Quantum Computation Tree Logic — Model
checking and complete calculus

P. Baltazar
SQIG-Instituto de Telecomunicagées, IST - TULisbon, Av. Rovisco Pais,
1049-001, Lisbon, Portugal
pbtz@math.ist.utl.pt

R. Chadha
Department of Computer Science, University of Illinois,
Urbana, 11, 61821

rch@uiuc.edu

P. Mateus
SQIG-Instituto de Telecomunicagdes, IST - TU Lisbon, Av. Rovisco Pais,
1049-001, Lisbon,Portugal
pmat@math.ist.utl.pt

Abstract

Logics for reasoning about quantum states and their evolution have
been given in the literature. In this paper we consider Quantum Compu-
tation Tree Logic (QCTL), which adds temporal modalities to exogenous
quantum propositional logic. We give a sound and complete axiomatiza-
tion of QCTL and combine the standard CTL model-checking algorithm
with the dEQPL model-checking algorithm to obtain a model-checking al-
gorithm for QCTL. Finally we illustrate the use of the logic by reasoning
about the BB84 key distribution protocol.

Keywords: Quantum logic; verifying quantum systems; completeness.

1 Introduction

Reasoning about quantum programs has gained prominence due to a big poten-
tial in applications such as information processing, security, distributed systems
and randomized algorithms. This has attracted research in formal reasoning
about quantum states [22, 21, 16, 9] and quantum programs [15, 19, 1, 13, 2, 20,
3, 8]. Formal methods have proved to be successful in design and verification of

classical distributed systems and security protocols [11, 17]. Herein, we present
a temporal logic for reasoning about evolution of quantum systems composed
of a fixed finite set of qubits.

Our starting point is the logic dEQPL for reasoning about quantum states
presented in [16, 9]. The logic dEQPL is designed around the first two postulates
of quantum mechanics. The first postulate says that a quantum state is a unit
vector in a complex Hilbert space and the second one says that the quantum
state composed of two independent quantum states is the tensor product of the
composing states. Herein, for efficiency reasons, we consider just a restricted
sub-logic of dEQPL based on the first postulate. The models of this logic are
basically the quantum states of the finite qubit system.

We give a sound and complete axiomatization of this state logic. The com-
pleteness proof, which is inspired by [9, 14], also suggests a decision procedure
for the theorem-hood problem and we compute the complexity of the deci-
sion procedure assuming that all basic integer operations (addition, subtraction,
multiplication and comparison) take unit time. Furthermore, assuming a float-
ing point representation of complex numbers and assuming that basic floating
point operations (addition, subtraction, multiplication and comparison) take
unit time, we compute the complexity of the model-checking algorithm.

Next, we obtain quantum computational tree logic QCTL by replacing the
state formulas in the standard computational tree logic CTL[10] by dEQPL for-
mulas. The standard CTL is interpreted over classical states and transition
relations amongst these states. QCTL is interpreted over quantum states and
unitary transformations. We give a sound and complete axiomatization of QCTL
capitalizing on the complete axiomatization of dEQPL and CTL. The proof of
completeness follow the techniques introduced in [7, 4]. Finally, combine the
standard CTL model-checking algorithm with the dEQPL model-checking algo-
rithm to obtain a model-checking algorithm for QCTL.

Finally, we note that we do not explicitly deal with measurements in this
paper, although we can reason about probabilities of outcomes of measuring
all the qubits in the standard computational basis. The rest of the paper is
organized as follows. Section 2 discusses the restricted dEQPL and Section 3
introduces QCTL. We discuss the BB84 protocol in Section 4 and summarize
our contributions in Section 5.

2 State Logic

We discuss here briefly the restricted state logic, dEQPL. The logic is designed
around the first postulate of quantum mechanics which states that each quantum
system is a unit vector in a complex Hilbert space. For our purposes, we shall
only deal with a finite-dimensional Hilbert space composed of a finite set of
qubits. We shall thus assume a fixed finite set of qubit symbols, qB, which will
represent these qubits.

A quantum state |¢)) therefore is a unit vector in Hqg = H(298), the Hilbert
space generated by the set of valuations 298, Please note that these valuations

constitute what is commonly called the standard computational basis. Assum-
ing that gB has n elements, the vector |[¢)) is then specified by 2" complex
numbers {(v|y)) | v C 298}, The complex number (v|t)) gives the projection of
the unit vector 1 on the basis vectors |v). We shall have terms in our language
representing the real and complex parts of these 2" complex numbers. Further-
more, please also note that there is a natural bijection between the subsets of
gB and the set of valuations over qB: a set A corresponds to a valuation v4
which valuates to true if gb € A and valuates to false if qb ¢ A.

We shall also have terms in our logic that will represent the probability of
outcomes if all the qubits in qB were to be measured in the standard computa-
tional basis. We are now ready to discuss the syntax and semantics of dEQPL.

2.1 Language and semantics

Syntax. The terms in dEQPL denote elements from R, the set of real numbers.
The formulas of dEQPL henceforth called quantum formulas, are constructed
from comparison formulas (formulas that compare terms) using propositional
connectives. We present language of dEQPL in Table 1 using an abstract version
of BNF notation [18] for a compact presentation of inductive definitions and
discuss the language in detail below.

Table 1: Language of efficient EQPL

Classical formulas
a = L1[gb(a=a)

Term language (with the proviso m € Z and A C ¢B)
t o= am[E+t) [t [Re(|T),) [Im(T),) [(Jar)

Quantum formulas
v o= (<] L [(y3v)

The first syntactic category is that of classical formulas. Please recall that
we fixed a finite set of qubit symbols gB. Classical formulas are built from
qubit symbols in B using the classical disjunctive connectives, falsum | and
implication =. As usual, other classical connectives like =, A,V,< and T are
introduced as abbreviations.

