
Tableau Systems for Logics of Formal Inconsistency

Walter A. Carnielli
Centre for Logic and Epistemology,

and Department of Philosophy
State University of Campinas

CLE/Unicamp, Campinas, Brazil

João Marcos
Centre for Logic and Philosophy of Science

RUG
Ghent, Belgium

Abstract The logics of formal inconsistency
(LFI’s) are logics that allow to explicitly formal-
ize the concepts of consistency and inconsistency
by means of formulas of their language. Contradic-
toriness, on the other hand, can always be expressed
in any logic, provided its language includes a sym-
bol for negation. Besides being able to represent
the distinction between contradiction and inconsis-
tency, LFI’s are non-explosive logics, in the sense
that a contradiction does not entail arbitrary state-
ments, but yet are gently explosive, in the sense
that, adjoining the additional requirement of con-
sistency, then contradictoriness do cause explosion.
Several logics can be seen as LFI’s, among them
the great majority of paraconsistent systems devel-
oped under the Brazilian and Polish tradition. We
present here tableau systems for some important
LFI’s: bC, Ci and LFI1.

Keywords: contradiction, inconsistency, consis-
tency, paraconsistency, tableaux

1 Introduction

Although contradictoriness can be expressed
in any logic, provided its language includes a
symbol for negation, the concept of consistency
is an essentially metalogical notion. The log-
ics of formal inconsistency (LFI’s) are logics
that allow to internalize the concept of con-
sistency by means of formulas defined in their
language. In formal terms, an LFI is any logic
system that is non-explosive, in the sense that
from a contradiction one is not able to derive
every statement, but still is gently explosive,

in the sense that, adjoining the additional re-
quirement of consistency, then contradictori-
ness do cause explosion. A large class of logics
can be seen as LFI’s, among them the great
majority of paraconsistent systems developed
under the Brazilian tradition (cf. [9], [7]), as
well as the discussive logics developed under
the Polish tradition (cf. [10]). Besides the con-
nection to deep philosophical questions like the
new definition of consistency that subsumes
the model-theoretical one (which can be used,
among other purposes, for a better distinction
between paradoxes and antinomies) the LFI’s
can also be applied in modeling databases (cf.
[8]) and for obtaining new declarative seman-
tics for logic programming. With such aims
in mind, it is convenient to obtain suitable al-
gorithmic presentations of LFI’s. We present
here tableau systems for the propositional ver-
sions of the basic logic of (in)consistency, bC,
and for its extensions Ci and LFI1. The
C-systems are particular LFI’s that are ob-
tained by (positive) conservative extensions of
some previous non-paraconsistent logics, and
in which the notion of consistency is expressed
by a new linguistic operator. The Cn systems
of da Costa (cf. [9]), for n finite, for exam-
ple, are C-systems in which consistency can
be expressed even without using the new con-
sistency operator (in the case of C1, for in-
stance, the consistency of a formula A is de-
fined by ¬(A ∧ ¬A)). Not all paraconsistent
logics are C-systems: for instance, Cmin (cf.
[6]), Cω (cf. [9]), and Pac (cf. the three-
valued paraconsistent logic ‘with internal im-
plication’ investigated in [1], and also in [2],

Ze Ninguem
Preprint.
Proceedings of the IC-AI'2001.



under the name PIs) are not C-systems. The
study of C-systems permits to formalize, and
better understand, the phenomenon of incon-
sistency, as opposed to mere contradictoriness.
All such logics can be treated semantically by
means of bivaluation semantics and possible-
translations semantics, in the sense of [4] and
[11].

2 bC, the basic logic of (in)-
consistency

All the systems we will mention here extend
the positive fragment of classical propositional
logic, CPL+, differing from classical logic,
CPL, only on the behavior of propositions in-
volving negation. Consider ∧,∨,→ and ¬ as
our primitive connectives, and consider the ad-
dition of the following set of schematic axioms
to any given axiomatization of CPL+, closed
under Modus Ponens and Uniform Substitu-
tion:

(min1) `min (A ∨ ¬A)

(min2) `min (¬¬A → A)

The resulting system, Cmin, was studied in
[6]. The basic logic of (in)consistency, bC, is
defined as an extension of Cmin by the addition
of a new unary connective, ◦, representing con-
sistency, plus a new rule, realizing the Gentle
Principle of Explosion:

(bc1) ◦A,A,¬A `bC B.

bC is indeed an LFI, i.e. a logic of formal
inconsistency, and so it is in fact a C-system
based on classical logic. Some of the most rep-
resentative properties of bC are:

1. Γ `CPL A ⇔ ◦(∆), Γ `bC A, where
◦(∆) = {◦B : B ∈ ∆}, and ∆ is a finite
set of formulas;

2. (A ∧ ¬A) `bC ¬ ◦A;

3. ◦A `bC ¬(A ∧ ¬A);

4. ◦A `bC ¬(¬A ∧A).

