decide if S(n′)
A is nonempty

and the time cost is

(Md)O(|Σ|n′2+2n′) =
(
n3|Σ|+ n|Σ|n

)O(|Σ|n2)
. (20)

If we assume that |Σ| is a constant c, then the time complexity is 2O(n3). Furthermore, if

S(n′)
A is nonempty, there exists an algorithm to find a sample of S(n′)

A, in space

τdO(|Σ|n′2+2n′) = τnO(|Σ|n2). (21)

If we look |Σ| as a constant, then the space complexity is τ2O(n3).

Therefore, the procedures described in Figure 2 can be used to find a minimal probabilistic

automaton equivalent to a given probabilistic automaton.
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4. Minimization of measure-once quantum automata

An MO-1QFA is defined as a quintuple Q = (Q,Σ, |ψ0〉, {U(σ)}σ∈Σ, Qacc), where Q is a

set of finite states, |ψ0〉 is the initial state that is a superposition of the states in Q, Σ is a

finite input alphabet, U(σ) is a unitary matrix for each σ ∈ Σ, and Qacc ⊆ Q is the set of

accepting states.

As usual, we identify Q with an orthonormal base of a complex Euclidean space and every

state q ∈ Q is identified with a basis vector, denoted by Dirac symbol |q〉 (a column vector),

and 〈q| is the conjugate transpose of |q〉. We describe the computing process for any given

input string x = σ1σ2 · · ·σm ∈ Σ∗. At the beginning the machine Q is in the initial state |ψ0〉,
and upon reading σ1, the transformation U(σ1) acts on |ψ0〉. After that, U(σ1)|ψ0〉 becomes

the current state and the machine reads σ2. The process continues until the machine has

read σm ending in the state |ψx〉 = U(σm)U(σm−1) · · ·U(σ1)|ψ0〉. Finally, a measurement is

performed on |ψx〉 and the accepting probability PA(x) is equal to

PA(x) = 〈ψx|Pa|ψx〉 = ‖Pa|ψx〉‖2 (22)

where Pa =
∑

q∈Qacc
|q〉〈q| is the projection onto the subspace spanned by {|q〉 : q ∈ Qacc}.

For the equivalence problem of MO-1QFA the following result holds:

Theorem 5 ([15]). Two MO-1QFA A1 and A2 with n1 and n2 states, respectively, are

equivalent if and only if they are (n2
1 + n2

2 − 1)-equivalent.

Based on Theorems 1 and 5, we obtain the following result.

Theorem 6. The state minimization problem of MO-1QFA is in EXPSPACE.

Proof. Given an MO-1QFA A = (Q,Σ, |ψ0〉, {U(σ)}σ∈Σ, Qacc), the goal is to find another

MO-1QFA A′ = (Q′,Σ, |ψ′0〉, {U ′(σ)}σ∈Σ, Q
′
acc) that is equivalent to A and has the smallest

number of states from all MO-1QFA equivalent to A.

For the given MO-1QFA A with |Q| = n, define the set

S(n′)
A = {A′ : A′ is an MO-1QFA equivalent to A with n′ states}. (23)

The minimization algorithm is as depicted in Figure 1, except that the input and output are

MO-1QFA. Now, the key step is to prove that S(n′)
A can be represented by a set of polynomial

equations and/or inequations.

Let A′ = (Q′,Σ, {U ′(σ)}σ∈Σ, |ψ′0〉, Q′acc). Note that |ψ′0〉 = [x1, x2, · · · , xn′ ]> is a unit

vector in Cn′ . Then
n′∑
i=1

xix
∗
i = 1. (24)
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According to Remark 2, “|ψ′0〉 is a unit vector in Cn′” can be represented by two real poly-

nomial equations with 2n′ real variables.

For any σ ∈ Σ, U ′(σ) is an n′ × n′ unitary matrix. Suppose that U ′(σ) = [uij(σ)], and

therefore

[uij(σ)]× [uij(σ)]† = I. (25)

Thus, “U ′(σ) is an n′ × n′ unitary matrix” can be represented by 2n′2 real polynomial equa-

tions with 2n′2 real variables. Note that to present A′ we should describe U ′(σ) for every

σ ∈ Σ. Thus, the number of U ′(σ)’s is |Σ|.

The accepting state set Q′acc can be characterized by an n′-dimensional vector |ηacc〉 =

(η1, η2, . . . , ηn′) with entries 0 or 1, where ηi = 1 means that the state qi is an accepting state,

and ηi = 0 means that the state qi is not an accepting state. Thus, the accepting set Q′acc
can be described by n′ real variables with polynomial equations such that

ηi = 1 or ηi = 0.

or, equivalently, as the following n′ polynomial equations

η′i(η
′
i − 1) = 0 for i = 1, 2, · · · , n′. (26)

Since A′ is equivalent to A, by Theorem 5 the following equation holds

PA′(x) = PA(x), (27)

for each x ∈ Σ∗, with |x| ≤ (n2 + n′2 − 1). Equivalently, the accepting probability of A′ on

an input x can be represented as

PA′(x) = ‖P ′aU ′(x)|ψ′0〉‖2

=
n′∑
i=1

|〈ηi|U(x)|ψ0〉|2

=
n′∑
i=1

〈ηi| ⊗ 〈ηi|∗U(x)⊗ U(x)∗|ψ0〉 ⊗ |ψ0〉∗, (28)

where U(x) = U(x|x|) · · ·U(x2)U(x1) and 〈ηi| is an n′-dimensional row vector with the i’th

entry being the value of the i’th entry of |ηacc〉, and others being 0’s.