For the term language, we pick a denumerable sets of variables X = {zy :
k € N} interpreted over reals. We also have a copy of integers in the set of
terms. The terms Re(|T),) and Im(|T),) denote the real and complex parts
of the logical amplitude (v4|¢)), where ¢ is a quantum state over qB and v4
is the (unique) valuation corresponding to the set A. The probability term
(Ja) denotes the probability that classical formula « holds for an outcome of
measuring the all the qubits (in gB) in the standard basis.

As usual, we may define the notion of occurrence of a term ¢; in a term ¢,
and the notion of replacing zero or more occurrences of terms ¢ in ¢t by to. If &
and t are sequences of variables and terms respectively, we will write t{Z/t} to
mean the real term obtained by substituting all occurrences of x; by ¢;.

The quantum formulas are built from classical formulas comparison formu-
las (t < t) using the connectives I and J. The set of comparison formulas
shall henceforth be called gAtom and we shall use 6,6’ to range over this set.
Please note that quantum bottom 1L and quantum implication 3 should not be
confused with their classical counterparts. For clarity sake, we shall often drop
parenthesis in formulas and terms if it does not lead to ambiguity.

Semantics. The language is interpreted over a unit vector [¢)) on the Hilbert
space Hqp spanned by all valuations over qB. For interpreting the variables, we
also need the concept of an assignment. An assignment p is a map from X, the
set of variables, such that p(z) € R. Given a classical state formula o and a
valuation v over qB, we shall also assume the definition of satisfaction of a by
v; and write v I, « if v satisfies o. For interpreting the probability terms ([«a),
we shall use the probability map iy : 9(qB) — R defined as:

iy @) =D NIl

velU

For the probability terms, we shall also need the extent of classical formulas
defined as:

la| = {v € p(qB) : v Ik, a}.

The terms Re(|T) 4) and Im(|T) ,) are interpreted as the real and complex parts
of the logical amplitude (va|i) where v, is the valuation corresponding to the
set A. Given a quantum state 1 and an assignment p, the denotation of terms
and satisfaction of quantum formulas at |¢) and p is inductively defined in
Table 2 (omitting the obvious ones).

Table 2: Semantics of dEQPL

Denotation of terms
[2])0 = p(x)

[(Sa)l iy, = ()
[Re(IT))ljgyp = Re((valy))
(I T) Dligy, = Im((val®))

Satisfaction of quantum formulas
[V)pIFqEQPL (B < t2) ff [ta]jyy, < [2]j)p
1) WV qeQPLL
Ve lFgeQPL (1 T2) HE W) FqEQPL M1 o [¥)p IFqEQPL 2

Please note that the assignment p is sufficient to interpret a useful sub-
language of our quantum formulas defined as:

a = zm](a+a)](aa)
ko= (a<a)] ()] (s3k)

Henceforth, the terms of this sub-language will be called analytical terms and
the formulas will be called analytical formulas.

Abbreviations. As anticipated, the proposed quantum language with the
semantics above is rich enough to express interesting properties of quantum
systems. To this end, it is quite useful to introduce other operations, connectives
and modalities through abbreviations. We start with some additional quantum
connectives:

e quantum negation: (B+) for (y3 1L);

e quantum disjunction: (y; U~z) for (HBv1) O 72);

e quantum conjunction: (y; M~2) for (B((By)U (BY2)));

e quantum equivalence: (y1 =2) for ((v1 T72) M (y2 I 71))-
It is also useful to introduce some additional comparison formulas:

o (1 < tg) for ((t1 < t2) M (B(te < t1)));

o (t1 =tq) for ((t1 < ta) M (t2 < t1)).
Given A C gB, the following abbreviation will also be useful:

o (A4) for ((Aqs,caaby) A (Agoy ga(~aby))).

The above formula represents the valuation v4 in the language. The following
abbreviation denotes the square of the absolute value of (v4|¥):

o [IT) 4l for (Re(|T)4))? + (Im(|T) 4))*);
The following abbreviation is also useful:
e (Oo) for (fa)=1.

Intuitively, the formula (Oo) means that the probability « being true of the
outcome of measuring all the qubits in the standard computational basis is 1.

2.2 Model-checking problem

For the model-checking procedure, we only consider closed formulas, i.e., formu-
las without variables. We assume that a quantum state |1) over qB is modeled
by a 2"-array of pairs of real numbers, with n = |qB|. We also assume that the
basic arithmetical operations take O(1) time.

We also assume the definition of the length of a classical formula « or a
quantum formula v as the number of symbols required to write the formula.
The length of a formula ¢ (classical or quantum) is given is represented by [£|.

Given a quantum state ¢ and a quantum formula), the first step is to
evaluate all the terms occurring in +. For the probability terms [«, the eval-
uation takes 2"|a| steps as we have to compute the set of valuations p(qB)
that satisfy a. Once, the terms are evaluated, the model checking algorithm is
straightforward.

Theorem 2.1 Assuming that all basic arithmetical operations take unit time,
there is an algorithm O(]v|.2™) to decide if a quantum state |¢) over qB satisfies
~ with |gqB| = n.

Proof: First notice that the terms that consume more time to evaluate are
those of the type ([@) (both the terms Re(|T) ,) and Im(|T) 5) can be accessed
in O(1) time, since they are elements of the array). The number of terms of type
([@) is bounded by |y|. To evaluate one of these terms we require O(2") time
corresponding to traveling throughout all the valuations satisfying a;, computing
the square of the real and imaginary part, and summing all these values. So,
computing all ([«) terms takes O(|y].2") time.