The converses of (ii), (iii) and (iv) are not
valid in bC, and the De Morgan laws or con-
traposition rules hold only in very restricted
forms.

The system bC is sound and complete with
respect to the following bivaluation semantics,
that is, the set of all functions from the wffs of
bC into {0, 1} such that:

(v1) v(A ∧B) = 1 ⇔ v(A) = 1 and v(B) = 1;

(v2) v(A ∨B) = 1 ⇔ v(A) = 1 or v(B) = 1;

(v3) v(A → B) = 1 ⇔ v(A) = 0 or v(B) = 1;

(v4) v(¬A) = 0 ⇒ v(A) = 1;

(v5) v(¬¬A) = 1 ⇒ v(A) = 1;

(v6) v(◦A) = 1 ⇒ v(A) = 0 or v(¬A) = 0.

From (v6) and (v4) one obtains (v6′) :
v(A) = 1 and v(¬A) = 1 ⇒ v(¬ ◦ A) = 1.
Based on the above mentioned semantics, one
can show that the following signed tableau rules
also constitute a sound and complete proof sys-
tem for bC. We take for granted all usual no-
tions related to tableaux (as, for example, that
proofs are binary trees, that an a-rule means
extending a node, and that a β-rule means
branching a node, etc —you may consult, in
that respect, [3] or [5]). The basic tableau rules
are given in Tables 1 and 2.

Table 1: α-rules for bC

α α1 α2

1 T (A ∧B) T (A) T (B)
2 F (A ∨B) F (A) F (B)
3 F (A → B) T (A) F (B)
4 T (¬¬A) T (A) T (A)
5 F (¬A) T (A) T (A)

A tableau branch for bC is closed if F (A)
and T (A) belong to the branch. Rule 10 is a
derived rule (derived tableau rules, introduced
in [3], are useful but eliminable rules): If the
tableau finds a node like F (◦A) it simply leaves
it as it is, and does not try to break it.



Table 2: β-rules for bC
β β1 β2

6 F (A ∧B) F (A) F (B)
7 T (A ∨B) T (A) T (B)
8 T (A → B) F (A) T (B)
9 T (◦A) F (A) F (¬A)
10 T (¬A) F (A) F (◦A)

3 The logic Ci

We call Ci the logic obtained by addition of the
following schematic rule to bC (defining •A as
¬ ◦A and reading •A as “A is inconsistent”):

(ci) •A `Ci A ∧ ¬A

The α-rules for Ci are those for bC, plus the
ones in Table 3.

Table 3: Additional rules for Ci
α α1 α2

11 F (◦A) T (A) T (¬A)
12 T (¬ ◦A) F (◦A) F (◦A)

The β-rules are the same as for bC, and the
tableau closure conditions are the same. In
Ci, •A and (A ∧ ¬A) are obviously equivalent
formulas, and Ci is sound and complete with
respect to the bivaluation semantics given by
the same clauses as in the case of bC, plus the
converse of (v6′):

(v7) v(¬ ◦A) = 1 ⇒ v(A) = 1 and v(¬A) = 1.

It is noteworthy that the following rules hold
in Ci:

1. ◦A, •A `Ci B;

2. (Γ, B `Ci ◦A) and (∆, B `Ci •A)] ⇒
(Γ,∆ `Ci ¬B);

3. `Ci ◦ ◦A;

4. (A → ◦B) `Ci (¬ ◦B → ¬A);

5. (A → ¬ ◦B) `Ci (◦B → ¬A).

However, consistency in Ci is not identifi-
able with the negation of a contradiction, since
the following do not hold in Ci:

1. ¬(A ∧ ¬A) `Ci ◦A ;

2. ¬(¬A ∧A) `Ci ◦A.

Another interesting feature of Ci is that only
statements about consistency or inconsistency
can be provable to be consistent, that is, ◦A is
a theorem in Ci if, and only if, A is of the form
◦B, •B, ¬ ◦B or ¬ •B, for some B.

It is also important to notice that strong,
that is, explosive, negations can be defined in-
side of bC and of Ci. One such a negation, ÷,
would be obtained, for a given formula A, by
defining ÷A as ¬A ∧ ◦A. But if this negation
indeed has all properties of a classical negation
in Ci, the same does not occur in bC (see [7]).
It is possible, nevertheless, to define another
strong negation, ∼, which behaves classically
inside both bC and Ci, by defining ∼ A as
A → (A ∧ (¬A ∧ ◦A)). Such a negation allows
us to define the following mapping, for exam-
ple, translating classical logic CPL inside of
bC (or of Ci):

1. tr(p) = p, if p is an atomic proposition;

2. tr(A 4 B) = tr(A) 4 tr(B), if 4 is any
binary connective;

3. tr(¬A) = ∼ tr(A).