It is clear that the probability given by Eq. (28) has always a real value and, furthermore,

it can be computed by a real polynomial whose variables are the entries of |ψ′0〉, U ′(σ) and

Q′acc. The degree of this polynomial is 2|x|+ 4.

Thus, for each x ∈ Σ∗ with |x| ≤ (n2 + n′2 − 1), the probabilities given by Eq. (27)

can be represented by a real polynomial equation, since the left side, as we have shown, is a

real polynomial, and the right side is a fixed value for the given MO-1QFA A (and can be

13



computed in polynomial time). Note that, by Theorem 5, to describe the fact that A′ and A
are equivalent, the total number of polynomial equations like Eq. (27) needed is

P = 1 + |Σ|1 + |Σ|2 + · · ·+ |Σ|n2+n′2−1. (29)

The above statements and analysis can now be summarized as follows: for a given MO-

1QFA A over an input alphabet Σ, any MO-1QFA A′ ∈ S(n′)
A that is equivalent to A can be

represented by a vector x ∈ R2|Σ|n′2+3n′ satisfying the polynomial Eqs. (24), (25), (26), and

(27). The total number of polynomial equations needed is

M = 2 + 2|Σ|n′2 + 2n′ + P. (30)

The highest degree in these equations is

d = 2(n2 + n′2 − 1) + 4. (31)

Thus, by Theorem 1, for every n′ ≤ n there exists an algorithm to decide if S(n′)
A,Σ is nonempty

with time cost

(Md)O(2|Σ|n′2+3n′) =
(
n4|Σ|+ n2|Σ|n2

)O(|Σ|n2)
. (32)

If we assume |Σ| to be constant the above time complexity becomes 2O(n5). Furthermore, if

the set S(n′)
A,Σ is nonempty, then there exists an algorithm to find a sample of S(n′)

A,Σ in space

τdO(2|Σ|n′2+3n′) = τ
(
n2|Σ|

)O(|Σ|n2)
. (33)

Finally, if we consider |Σ| to be constant the above space complexity becomes τ2O(n3).

Therefore, the procedures described in Figure 1 can be used to find a minimal MO-1QFA

equivalent to a given MO-1QFA.

5. Minimization of measure-many quantum automata

The definition of MM-1QFA is similar to that of MO-1QFA, but an essential difference

between them is that in an MO-1QFA only one measurement is allowed at the end of the

input string, while in an MM-1QFA, the measurement is allowed after each symbol has been

read. As a consequence of this difference, minimizing MM-1QFA is more complicated than

minimizing MO-1QFA, and therefore, we devote this section to address this problem. First,

we give a rigourous definition of MM-1QFA.

Definition 7. An MM-1QFA is a 6-tuple A = (Q,Σ, {U(σ)}σ∈{$}∪Σ, |ψ0〉, Qacc, Qrej), where

• Q = {q1, . . . , qn} is the basic state set; at any time, the state of M is a superposition

of these basic states;

14



• Σ is a finite input alphabet, equipped with an end-marker symbol $ 6∈ Σ (denote Γ =

Σ ∪ {$});

• |ψ0〉 with |||ψ0〉|| = 1 is an n-dimensional vector, denoting the initial vector;

• for any σ ∈ Γ, U(σ) is an n× n unitary matrix;

• the set Q is partitioned into three subsets: Qacc is the set of accepting states, Qrej is

the set of rejecting states, and Qnon is the set of non-halting states.

Remark 8. Denote the state space of MM-1QFA A by HQ. Then the whole space HQ is

divided into three subspaces: Enon = span{|q〉 : q ∈ Qnon}, Eacc = span{|q〉 : q ∈ Qacc},
and Erej = span{|q〉 : q ∈ Qrej}. For these subspaces consider the corresponding projectors

Pnon, Pacc, and Prej. Thus, M = {Pnon, Pacc, Prej} is a projective measurement on HQ.

The computing process of MM-1QFA is similar to that of MO-1QFA except that after

each input symbol σ is read and the corresponding unitary operator U(σ) is applied to the

current quantum state of the system, the projection measurement M is applied to the state.

If the measurement result is ‘non’, then the computation continues; if the result is ‘acc’, then

A accepts, otherwise it rejects. After every measurement the state collapses into the subspace

specified by the projector that has been applied.

Since there is a non-zero probability that the automaton A halts partway through the

computation, it is useful to keep track of the cumulative accepting and rejecting probabilities.

Thus, we can represent the current state of A as a triple (|ψ〉, pacc, prej) where pacc, prej are

respectively the cumulative probabilities of accepting and rejecting. Then the initial state

of A can be represented by (|ψ0〉, 0, 0), and the evolution of A upon reading a symbol σ is

denoted by

(|ψ〉, pacc, prej) 7→ (Pnon|ψ′〉, pacc + ‖Pacc|ψ′〉‖2, prej + ‖Prej |ψ′〉‖2), (34)

where |ψ′〉 = U(σ)|ψ〉. On an input string σ1σ2 · · ·σn$, the accepting probability of A is

given by

PA(σ1 . . . σn) =

n+1∑
k=1

‖PaccU(σk)

k−1∏
i=1

(
PnonU(σi)

)
|ψ0〉‖2, (35)

whith σn+1 = $, and
∏n
i=1Ai = AnAn−1 · · ·A1, instead of A1A2 · · ·An.