After these values are obtained, the remaining computation (comparing
terms, negating a boolean value, and making implications between boolean val-
ues) takes at most O(|y|) time. Hence, the total time to decide if a quantum
state |1} satisfies v is O(|y].2" + |v]) = O(]v|.2™). o

2.3 Axiomatization

We need two new concepts for the axiomatization, one of quantum tautology
and a second of valid analytical formulas.

Consider propositional formulas built from a countable set of propositional
symbols @ using the classical connectives = and 1. A quantum formula ~ is
said to be a quantum tautology if there is a propositional tautology § over () and
a map o from @ to the set of quantum formulas such that §, coincides with
where [, is the quantum formula obtained from (3 by replacing all occurrences of
1 by 1, = by Jand ¢ € Q by o(q). For instance, the expected formula ((y; 3
y2) 3 (y1 T y2)) is tautological (obtained, for example, from the propositional
tautology ¢ = q).

Please recall that an assignment is enough to interpret analytical formulas.
We say that an analytical formula k is a valid analytical formula if it holds for
any assignment. It is a well-known fact from the theory of real closed fields [5]
that the set of valid analytical formulas so defined is decidable. However, we
shall not go into details of this result and will focus our attention on reasoning
about quantum aspects only.

The axioms and inference rules of dEQPL are listed in Table 3. The only
inference rule is modus ponens for quantum implication QMP.

The axiom QTaut says that a quantum tautology is an axiom. Since the
set of quantum tautologies is recursive, there is no need for spelling out details
of tautological reasoning. The axiom RCF says that if x is a valid arithmetical
formula, then any formula obtained by replacing variables with the terms of
dEQPL is a tautology. Since the set of valid arithmetical formulas is recursive,
we refrain from spelling out the details. The axiom Unit says that a quantum
state is a unit vector.

The axioms CTaut, Meas), FAdd and Mon reasons about probability
terms ([«). These axioms are basically the axioms (or minor variations of) the
axioms of the probability logics in literature [14]. Hence, the probability logics
in [14] can be seen as a sub-logic of dEQPL.

Finally, the axiom Prob relates probabilities and amplitudes. This axiom
says that for any A C gB, the probability of observing the valuation v4 when
all qubits are measured is the square of the amplitude |T) ,.

Table 3: Axioms for dEQPL

Axioms
[QTaut] FdeQpL 7 for each quantum tautology

[RCF] FAEQPL x{i/t} where k is a valid analytical formula,
Z and ¢ are sequences of variables and terms

[Unit] FypqpL (CacesllMal®) =1

[CTaut] Fypqpr (Ha) for each classical tautology
[Mes] Fgeqpr (/L) =0)
[FAdd] FgpqpL (((Jlar Aaz)) =0)3

((Jor Vaz) = (fou) + (Jaz2)))
[Mon] FyeqpL ((B(flar = a2))) T ((Jeu) < ([a2)))

[Prob] kggqpL ((JAA)=[T) 4P

Inference rules

[QMP] 1, (v 372) "dEQPl_ V2

The axiomatization presented above is sound and weakly complete. The
proof of weak completeness presented below follows the lines of the proof in [14,
9]. The proof of completeness also suggests an algorithm for deciding whether
a formula is theorem of dEQPL or not. The central result in the completeness
proof is the Model Existence Lemma, namely, if v is consistent then there is a
quantum state ¢ and an assignment p such that |¢)p ”_dEQPL . A quantum
formula -y is said to be consistent if |7(dEQPL (B¥). A quantum formula v is a

theorem if and only if (H+) is inconsistent.

Theorem 2.2 (Model Existence Theorem) If the quantum formula ~ is
consistent then there is a unit vector) and a p such that [¢)p IFgeqpL 7-

Proof: Given a classical state formula «, we can show using the axioms CTaut,
Meas(), FAdd and Mon that FgeqQpL (fo) = > {ACAB | valca) (JAA)). The
axiom Prob then gives us that ([a) =3/ 4 |vairoa) ||T) 4]?. Hence, given a
quantum formula 7, we can find an equivalent quantum formula that does not
contain any probability terms.

Given a formula 7 free of probability terms, consider the formula ~f def
(Y (X aces ||T) 4> = 1)). Please note that v is consistent iff 7 is consistent.
Now, for each A C gB, pick two fresh variables x 4 and y4. Consider the formula
7' obtained from ' by replacing each term Re(|T),) be 24 and Im(|T),) by
ya. Now, by axiom RCF, ~' is consistent if and only if vt is consistent over
the reals. Observe that v!T is a purely analytical formula. Therefore there is an
assignment, say p/, that satisfies 7't or otherwise '_dEQPL B~ by RCF, and

7' would not be consistent and neither would ~*, which is a contradiction. We
conclude that there is such an assignment p’, and from this assignment we can
construct i) and p that satisfies v as required. S

As there is an algorithm for deciding the consistency of analytical formu-
las [5], the proof of the Model Existence Lemma suggests an algorithm for
deciding the consistency of quantum formulas. We shall now compute the com-
plexity of one such algorithm. We shall need a few definitions for this.