The equivalence problem for MM-1QFA has been solved in [13], and we summarize this

result in the following theorem.

Theorem 9 ([13]). Two MM-1QFA A1 and A2 with n1 and n2 states, respectively, are

equivalent if and only if they are (3n2
1 + 3n2

2 − 1)-equivalent.

Based on Theorem 1 and 9, we obtain the following result.
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Theorem 10. The state minimization problem of MM-1QFA is in EXPSPACE.

Proof. Given an MM-1QFA A = (Q,Σ, {U(σ)}σ∈{$}∪Σ, |ψ0〉, Qacc, Qrej), the goal is to find

another MM-1QFA A′ = (Q′,Σ, {U ′(σ)}σ∈{$}∪Σ, |ψ′0〉, Q′acc, Q′rej) that is equivalent to A and

has the smallest number of states from all MM-1QFA equivalent to A.

For the given MM-1QFA A with |Q| = n, define the set

S(n′)
A = {A′ : A′ is an MM-1QFA equivalent to A with n′ states}. (36)

Again, the minimization algorithm is precisely that depicted in Figure 1, except that the

input and output are MM-1QFA. To check the soundness and complexity of the algorithm it

is sufficient, by Theorem 1, to show that S(n′)
A can be characterized by a system of polynomial

equations and/or inequations.

Let A′ = (Q′,Σ, {U ′(σ)}σ∈{$}∪Σ, |ψ′0〉, Q′acc, Q′rej). By a similar analysis performed for

MO-1QFA, we know that: (i) |ψ0〉′ can be represented by 2n′ real variables with 2 real

polynomial equations, (ii) each U ′(σ) can be represented by 2n′2 real variables with 2n′2

real polynomial equations, and (iii) the accepting state set Q′acc can be characterized by an

n′-dimensional vector |ηacc〉 = (η1, η2, . . . , ηn′) with 2n′ polynomial equations.

Similarly, the non-halting set Q′non can also be characterized by an n′-dimensional vector

|τnon〉 = (τ1, τ2, . . . , τn′) with entries 0 or 1, where τi = 1 means that the state qi is a non-

halting state, and τi = 0 means that the state qi is a halting state. Thus, the non-halting set

Q′non can be represented by n′ real variables with polynomial equations such that

τi(τi − 1) = 0. (37)

Since A′ is equivalent to A, by Theorem 9 the following equation holds

PA′(x) = PA(x) (38)

for each x ∈ Σ∗, with |x| ≤ (3n2 + 3n′2 − 1).

As known, the accepting probability of A′ on an input x is given by

PA′(x) =

|x|+1∑
k=1

‖P ′acc|U ′(xk)
k−1∏
i=1

(
P ′nonU

′(xi)
)
|ψ′0〉‖2 (39)

with σ|x|+1 = $ and
∏n
i=1Ai = AnAn−1 · · ·A1. Furthermore, this probability can be equiva-

lently represented as

PA′(x) =

|x|+1∑
k=1

n′∑
j=1

∣∣∣∣∣〈ηj |U ′(xk)
k−1∏
i=1

A(xi)|ψ′0〉

∣∣∣∣∣
2

=
n′∑
j=1

〈ηj | ⊗ 〈ηj |∗
|x|+1∑
k=1

(
[U ′(xk)

k−1∏
i=1

A(xi)]⊗ [(U ′(xk)
∗
k−1∏
i=1

A∗(xi)]

)
|ψ′0〉 ⊗ |ψ′0〉∗ (40)

where:
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• 〈ηi| = |ηi〉†, and |ηi〉 is an n′-dimensional column vector, with the i’th element being

the value of the i’th element of |ηacc〉 = (η1, η2, . . . , ηn′), and others being 0.

• A(xi) = P ′nonU
′(xi) = diag[τ1, τ2, · · · , τ ′n]U ′(xi), where τi’s are chosen from the charac-

teristic vector |τnon〉 = (τ1, τ2, . . . , τn′) defined above.

Now, it can be seen the probability given by Eq. (40) has always a real value and, furthermore,

can be represented by a real polynomial whose variables are the entries of |ψ′0〉, U ′(σ), Q′acc,

and Q′non. Also note that the polynomial in Eq. (40) can be viewed as a sum of |x| + 1

polynomials, each given by different k = 1 . . . |x| + 1, and that the highest degree of these

polynomials is 4|x|+ 6 when k = |x|+ 1.

Thus, for each x ∈ Σ∗ with |x| ≤ (3n2 + 3n′2 − 1), Eq. (38) can be represented by a real

polynomial equation, since the left side, as we have shown, is a real polynomial, and the right

side is a fixed value for the given MM-1QFA A. Note that to describe the fact that A′ and

A are equivalent, the total number of polynomial equations like Eq. (38) needed is

P = |Σ|1 + |Σ|2 + · · ·+ |Σ|3n2+3n′2−1. (41)

The above statements and analysis can now be summarized as follows: for a given MM-

1QFA A over an input alphabet Σ, any MM-1QFA A′ ∈ S(n′)
A that is equivalent to A can be

represented by a vector x ∈ R2(|Σ|+1)n′2+4n′ satisfying polynomial equations Eqs. (24), (25),

(26), (37), and (38). The total number of polynomial equations needed is

M = 2 + 2(|Σ|+ 1)n′
2

+ 2n′ + 2n′ + P. (42)

The highest degree in these equations is

d = 4(3n2 + 3n′2 − 1) + 6. (43)

Thus, by the discussion above and by Theorem 1, for every n′ ≤ n there exists an algorithm

to decide if S(n′)
A is nonempty with time cost

(Md)O(2(|Σ|+1)n′2+4n′) =
(
n4|Σ|+ n2|Σ|n2

)O(|Σ|n2)
. (44)

If we assume that |Σ| is constant, then the time complexity becomes O(2n
5
). Furthermore,

if the set S(n′)
A,Σ is nonempty, then there exists an algorithm to find a sample of S(n′)

A in space

τdO(2(|Σ|+1)n′2+4n′) = τ
(
n2|Σ|

)O(|Σ|n2)
, (45)

and, if we consider |Σ| to be constant, the space complexity becomes τ2O(n3).