A term t of the dEQPL is said to be a polynomial in variables x1, ...,z
if t is of the form (3° My, n,27" ... 2.*). The degree of a polynomial term
is defined as expected. We will also assume for the rest of the paper that
each polynomial is in a normal form: for any two summands z7*... 2" and

’ ’
x?l xzk there is some j such that n; # n; Now, given a set of classical
formulas A = {aq,...,an}, a set of variables V = {x1,... 2, 24, .. ., Za,, } and

a set of polynomials P = {p1,...,ps} with variables in the set V, we say that
a comparison formula (t < t') is an (A, V,P)-atom if ¢ is 0 and there is some
polynomial term p € P such that replacing all occurrences of the variables z,,
by (fa;) for each (1 < i < m) yields t. A dEQPL formula v is said to be
a (A, V,P)-formula if each comparison formula occurring in v is an (A, V), P)-
atom. We have:

Theorem 2.3 Let the set qB have n elements. Let A = {aq,...,qn} be
a set of classical formulas, V = {x1,...2, 24, ..., 2a,, } De a set of variables
and P = {p1,...,ps} be a set of polynomials with variables in V. Let the
degree of each polynomial in P be bounded by d and let r = 2"+ 4+ k + m.
Then, assuming that all basic integer operations take unit time, there is an
O(|y|(s +m +1)"(max(d,2))°) algorithm to decide the whether an (A, V, P)-

formula 7y is a theorem or not.

Proof: For each a; € V compute the set B; = {A C gB |va ”_dEQPL i}
Computation of each B; takes at most O(2"|c|) steps, where || is the length
of ;. Since the sum (3, ,,, [;]) is less than ||, this whole computation takes
at most O(2"|y|) steps. Please note that (2"|y|) is bounded by |y|(s + m +
1)" (max(d, 2))°™.

Given a (A, V,P)-formula v, let 71 be the formula obtained by replacing all
probability terms ([a;) by za,. Now, for each A C gB, pick two fresh variables
x4 and y4 and consider the formula

Y=y (Mh<icm (2, = X acn, (@3 +y2) = 0) (X acqp 22 +¥3) —1=0).
We make a few observations here:

e ~ is consistent iff and only if 4T is.

e ~1 is purely analytical.

e 71 is built from comparison formulas of the form (p < 0) or (p = 0) where
each p is a polynomial in the set

P =PU{(22, = Xaep (@4 +v2))1 <i <mPU{(X acqs ¥4 +¥2) — 1}
e P’ has (s+m-+1) polynomials. The degree of each polynomial is bounded
by max(d,2) and is built from r = 2"*! + k + m variables.
e The length of 4T is O(|y| + m(max(d, 2)°)).

Assuming that integer operations take unit time, the results of [5] then gives an
O(Jy|(s +m + 1)"(max(d, 2))°")) algorithm to decide consistency of v which
concludes the proof of the corollary . o

3 Quantum Computational Tree Logic

We now introduce a temporal version of dEQPL by adopting the temporal
modalities of computational tree logic (CTL) [10]. The logic is interpreted over
a transition system in which the states are quantum states and the transitions
are unitary operators. We also provide a sound and complete proof system by
enriching the usual CTL proof system with the axioms of the quantum state
logic. We start by briefly recalling the syntax, semantics and proof system of
CTL.

3.1 Computational Tree Logic

Syntax. We shall assume that there is a countable set of propositional symbols
=. Assuming the set =, the formulas of a CTL are given in BNF notation as-

n:=1[p[(n3n)] EXn[AFn [E[nUn]

where p € =.

Semantics. The semantics of the temporal logic CTL is given using a Kripke
structure

Definition 3.1 (Kripke Structure) A Kripke structure over a set of propo-
sitions Z is a tuple L = (S, R, L) where:

e S is a set, elements of which are called states.

e RC S x S is asaid to be the accessibility relation and it is assumed that
for every s € S there exists s’ € S such that (s,s’) € R.

o L:S — p(E) is said to be a labeling function.

Given a Kripke structure, K = (S, R, L), an infinite sequence of states s1ss ... is
said to be a computation path if for (s;,s;+1) € R for all ¢ > 1. The semantics
of CTL is defined in terms of a Kripke structure /C and a state s of the Kripke
structure. Intuitively, the modalities are composed by two symbols where the
first one is chosen between E or A and the second one amongst X, F, G and the
bi-modality U. The second symbol is used for temporal reasoning: X stands
for next; F for sometime in the future; G for always in the future; and U for
until. The first symbol quantifies over computation paths: an existential (E -
for there exists) path or a universal (A - for all) paths. The combination of the
two symbols can be easily guessed. For example, the formula EXn holds in a
state s if there exists a next state s’ (that is, (s,s’) € R) that satisfies . Given
a Kripke structure IC, a state s of the Kripke structure, and a CTL formula 7,
the formal semantics is defined inductively in terms of a relation I, s IF n and
is given in Table 4.

Table 4: Semantics of CTL

K,slFerd iff never;

K.slketep iff pel(s);

K,slbcry (mane) it Kslfcrp m or Ky slbcpp ne
K, sl EXn ifft K, s I-c n for some (s,s") € R;

K, slFcTL AFn iff for all paths sys5... with s = s1 there is some 7 > 1
such that K, s; IFcL m;

K, slFeTL E[mUno] iff there is a path sysq ... with s = 1 such that for
some i > 1 K, s1 b n2 and K, s;p Ik m for
1<j<i.

10

Axiomatization.

The temporal logic CTL enjoys a sound and complete ax-

iomatization [12]. In order to give the axiomatization, we need to introduce
some useful abbreviations-

o (AX9) for BEX(B0);

(
o (EF9) for B(E[(B 1.)U0)):;
(

e (AGH) for B(EF(B6));

o (EGO) for B(AF(B0));

o A[01Ubs] for B(E[(B62)U(B 6, NE6,)]) N (B(EG(T6,))).

The proof system HCc of CTL is given in Table 5. The following result is

proved in [12].

Theorem 3.2 The proof system HC 1y is sound and weakly complete with
respect to Kripke structures.