Therefore, the procedures described in Figure 1 can be used to find a minimal MM-1QFA

equivalent to a given MM-1QFA.
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6. Minimization of generalized quantum automata

In this section, our purpose is to prove that the state minimization problem for QFA with

mixed states and general operations is solvable as well. The model to be studied is named

one-way general quantum finite automata (1gQFA), and there are two types: measure-once

1gQFA (MO-1gQFA) and measure-many 1gQFA (MM-1gQFA) [15].

6.1. Definition of 1gQFA and relevant results

According to the times of measurement performed in the computation, there are two kinds

of 1gQFA: measure-once 1gQFA (MO-1gQFA) and measure-many 1gQFA (MM-1gQFA) [15].

The definition of MO-1gQFA is as follows.

Definition 11. An MO-1gQFA M is a five-tuple M = {Q,Σ, ρ0, {Eσ}σ∈Σ, Qacc}, where

• Q = {q1, q2, · · · , qn} is a finite set of states, of which each state qi can be presented by

an n-dimensional vector |qi〉 = (0, 0, · · · , 1, · · · , 0)> with the i’th entry being 1 and else

0’s; H = span{|q1〉, |q2〉, · · · , |qn〉} is the state space of M;

• Σ is a finite input alphabet;

• ρ0, the initial state of M, is a density operator on H; generally, we assume that ρ0 is

a pure state, that is, ρ0 = |ψ0〉〈ψ0|, where |ψ0〉 is a superposition of states from Q;

• Eσ corresponding to σ ∈ Σ is a trace-preserving quantum operation acting on H;

• Qacc ⊆ Q is the set of accepting states, and it is associated with a projector Pacc =∑
qi∈Qacc

|qi〉〈qi| ; denote Prej = I − Pacc, then {Pacc, Prej} form a projective measure-

ment on H.

On input word σ1σ2 . . . σn ∈ Σ∗, the above MO-1gQFAM proceeds as follows: the quan-

tum operations Eσ1 , Eσ2 , . . . , Eσn are performed on ρ0 in succession, and then the projective

measurement {Pacc, Prej} is performed on the final state, obtaining the accepting result with

a certain probability. Thus, MO-1gQFAM defined above induces a function PM : Σ∗ → [0, 1]

as

PM(σ1σ2 . . . σn) = Tr(PaccEσn ◦ · · · ◦ Eσ2 ◦ Eσ1(ρ0)), (46)

where E2 ◦ E1(ρ) stands for E2(E1(ρ)). In fact, for every x ∈ Σ∗, PM(x) represents the

probability that M accepts x.

The definition of MM-1gQFA is as follows.
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Definition 12. An MM-1gQFA M is a six-tuple M = {Q,Σ, ρ0, {Eσ}σ∈Σ∪{|c,$}, Qacc, Qrej},
where all the elements are almost the same as the ones of MO-1gQFA except that the input

alphabet Σ is additionally equipped with two symbols: the left end-marker |c and the right

end-marker $, and the state set Q is divided into three parts: Qacc, Qrej, and Qnon, which

respectively denote accepting state set, rejecting state set, and non-halting state set.

For MM-1gQFA M, the whole state space H should be divided into three subspaces, that

is, H = Hacc ⊕ Hrej ⊕ Hnon, where Hacc, Hrej, Hnon are subspaces spanned by states from

Qacc, Qrej, and Qnon, respectively. There is a measurement {Pnon, Pacc, Prej}, of which the

elements in turn are the projectors onto the subspaces Hnon,Hacc, and Hrej, respectively.

The input string of MM-1gQFA M has the form |cx$ where x ∈ Σ∗, and |c and $ are

the left and right end-maker, respectively. The behavior of MM-1gQFA is similar to that

of MM-1QFA. Reading each symbol σ in the input string, the machine has two actions: (i)

first Eσ is performed, such that the current state ρ evolves into Eσ(ρ); (ii) the measurement

{Pnon, Pacc, Prej} is performed on the state Eσ(ρ). If the result “acc” (or “rej”) is observed,

the machine halts in an accepting (or rejecting) state with a certain probability. Otherwise,

with probability Tr(PnonEσ(ρ)), the machine continues to read the next symbol.