Table 5: HCcT| : complete calculus for CTL

Axioms
[Taut]
[EX] }_CTL
X] FCTL
[EU] FCTL
[AU] FcT
[AG1] FcT
[AG2] }—CTL
[AG3] }—CTL

Inference rules

All propositional tautologies with propositional symbols substituted
by CTL formulas;

EX(n1 U) = EXny U EXne

AX(B L) nEX(B 1)

E[n1Una] = n2 U (1 M EX(E[n1Unz]))

AlmUne] = n2 U (m NAX(A[n: Unz))

AG(n3 3 ((Bn2) MEXn3))3 (13 2 (BA[mUna]))

AG(n3 3 ((Bn2) 1 (m 3 AXns3)))3 (93 3 (BE[nUna]))
AG(m D n2) 3 (EXn O3 EXne)

MP] n1, (m D3 m2) FcL m2
[AGen] 1 Fc AGm

3.2 QCTL: Syntax and semantics

Syntax. Please recall that given the state logic dEQPL (see Section 2) de-
scribes quantum states over a finite set of qubits B and is interpreted over unit
vectors in the Hilbert space Hqg and assignments p : X — R where X is a
countable set of variables.

11

Table 6: Language of QCTL

QCTL formulas

0 = ~[(030)] EXE | AFO [E[0UH] where v is a dEQPL formula.

The formulas of Quantum Computation Tree Logic (QCTL) are obtained
by enriching the quantum formulas with CTL modalities and are depicted in
Table 6.

As in the case of CTL formulas, other temporal modalities AX6, EFf, AG#H,
EGO and A[f;Ubs] are introduced as abbreviations. The intuitive semantics of
the temporal modalities is similar to those in classical CTL.

Semantics. In order to provide semantics to the logic, we introduce a very
simple notion of quantum Kripke structure.

Definition 3.3 (Quantum Kripke structure) A finite quantum Kripke struc-
ture over the set of qubits qB and variables X is a pair 7 = (S, R) where:

e S C Hqp x RX is a set of pairs (1, p) such that ¢ is an unit vector in Hqg
and p is an assignment; and

e R C Sx S isarelation such that for any (¢, p) € S, there is an (¢, p’') € S
such that ((¢, p), (¢',p')) € R.

If S is finite then 7 is said to be finite and the |S|, the number of elements of
S, is said to be the size of 7.

For the sake of brevity, we shall often write the pair (|¢),p) as ¥p. As
usual, a computation path is a infinite sequence |¢1)p1|12)p2 ... such that for
any ¢ > 1, we have (|¢1)p1, |1p2)p2) € R. Given a quantum Kripke structure
7 = (S,R), a pair (¢,p) € S and a QCTL formula 6, the semantics of QCTL is
defined in terms of a relation 7, |¢)p IFQCTL 7 given in Table 7.

It is easy to see that for closed formulas i.e., formulas without variables, we
can drop the assignment in the interpretation side of the satisfaction relation.
A quantum Kripke structure 7 is said to satisfy a temporal formula 6, which
we denote by T IkqcT 0, if 7, [¢)p IFQcTy ¢ for all [¢))p € S. Please note
that although we are not considering generalized measurements. However, we
will be able to reason about protocols where measurements in the standard
computational basis are performed at the end of the protocol, thanks to the
probability terms [« in the state logic. Similarly, classical states (bits) can be
simulated by quantum states (qubits) that remain in the computational basis
throughout the transitions.

12

Table 7: Semantics of QCTL

T, [)pFQeTL Y it [Y)plFQeTL %

T,[)p lkQcTL (01 362) iff T, [¥)p FQcTL 61 or T, [¥)p IFQcTL e

T, |[v)plFQcTL EXO it T,[¢")p" IFQcTL 0 for some [¢')p’ € S such that
(Ib)p, [9)p") € R;
T, |[¢)plFQcTL AFO iff ~ for all paths [¢1)p1[th2)p2 ... with ¢y =, p1 = p

there is a ¢ > 1 such that 7, |¢);)p; H_QCTL 0;

T, |[¢)plFQcTL El01U62] iff there is a path [¢1)p1(ih2)p2 ... with 1 =1, p1 = p
such that for some i > 1 T, |1;)p; H_QCTL 05 and

T, |¢5)p; FQcTL 61 for 1 < j <.

3.3 Axiomatization

A weakly complete axiomatization of QCTL capitalizing on the complete CTL
calculus HC ¢ is given in Table 8. Please note that although the completeness
of the calculus may look trivial, but the proof of completeness is subtle. This
is because the connectives 1l and 3 are shared between dEQPL and CTL logics
which may create new theorems that will not be obtained by just adding the
dEQPL axioms to CTL axioms.

Table 8: H CQCTL calculus for QCTL

Axioms
[QTeo] All dEQPL theorems;
[CTLTaut] All CTL tautologies with propositional symbols substituted

by QCTL formulas;

Inference rules

[QMP] 01, (61 262) FQcTL 2
[AGen] 01 I—QCTL AGH,

It is straightforward to check the soundness of the calculus, for this reason
we omit here the lengthy exercise of verifying that all axioms and inference rules
are sound.

13

Theorem 3.4 (Soundness) The aziomatization HC Qe is sound.

The completeness of the calculus is established by following a technique in-
troduced in [7, 4]. Towards this end, it will be useful to translate QCTL formulas
and models to the CTL framework. Consider first the subset of atomic dEQPL
formulas gAtom (i.e., the set constituted by comparison formulas (t1 < t2)).
Let = be the countable set of propositional symbols used to write CTL formulas.
Given a fixed bijective map A : gAtom — Z (that translates each global atom to
a CTL propositional symbol) we can translate each dEQPL formula 6 to a CTL
formula A\(#) by extending inductively A on the structure of the formula ¢ (and

preserving all connectives). For simplicity, we denote A(f) just by 6. The map
A can also be used to translate a quantum Kripke structure 7 = (S, R) to the

CTL model T = (S, R, L), where p € L([¢))p) if [¢))p I-qgqpL A~ (P)-

Lemma 3.5 Let T be an quantum Kripke structure. Then,

T plkoere 0 of T.lolrcry 6.

Proof: The proof follows by straightforward induction on the structure of 6.

o Base: If 0 is 1L or (t; < t3) then 7, [)p I-qc 0 iff 7, [v)p IFeTy 6
by definition.

e Step: For the sake of simplicity, we just consider the case when 6 is EX6;.
The other cases can be similarly handled.
Now, if 7, [1)p IFQcTL EX01 then thereis a |¢)p such that (|¢)p, [¢')p") €
R and T,) p/ IFQcTL EX61. By induction, 7, 1) p ke EXOy iff

T,[¥')p' Ik 01 Thus, by definition 7, |[¢)p I-cp 6. The other direc-
tion can be similarly proved.

o
QCTL incorporates both CTL and dEQPL reasoning.
Lemma 3.6 For any QCTL formula 0
. I—CTL 9 then '_QCTL 0;
° '_dEQPL ~ then l_QCTL v if v is a dEQPL formula.
Proof: Follows directly from axioms CTLTaut and QTeo. o

Indeed, if one restricts just to dEQPL formulas, QCTL reasoning coincides with
that of dEQPL.

14

Lemma 3.7 (Conservative Extension) Let vy be an dEQPL formula. Then

FocTL Y iff FdEQPL -

Proof: In light of Lemma 3.6, it suffices to show that if FQCTL ~ then
}_dEQPL ~. Suppose |_QCTL 7. Then ”_QCTL ~ by soundness of QCTL. Let
[¢) be an arbitrary unit vector in Hqg and p an arbitrary assignment. Consider
the the quantum Kripke structure 7 = ({|¢)p}, {(|t)p, [¢)p)}). We have that

T, |d)p FQcTL 7v- By definition, we get |¢)p IF4EQPL 7 Since 1 and p are
arbitrary, we get ”_dEQPL ~. By completeness of dEQPL, we get '_dEQPL v, ©

The following Lemma is crucial to the proof of completeness.

Lemma 3.8 Let 6 be an QCTL formula such that H_QCTL 6. Then there is a
dEQPL formula g such that

l_QCTL Yo and H_CTL (AG?@ | 9)

Proof: Let at = {v1,...,7x} be the set of atomic dEQPL formulas that are
atoms of §. Now for each k-vector i € {0,1}*, consider the dEQPL formula

k . . . P
L= . o Y if j-th bit of 4 is 1
= |—|1 i where vi= { (B7;) otherwise
j:

Let K C {0,1}* be such that &; is a dEQPL consistent formula and let vy =
|l;ck 0i- Clearly, }_dEQPL ~¢ and therefore by Lemma 3.7, }_QCTL vg. Also
please note for any quantum state |¢) and assignment p, |¢)p I+ §; for exactly
one : € K. B

We shall prove I-1 (AGYp36) by contradiction. Suppose that K = (S,R, L)

is a CTL model such that K, s If e (AGYg 3 6) for some s € S. Then I

AGYg. and K, s If oL 0. Let S’ = {s' € S: &' is reachable from s} (by reachable
we mean reachable using the accessibility relation R).

Pick s’ € S’ and fix it. Since Ik (AGYp 1 0), we get that K IFcT Jo-

Hence, there is some i, € K such that K, s’ IFcTL di., - Since 6;_, is consistent
dEQPL formula, there is a unit vector |¢)s/) and an assignment py such that
[vs)ps IFgEQPL i,/ - Consider the set Sy = {(|v;),ps) + 8" € S’} and the
QCTL model T = (S, Ry), where (|ts)ps, |05)ps) € Rg iff (s',8") € R.
Using the fact that IC,s Iff 0, it is easy to show that 7, |is)ps If 6 which
contradicts l_QCTL Yo o

We are now able to show the completeness of H CQCTL'

Theorem 3.9 The axiomatization HOQCTL 18 weakly complete.

15

Proof: Let H_QCTL 0 be a valid QCTL formula. With ~y as above and by

Lemma 3.8, IFc (AGyy 3). Using CTL completeness we have -1

(AGY9 3 0). Now, from Lemma 3.6 we get FqQcT (AGys 3 6).
Hence, we are able do the following derivation in QCTL:

1) FQcTL e Tautology
2) FQCTL (AG’}/Q) Rule AGen
3) FQcTL (AGyy 30) Lemma 3.8,Lemma 3.6
4) FQeTL? Modus Ponens 2,3
Therefore, H CQCTL is complete. o

3.4 Model-checking problem

We now address the problem of model-checking a closed temporal formulas.
Following the usual model-checking technique for CTL, the goal is to compute
the set
SatT(Q) = {|’L/J> €S:7, |’L/)> \FQCTL 9}

for a given finite quantum Kripke structure 7 = (S, R) and closed formula 6
(please note that assignments play no part the entailment relation for closed
formulas). This is called the global model-checking problem. The (global)
model-checking algorithm is given in Table 9.

Table 9: Algorithm to determine Sats(6)

(1) Satz(v) = {lv) € S:[¥) IFqeqpL 7}

(2) Satr(0y 305) = (S\ Satz(61))U Satr(6s)

(3) Sat7EX0 = {l¥) € S: R(j$)) N Satr(0) # 0};

(4) SatrAFg — FixedPoint[\X.{R"'X}J X, Sat7(0)];

(5) Sat7(E[;Uf]) = FixedPoint]\X.{R~1X) Satz(61)}, Satr(6s)];

where R71X = {yp € S| € X, p,p st. (|¥)p,|[¥)p') € R}.