Define V = L(H)×R×R. The elements of V represent states ofM as follows: a machine

described by (ρ, pacc, prej) ∈ V has accepted with probability pacc, rejected with probability

prej , and continued with probability Tr(ρ), in which case the current density operator is
1

Tr(ρ)ρ. The evolution of M upon reading symbol σ ∈ Σ ∪ {|c, $}, can be described by an

operator Tσ on V as follows:

Tσ : (ρ, pacc, prej)→ (PnonE(ρ)Pnon,Tr(PaccE(ρ)) + pacc,Tr(PrejE(ρ)) + prej). (47)

We use PM(x) to denote the probability that MM-1gQFA M accepts x ∈ Σ∗. Then

PM(x) accumulates all the accepting probabilities produced on reading each symbol in the

input string |cx$. Concretely, PM(x) can be represented as follows:

PA(x1 . . . xn) =
n+2∑
k=1

Tr
(
PaccExk ◦

k−1∏
i=1

Ẽxi(ρ0)
)
, (48)

where x1 = |c, xn+2 = $, E2 ◦ E1(ρ) stands for E2(E1(ρ)), and

n∏
i=1

Ẽxi = Ẽxn ◦ · · · ◦ Ẽx1 , (49)

Ẽσi(ρ) = PnonEσi(ρ)Pnon. (50)

In Ref. [15] it was shown that the equivalence problem of both MO-1gQFA and MM-

1gQFA is decidable within polynomial time. This result plays a crucial role to solve the state

minimization problem of 1gQFA. We recall the main results in the following.
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Theorem 13 ([15], Theorem 9). Two MO-1gQFA M1 and M2 are equivalent if and only if

they are (n1 + n2)2-equivalent, where n1 and n2 are the numbers of states of M1 and M2,

respectively.

Theorem 14 ([15], Theorem 18). Two MM-1gQFA M1 and M2 are equivalent if and only

if they are (n1 + n2)2-equivalent, where n1 and n2 are numbers of states of M1 and M2,

respectively.

As mentioned in [15], the above equivalence criteria can be slightly improved to n2
1+n2

2−1

using results from [26], but this is not an essential improvement, and has no influence on the

state minimization problem to be discussed later on.

6.2. State minimization of MO-1gQFA

The minimization process of MO-g1QFA is similar to that of MO-1QFA and MM-1QFA

except for the details concerning trace-preserving quantum operations. In the interest of

completeness, we prove the following theorem.

Theorem 15. The state minimization problem of MO-1gQFA is in EXPSPACE.

Proof. Given an MO-1gQFA A = {Q,Σ, ρ0, {Eσ}σ∈Σ, Qacc}, the goal is to find another MO-

1gQFA A′ = {Q′,Σ, ρ′0, {E ′σ}σ∈Σ, Q
′
acc} such that A′ is equivalent to A and has the smallest

number of states from all MO-1gQFA equivalent to A.

For the given MO-1gQFA A with |Q| = n, define the set

S(n′)
A = {A′ : A′ is an MO-1gQFA equivalent to A with n′ states}. (51)

The minimization algorithm is as depicted in Figure 1, except that the input and output

are MO-1gQFA. To verify the algorithm, by Theorem 1, it is sufficient to show that S(n′)
A can

be represented by some polynomial equations and/or inequations.

Let A′ = {Q′,Σ, ρ′0, {E ′σ}σ∈Σ, Q
′
acc}. As mentioned in the definition of MO-1gQFA, it is

generally assumed that ρ′0 is a pure state, and thus ρ′0 = |ψ′0〉〈ψ′0| for a normalized state |ψ′0〉.
Suppose that |ψ′0〉 = (x1, x2, · · · , xn′)>. Then

n′∑
i=1

xix
∗
i = 1. (52)

Thus, according to Remark 2, we can use two real polynomial equations equipped with 2n′

real variables to describe that |ψ′0〉 is a unit vector in Cn′ . Namely, ρ′0 can be represented by

two real polynomial equations equipped with 2n′ real variables.

For any σ ∈ Σ, E ′σ is a trace-preserving quantum operation acting on Cn′ . It is well known

that each trace-preserving quantum operation E has an operation-sum representation, and
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the number of operator elements in this representation will not surpass the square of the

dimension of the space that E acts on. Thus, for each σ ∈ Σ, we suppose that E ′σ has the

following form:

E ′σ(ρ) =
n′2∑
k=1

EkρE
†
k,

where Ek = [ekij ] are n′ × n′ matrices, and they must satisfy the following condition:

n′2∑
k=1

EkE
†
k = I. (53)

Therefore, to describe that E ′σ is a trace-preserving quantum operation, we need n′4 com-

plex variables (i, j in ekij count from 1 to n′, and k counts from 1 to n′2), and n′2 complex

polynomials equation derived from Eq. (53). By Remark 2, we thus need 2n′2 real polynomial

equations, equipped with 2n′4 real variables, to characterize E ′σ for each σ ∈ Σ. Note that

the number of Eσ’s is |Σ|.

Similar to the case of MO-1QFA, the accepting state set Q′acc can be characterized by an

n′-dimensional vector |ηacc〉 = (η1, η2, . . . , ηn′) with polynomial equations

ηi(ηi − 1) = 0, (54)

where ηi = 1 means qi is an accepting state, and ηi = 0 means qi is not an accepting state.

The next key step is to show that the assertion A′ is equivalent to A can be reduced to

solving a system of polynomial equations. First, since A′ is equivalent to A, by Theorem 13

it is required that

PA′(x) = PA(x) (55)

holds for any x ∈ Σ∗ with |x| ≤ (n+n′)2. As we know, the accepting probability of A′ on an

input x is

PA′(x1x2 . . . xm) = Tr(P ′accE ′xm ◦ · · · ◦ E
′
x2 ◦ E

′
x1(ρ′0)).

This probability can be rewritten in another equivalent form by using the mapping vec

introduced in Section 2.. For σ ∈ Σ, suppose that E ′σ(ρ) =
∑n′2

k=1E
σ
k ρE

σ
k
†, and denote

A′σ =
∑
k

Eσk ⊗ Eσk
∗.

Then, by Eq. (7), we have

vec(Eσ1(ρ)) = A′σ1vec(ρ),

vec(Eσ2 ◦ Eσ1(ρ)) = A′σ2A
′
σ1vec(ρ).
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As a result, the probability of A′ accepting x ∈ Σ∗ can be rewritten in the following way:

PA′(x1x2 . . . xm) = vec(P ′acc)
>A′xm · · ·A

′
x2A

′
x1vec(ρ

′
0)

=
∑

qi∈Qacc

〈qi| ⊗ 〈qi|A′xm · · ·A
′
x2A

′
x1 |ψ

′
0〉 ⊗ |ψ′0〉∗

=
n′∑
i=1

ηi〈qi| ⊗ 〈qi|A′xm · · ·A
′
x2A

′
x1 |ψ

′
0〉 ⊗ |ψ′0〉∗ (56)

where ηi is the i’th entry of |ηacc〉 = (η1, η2, . . . , ηn′), which is a characteristic vector of Qacc.

Now, it can be seen that PA′(x1x2 . . . xm) from Eq. (56) has always a real value and,

furthermore, it can be represented by a real polynomial whose variables are the entries of

ρ′0, E ′σ, and Q′acc. Also note that the degree of the polynomial is 2|x| + 3. Thus, for each

x ∈ Σ∗ with |x| ≤ (n′ + n)2, Eq. (55) corresponds to a real polynomial equation, since the

left side, as we have shown, is a real polynomial, and the right side is a fixed value for the

given MO-1gQFA A. Note that to describe the fact that A′ and A are equivalent, the total

number of polynomial equations needed is

P = |Σ|1 + |Σ|2 + · · ·+ |Σ|(n′+n)2 . (57)

The above statements and analysis can now be summarized as follows: for a given MO-

1gQFA A over an input alphabet Σ, any MO-1gQFA A′ ∈ S(n′)
A,Σ that is equivalent to A can

be represented by a vector x ∈ R2|Σ|n′4+3n′ satisfying the real polynomial equations from Eqs.

(52), (53), (54), (55). The total number of polynomial equations needed is

M = 2 + 2|Σ|n′2 + 2n′ + P. (58)

The highest degree in these equations is

d = 2(n′ + n)2 + 3. (59)

Thus, by Theorem 1, for every n′ ≤ n there exists an algorithm to decide if S(n′)
A is nonempty

and, moreover, its time cost is

(Md)O(2|Σ|n′4+3n′) =
(
n4|Σ|+ n2|Σ|n2

)O(|Σ|n4)
. (60)

If we assume Σ to be constant, then time complexity of the above algorithm becomes 2O(n7).

Furthermore, if the set S(n′)
A,Σ is nonempty, then there exists an algorithm to find a sample of

S(n′)
A,Σ in space

τdO(2|Σ|n′4+3n′) = τ
(
n2
)O(|Σ|n4)

. (61)

If we take Σ to be constant, then the space complexity of the above algorithm becomes

τ2O(n5).
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6.3. State minimization of MM-1gQFA

In the previous section, we have solved the minimization problem of MO-1gQFA. Similarly,

we can address the minimization problem of MM-1gQFA. The method is similar to the one

in the case of MO-1gQFA, but we need some additional technical treatment on MM-1gQFA,

since the computing process of an MM-1gQFA is more complicated than that of MO-1gQFA.

Theorem 16. The state minimization problem of MM-1gQFA is in EXPSPACE.

Proof. Given an MM-1gQFA A = (Q,Σ, ρ0, {Eσ}σ∈{|c,$}∪Σ, Qacc, Qrej), the goal is to find

another MM-1gQFA QFA A′ = (Q′,Σ, ρ′0, {E ′σ}σ∈{|c,$}∪Σ, Q
′
acc, Q

′
rej) that is equivalent to A

and has the smallest number of states from all MM-1gQFA equivalent to A.

For the given MM-1QFA A with |Q| = n we define the set

S(n′)
A = {A′ : A′ is an MM-1gQFA equivalent to A with n′ states}. (62)

To show that the algorithm in Figure 1 works for this model, by Theorem 1 it is sufficient

to show that S(n′)
A can be represented as a solution of a system of polynomial equations and/or

inequations.

Let A′ = (Q′,Σ, ρ′0, {E ′σ}σ∈{|c,$}∪Σ, Q
′
acc, Q

′
rej). From a similar discussion on MO-1gQFA,

we know that: (i) ρ′0 can be represented by 2n′ real variables with 2 real polynomial equations,

(ii) each Eσ can be represented by 2n′4 real variables with 2n′2 real polynomial equations, and

(iii) the accepting state set Q′acc can be characterized by an n′-dimensional vector |ηacc〉 =

(η1, η2, . . . , ηn′) with 2n′ polynomial equations like ηi(ηi − 1) = 0.

Similarly, the non-halting set Q′non can also be characterized by an n′-dimensional vector

|τnon〉 = (τ1, τ2, . . . , τn′) with polynomial equations such as

τi = 1 or τi = 0, (63)

or equivalently, by

τi(τi − 1) = 0, (64)

where τi = 1 means qi is a non-halting state and τi = 0 means qi is a halting state.