Clearly, quantum Kripke structures require, in general, exponential space
(over the number of qubits) to simulate with classical computers due to the
exponential number of possible state superpositions. For this reason, the model
checking algorithm takes exponential time on the number of qubits, but it is
polynomial on the size of the transition system and the complexity of the for-
mula.

16

Theorem 3.10 Assuming that all basic arithmetical operations take unit time,
the algorithm in Table 9 takes O(|0|%.|S7]?.2") time.

Proof: The propositional CTL model-checking algorithm takes O(|0].|S7|?) (see
[10] for a detailed analysis). So, if we consider each quantum atom to be a propo-
sitional symbol, the time complexity of the algorithm would be O(|6].|S7|?).
Finally, since checking if a quantum atom is satisfied by a quantum states takes
0(]6].2") (c.f. Theorem 2.1) we derive the desired upper bound. Recall that we
consider all arithmetic computations to be O(1) by using floating point repre-
sentation for the real numbers. o

4 Example: BB84 Protocol

In this section we reason about a simplified version of the BB84 key distribution
protocol [6] to illustrate the power of QCTL. We assume the reader is conversant
with this protocol since it will not be presented here.

For the sake of simplicity, we consider that the protocol distributes a key of
one bit. The property we desire to model check is the soundness of the protocol,
that is, if there is no interference by Eve (and no decoherence occurs) Alice and
Bob will obtain the same key (provided they chose the same basis).

We start by presenting the protocol as a quantum Kripke structure where
the set of worlds S corresponds to the state of five bits {ba,bp,k,s,e} and
one qubit {m}. Bit by encodes the basis that Alice will use to send the key
k through qubit m. So, Alice sends the qubit m to Bob at the following state
depending on the values of b4 and k:

o |0)if by =k = 0;

1)if by =0and k= 1;

. % |0y 4+ |1)) if by = 1 and k = 0;
1
2

(10) = 1)) if ba =k = 1.

Similarly, bp encodes the basis that Bob will use to observe the qubit m he
receives. Since we only allow measurements over the computational basis, if
bp = 1 (that is, Bob should use the diagonal measurement) Bob applies a
unitary transformation to m in order to obtain the same value measuring with
the computational basis that he would using the diagonal basis.

The bits s and e are used to model the status of the protocol. Bit s takes
value 1 if Alice has just sent a message to Bob and value 0 otherwise. Bit e
indicates if the protocol has ended or not. So, the evolution of the pair (s,e)
throughout the protocol is (0,0) — (1,0) — (0,1).

Bits are modeled by qubits that remain in the computational basis. Thus,
the states of the bits ba,bp, k, s, and e will be modeled by the elements of the
computational basis {|ba,bp, k,s,€) : by, bp, k,s,e € {0,1}}. We consider the
qubit m to be initialized to |0) and, so, there are eighth worlds denoting possible

17

initial states of the protocol: I = {|bs,bp,k,0,0,0) : bs,bp,k € {0,1}}. There
remaining states, are those that are reachable with the accessibility relation.

The accessibility relation R is described by a unitary operation U such that
|v) R U|y) (for this example, we assume that the real variable assignment ~y
is the same in all worlds). The unitary operation U is a composition of two
unitaries, that ism U = U,..U,, where U, deals with Alice sending the message
to Bob and U, with Bob receiving the message. The idea is that U, behaves
like the identity if the qubit was not sent by Alice while Uy will behave like the
identity otherwise. Both Us and U, are easily described as controlled operations.
The operator Us is Ugy.Ug3.Ug.Us1 where:

e Ugxl0,b5,1,0,0,m) = |0,bp,1,0,0,1 —m) and behaves like the identity
for the remaining elements of the basis;

o Uss|l,b5,0,0,0,m) = |1,b5,0,0,0) ® H|m) and behaves like the identity
for the remaining elements of the basis where H is the Hadamard trans-
formation;

e Ussll,bp5,1,0,0,m) =1,bp,1,0,0)® H|1 —m) and behaves like the iden-
tity for the remaining elements of the basis;

o Usylba,bp, k,s,0,m) = |by,bp, k,1 — s,0,m) and behaves like the identity
for the remaining elements of the basis.

The unitary transformations Uy, Uso and Ugs deal with Alice encoding m to
Bob and U4 updates the state of the pair (s, e) from (0,0) to (1,0).
Similarly, the operator U, is described by U,5.U,; where:

o Uplba,1,k,0,0,m) = |ba,1,k,0,0) ® H|m) and behaves like the identity
for the remaining elements of the basis;

o Upalba,bp, k,0,e,m) = |ba,bp, k,0,1 — e, m) and behaves like the identity
for the remaining elements of the basis.

The unitary transformation U,; deals with the change of basis that Bob performs
when bp = 1 and U,» (together with Usy) updates the state of the pair (s,e)
from (1,0) to (0,1) (note that Uss changes the state of (s, e) from (1,0) to (0,0)
and that U,o then changes it to (0,1)).

The BB84 protocol is described by two applications of U, over an initial
state. At the end of the protocol a measurement is performed by Bob over
the qubit m. Thus, the quantum Kripke structure modeling the simple BB84
protocol is given by (S, R) where S = {U"|¢)) : n € Ny and [¢)) € I} and R is
such that |¢)) R Uly), with set of qubits ¢B = {ba,bp, k, s,e,m}.

The soundness of the protocol states that if b4 = bp then at the end of the
protocol, the key k should be the same as the value that Bob observes in m.
This property can be described by the formula 6 below:

(O(ba < bp)) 3 (A[(B(Oe)U((De) N ((OF) = ([m = 1))]).