The next key step is to show that the equivalence between A′ and A can be restated as a

solution of a system of polynomial equations. Firstly, since A′ is equivalent to A, by Theorem

14 it is required that

PA′(x) = PA(x) (65)

holds for any x ∈ Σ∗ with |x| ≤ (n+ n′)2.

As we know, the accepting probability of A′ on an input x is

PA′(x1 . . . xm) =

m+2∑
k=1

Tr
(
P ′accE ′xk ◦

k−1∏
i=1

Ẽ ′xi(ρ0)
)
,
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where x1 = |c, xm+2 = $, E2 ◦ E1(ρ) stands for E2(E1(ρ)), and

n∏
i=1

Ẽ ′xi = Ẽ ′xn ◦ · · · ◦ Ẽ ′x1 ,

Ẽ ′σi(ρ) = P ′nonE ′σi(ρ)P ′non.

Using the mapping vec introduced in Section 2., we can rewrite the above probability in

the following way:

PA′(x1x2 . . . xm) =
m+2∑
k=1

vec(P ′acc)
>vec

(
E ′xk ◦

k−1∏
i=1

Ẽ ′xi(ρ′0)
)

=
m+2∑
k=1

vec(P ′acc)
>A′xkvec

( k−1∏
i=1

Ẽ ′xi(ρ′0)
)

=

m+2∑
k=1

vec(P ′acc)
>A′xk

k−1∏
i=1

Ã′xivec(ρ
′
0)

=
n′∑
i=1

ηi〈qi| ⊗ 〈qi|
m+2∑
k=1

A′xk

k−1∏
i=1

Ã′xi |ψ′〉 ⊗ |ψ′〉∗ (66)

where:

• A′σ =
∑

k E
σ
k⊗Eσk

∗, associated with quantum operation E ′σ defined as E ′σ(ρ) =
∑n′2

k=1E
σ
k ρE

σ
k
†.

• Ã′σ = (P ′non ⊗ P ′>non)A′σ, and P ′non = diag[τ1, τ2, · · · , τn′ ] where τi’s are chosen from

|τnon〉 = (τ1, τ2, . . . , τn′), the characteristic vector of Q′non.

• ηi’s are chosen from |ηacc〉 = (η1, η2, . . . , ηn′), the characteristic vector of Qacc.

Now, it can be seen that PA′(x1x2 . . . xm) from Eq. (66) has always a real value and,

furthermore, can be represented by a real polynomial whose variables are the entries of ρ′0,

E ′σ, Q′acc, and Q′non. Also note that the polynomial in Eq. (66) can be viewed as the sum of

|x|+ 2 polynomials by taking value from k = 1 to k = |x|+ 2 , and the degree of polynomials

attains the highest value 4|x|+ 9 when k = |x|+ 2.

Thus, for each x ∈ Σ∗ with |x| ≤ (n + n′)2, Eq. (65) can be represented by a real

polynomial equation, since the left side, as we have shown, is a real polynomial, and the right

side is a fixed value for the given MM-1gQFA A. Note that to describe the fact that A′ and

A are equivalent, The total number of polynomial equations needed is

P = |Σ|1 + |Σ|2 + · · ·+ |Σ|(n′+n)2 . (67)

The above statements and analysis can now be summarized as follows: for a given MM-

1gQFA A over an input alphabet Σ, any MM-1gQFA A′ ∈ S(n′)
A that is equivalent to A can
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be represented by a vector x ∈ R2(|Σ|+2)n′4+4n′ , satisfying the real polynomial equations (52),

(53), (54), (64), (65). The total number of polynomial equations needed is

M = 2 + 2(|Σ|+ 2)n′
2

+ 4n′ + P. (68)

The highest degree in these equations is

d = 4(n+ n′)2 + 9. (69)

Thus, by Theorem 1, for every n′ ≤ n there exists an algorithm to decide if S(n′)
A is

nonempty and the time cost is

(Md)O(2(|Σ|+2)n′4+4n′) =
(
n4|Σ|+ n2|Σ|n2

)O(|Σ|n4)
. (70)

If we consider m a constant c, then the time complexity becomes 2O(n7). Furthermore, if the

set S(n′)
A is nonempty, then there exists an algorithm to find a sample of S(n′)

A in space

τdO(2(|Σ|+2)n′4+4n′) = τ
(
n2
)O(|Σ|n4)

. (71)

If we consider m a constant, then the space complexity becomes τ2O(n5).

Therefore, the procedures described in Figure 1 can be used to find a minimal MM-1gQFA

equivalent to a given MM-1gQFA.

7. Covering minimization of stochastic sequential machines

Stochastic sequential machines (SSM) are an important and historical model for prob-

abilistic computation [18]. However, there are still some basic problems regarding state

minimization to be solved. Indeed, Paz proposed two open problems (see [18], Page 43, Open

Problems) of whether the reduction of the number of states for any given SSM is decidable,

and how to construct a finite algorithm for finding a reduced SSM. In order to present these

two problems clearly, we begin with recalling some definitions and notations related.

Definition 17 ([18]). A stochastic sequential machine (SSM) is a quadruple

M = (S, I,O, {A(y|x)})

where S, I and O are finite sets (the internal states, inputs, and outputs, respectively), and

{A(y|x)} is a finite set containing |I|× |O| square matrices of order |S| such that aij(y|x) ≥ 0

for all i and j, and ∑
y∈O

|S|∑
j=1

aij(y|x) = 1 (72)

where A(y|x) = [aij(y|x)], and |I|, |O|, and |S| mean the cardinality of sets I, O, and S,

respectively.
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Let M = (S, I,O, {A(y|x)}) be an SSM and let π be an initial stochastic distribution

(i.e., an |S|-dimensional stochastic row vector). Then the accepting probability pMπ (v|u) for

inputting string u = x1x2 · · ·xm and outputting string v = y1y2 · · · ym is defined as follows:

pMπ (v|u) = πA(v|u)η (73)

where A(v|u) = A(x1|y1)A(x2|y2) · · ·A(xm|ym), and η is an |S|-dimensional column vector

with all entries being 1.

For a given SSM M, FM denotes the set of all functions FM = {pMπ : π ∈ Pn}, where Pn
denotes the set of all n-dimensional stochastic row vectors.

Definition 18 ([18]). LetM andM′ be two SSM. The machineM′ covers the machineM
(denoted by M′ ≥M) if FM′ ⊇ FM.

Now we are ready to introduce the open problems proposed by Paz [18] as follows:

1. Answer the following problem, or prove that it is not decidable:

Given an SSM M, does there exist an SSM M′ with fewer states than SSM M and

such that M′ ≥M.

2. If the problem under 1 is decidable, then construct a finite algorithm for finding a

machine M′ ≥ M with |SM′ | < |SM|, whenever such a machine M′ exists, where

|SM′ | and |SM| denote the numbers of states of M ′ and M , respectively.

We address the above open problems and show that Question 1 is decidable. Moreover,

we give an EXPSPACE upper bound (on the number of states) for the algorithm finding a

minimal covering SSM. The idea is similar to that shown in Section 2. We show that the set

of all SSM’s M′ with n′ states covering some SSM M with n states such that n′ < n can be

represented by a solution of a system of polynomial equations and/or inequations. Moreover,

we show that the emptiness of this set can be checked in EXPSPACE in n and that it can also

be sampled in EXPSPACE (in n). To obtain this result we need the following well-known

result:

Theorem 19 ([18]). Let M and M′ be SSM’s with n and n′ states respectively. Then

M′ ≥M iff for all i = 1, . . . , n, there exists a stochastic row π′i with dimension n′ such that

for all inputting string u and outputting string v with |u| = |v| ≤ n+ n′ − 1,

PMei (v|u) = PM
′

π′i
(v|u) (74)

where ei = (0, . . . , 0, 1, 0, . . . , 0) with the i’th entry being 1 and else 0’s.

As we shall see, an immediate corollary of the above theorem is that the set of SSM’s with

a fixed dimension that cover another SSM is represented by a set of polynomial equations

and/or inequations. Then, by Theorem 1, we obtain the following result.
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Theorem 20. Given an SSM M with n states, checking whether there exists an SSM M′

covering M with n′ states and n′ < n is decidable and finding such SSM is EXPSPACE in n.

Proof. Here we depict the main idea. Given an SSM M = (S, I,O, {A(y|x)}) with n′ states,

define the set

S(n′)
M = {M′ :M′ covers M with n′ states}. (75)

Then M′ ∈ S(n′)
M can be presented by a vector Rn′

2(|I|×|O|)+n′n having the form

(w′11x1y1 , . . . , w
′
n′n′xkym

, π1
1, . . . , π

1
n′ , . . . , π

n
1 , . . . , π

n
n′)

where

• A′ = (w′11x1y1
, . . . , w′n′n′xkym) consists of real variables representing the transition ma-

trices of M′; these variables must satisfy the polynomial Eqs. (72).

• π` = (π`1, . . . , π
`
n′) represents a stochastic vector with dimension n′ and ` = 1, . . . , n;

as shown in Section 3., “a vector is stochastic vector” can be represented by a set of

polynomial equations and inequations.

• In addition, the accepting probability pM
′

π (v|u) of M′ can be represented by a polyno-

mial as shown in Eq. (73); furthermore, “ M′ covers M” can be represented by a set

of polynomial equations that follow from Eq. (74).

Shortly, S(n′)
M can be presented by a set of polynomial equations and inequations with

n′2(|I| × |O|) + n′n variables. Thus, by checking the emptiness of the set we know if there

exists an SSM with dimension n′ covering M. According to Theorem 1 this can be done in

EXPSPACE in n. Here, we omit the complexity analysis, which is in fact similar to the cases

from the previous sections.

Corollary 21. Finding a minimal covering SSM can be performed in EXPSPACE on the

number of states.

Proof. The following result follows straightforwardly from Theorem 20. Given an SSM M
with dimension n, search a covering SSM with dimension ranging from 1 to n−1, and output

(if any is found) the first SSM. Since each step can be achieved in EXPSPACE, so does the

full search.

8. Conclusion

In this work we presented a method to minimize several types of quantum and probabilistic

finite automata. We proved that the state minimization of these models is decidable and that
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its complexity is at most exponential in space. The proposed technique can be employed to

minimize any kind of finite automata that is able to be bilinearized. In particular, we have

shown that the minimization of probabilistic automata and measure-once quantum finite

automata is decidable, solving an open problem proposed by Moore and Crutchfield ([16], p.

304, Problem 5). Furthermore, we proved that the reduction of the number of states for any

given SSM is decidable by presenting and EXPSPACE algorithm for finding a reduced SSM.

With this result we solved an open problem proposed by Paz (see [18], page 43). Finally,

we also addressed the minimization problem for many classes of quantum automata, namely

MM-1QFA, MO-1gQFA, and MM-1gQFA.
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