It is now possible to use the algorithm in Table 9 to check that 7 I 6.

18

5 Conclusions

We present a sound and complete temporal quantum logic combining the quan-
tum state logic given in [9] with the computational tree logic CTL [10]. The
model-checking algorithm of CTL was extended to deal with quantum states.
The use of the quantum temporal logic was illustrated with BB84 protocol [6].

This work can be extended in several directions. First, on the state logic
part, density operators could replace unit vectors thus giving a global phase in-
dependent semantics. On the temporal part, quantum Kripke structure should
allow arbitrary measurements. For this, the state logic based on density opera-
tors is more suitable. We also plan to investigate other temporal extensions to
quantum logic, like linear temporal logic and full branching time logic.

On the algorithmic side, the complexity class of the SAT and the model-
checking problem for both the state and the temporal logic need to be investi-
gated.

Acknowledgments

We thank the anonymous referees for their comments which have greatly helped

the exposition. This work was partially supported by FCT and EU FEDER,

namely via CLC POCTI (Research Unit 1-601), QuantLog project POCI/MAT /55796 /2004,
SQIG - IT, QSEC project PTDC/EIA/67661/2006. Pedro Baltazar was also

supported by FCT and EU FEDER PhD fellowship SFRH/BD/22698,/2005.

References

[1] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols.
in Proceedings of the 19th Annual IEEE Symposium on Logic in Computer
Science (LICS 2004), IEEE Computer Science Press, (2004), pp. 415-425.

[2] T. Altenkirch and J. Grattage. A functional quantum programming lan-
guage. In Proceedings of the 20th Annual IEEE Symposium on Logic in
Computer Science (LICS), IEEE Computer Society, (2005), pp. 249-258.

[3] A. Baltag and S. Smets. LQP: The dynamic logic of quantum information.
Mathematical Structures in Computer Science, (2006), to appear.

[4] P. Baltazar and P. Mateus. Verifying probabilistic system with EpCTL:
Model checking and complete Hilbert calculus, submitted.

[5] S. Basu, R. Pollack, and R. Marie-Francoise. Algorithms in Real Algebraic
Geometry. Springer, (2003).

[6] C.H. Bennett and G. Brassard. Quantum cryptography: Public key distri-
bution and coin tossing. In Proceeding of IEEE International Conference
on Computers, Systems and Signal Processing, IEEE, (1984), pp. 175-179.

19

[7]

[10]

C. Caleiro, C. Sernadas, and A. Sernadas. Parameterisation of logics. In
J. Fiadeiro, editor, Recent Trends in Algebraic Development Techniques -
Selected Papers, vol. 1589 of Lecture Notes in Computer Science, Springer-
Verlag, (1999), pp. 48-62.

R. Chadha, P. Mateus, and A. Sernadas. Reasoning about quantum imper-
ative programs. Flectronic Notes in Theoretical Computer Science, 158,
(2006), pp. 19-40. Invited talk at the Twenty-second Conference on the
Mathematical Foundations of Programming Semantics.

R. Chadha, P. Mateus, A. Sernadas, and C. Sernadas. Extending classical
logic for reasoning about quantum systems. Preprint, CLC, Department
of Mathematics, Instituto Superior Técnico, 1049-001 Lisboa, Portugal,
(2005).

E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logics. In Proceeding of the
Workshop on Logics of Programs, volume 131 of LNCS. Springer-Verlag,
(1981).

E. M. Clarke and J. M. Wing. Formal methods: state of the art and future
directions. ACM Comput. Surv., 28(4), (1996), pp. 626—643.

Edmund M. Clarke and Bernd-Holger Schlingloff. Model checking. In
Handbook of Automated Reasoning, (2001), pp 1635-1790.

E. D’Hondt and P. Panangaden. Quantum weakest preconditions. In
Peter Selinger, editor, Proceedings of the 2nd International Workshop on
Quantum Programming Languages, num. 33 in TUCS General Publications,
Turku Centre for Computer Science, (2004), pp. 75-90.

R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning about
probabilities. Information and Computation, 87(1-2), (1990), pp. 78-128.

E. Knill. Conventions for quantum pseudocode. Technical Report LAUR-
96-2724, Los Alamos National Laboratory, (1996).

P. Mateus and A. Sernadas. Weakly complete axiomatization of exogenous
quantum propositional logic. Information and Computation, to appear.

C. Meadows. Formal methods for cryptographic protocol analysis: emerg-
ing issues and trends. IEEE Journal on Selected Areas in Communications,
21(1), (2003), pp. 44-54.

P. Naur. Revised report on the algorithmic language Algol 60. The Com-
puter Journal, 5, (1963), pp. 349-367.

J. W. Sanders and P. Zuliani. Quantum programming. In Mathematics
of Program Construction, vol. 1837 of Lecture Notes in Computer Science,
Springer, (2000), pp. 80-99.

20

[20]

P. Selinger and B. Valiron. A lambda calculus for quantum computation
with classical control. In Proceedings of the 7th International Conference
on Typed Lambda Calculi and Applications (TLCA), vol. 3461 of Lecture
Notes in Computer Science, Springer, (2005), pp. 354-368.

R. van der Meyden and M. Patra. Knowledge in quantum systems. In
M. Tennenholtz, editor, Theoretical Aspects of Rationality and Knowledge,
ACM, (2003), pp. 104-117.

R. van der Meyden and M. Patra. A logic for probability in quantum
systems. In M. Baaz and J. A. Makowsky, editors, Computer Science Logic,
vol. 2803 of Lecture Notes in Computer Science, Springer-Verlag, (2003),
pp. 427-440.

21