The translation tr is a so-called grammat-
ically faithful conservative translation, in the
sense that it maintains the syntactical struc-
ture of the formulas. We obtain that Γ `CPL

A ⇔ t(Γ) `Ci t(A), what confers to Ci a very
strong capability: although a sub-system of
CPL, the system Ci can codify not only clas-
sical reasoning as a whole, but also metalogical
properties of CPL concerning consistency.



4 LFI1, a maximal three-val-
ued logic of formal inconsis-
tency

In [8] we investigated the properties of LFI1, a
three-valued logic of formal inconsistency apt
to treat inconsistencies in databases and which
also happens to be maximal relatively to clas-
sical logic, though it is in fact just a member of
a much larger family of maximal three-valued
LFI’s (see [12]). The system LFI1 is obtained
from Ci by adding to it the following new ax-
ioms:

(L1) `LFI1 (A → ¬¬A)

(L2) `LFI1 (•(A∧B) ↔ ((•A∧B)∨(•B∧A)))

(L3) `LFI1 (•(A ∨ B) ↔ ((•A ∧ ¬B) ∨ (•B ∧
¬A)))

(L4) `LFI1 (•(A → B) ↔ (A ∧ •B))

The logic LFI1 is sound and complete with
respect to the three-valued matrices displayed
in Table 4, where 1 and 1

2 are the designated
values.

Table 4: Three-valued matrices for LFI1

∧ 1 1
2 0 ∨ 1 1

2 0
1 1 1

2 0 1 1 1 1
1
2

1
2

1
2 0 1

2 1 1
2

1
2

0 0 0 0 0 1 1
2 0

→ 1 1
2 0 1 1

2 0
1 1 1

2 0 ¬ 0 1
2 1

1
2 1 1

2 0 • 0 1 0
0 1 1 1

Now, it happens that LFI1 is also sound and
complete with respect to the following bivalu-
ation semantics, defined by (v1)− (v7) plus:

(v8) v(¬¬A) = 0 ⇒ v(A) = 0;

(v9) v(•(A ∧ B)) = 1 ⇔ v(•A ∧ B) = 1 or
v(•B ∧A) = 1;

(v10) v(•(A ∨ B)) = 1 ⇔ v(•A ∧ ¬B) = 1 or
v(•B ∧ ¬A) = 1;

(v11) v(•(A → B)) = 1 ⇔ v(A ∧ •B) = 1.

Based on such a result, the following tableau
rules can be proven to constitute a sound and
complete tableau-type proof system for LFI1:
the α- and β -rules for LFI1 are the ones for
Ci, plus those in Tables 5 and 6.

Table 5: α-rules for LFI1

α α1 α2

13 F (¬¬A) F (A) F (A)
14 F (•(A ∧B)) F (•A ∧B) F (•B ∧A)
15 F (•(A ∨B)) F (•A ∧ ¬B) F (•B ∧ ¬A)
16 F (•(A → B)) F (A ∧ •B) F (A ∧ •B)
17 T (•(A → B)) T (A ∧ •B) T (A ∧ •B)

Table 6: β-rules for LFI1

β β1 β2

18 T (•(A ∧B)) T (•A ∧B) T (•B ∧A)
19 T (•(A ∨B)) T (•A ∧ ¬B) T (•B ∧ ¬A)

Again, a tableau branch for LFI1 is closed
if either F (A) and T (A) belong to the branch.
The rule:

β β1 β2

20 F (•A) F (A) F (¬A)

is a derived rule of type β for LFI1.
These tableaux proof systems show that all

the above logics are decidable, and permit to
treat them from the point of view of automatic
theorem proving in an elegant and relatively
efficient way. Since, in particular, LFI1 is a
three-valued logic, a three-signed tableau (in
the sense of [3]) can also be defined. It is in-
teresting to notice that, while our tableau sys-
tem is analytic, some tableau constructions are



non-well-founded trees (that is, produce loops),
as it is the case of F (◦A) in Ci and LFI1
(a phenomenon already noticed in [5], where
similar tableaux for da Costa’s C1 have been
offered). These loops, however, do not inter-
fere with decidability, and are generated by an
association of the rules (9), (10) and (11) of
the tableaux. This also explains why bC has
no tableau loops, once (11) is absent from its
tableau rules.

References

[1] A. Avron. Natural 3-valued logics – char-
acterization and proof theory. The Jour-
nal of Symbolic Logic 56(1):276–294, 1991.

[2] D. Batens. Paraconsistent extensional
propositional logics. Logique et Analyse
90-91:195–234, 1980.

[3] W. A. Carnielli. Systematization of finite
many-valued logics through the method of
tableaux. The Journal of Symbolic Logic
52(2):473–93, 1987.

[4] W. A. Carnielli. Possible-translations se-
mantics for paraconsistent logics. Fron-
tiers in Paraconsistent Logic: Proceedings
of the I World Congress on Paraconsis-
tency, Ghent, 1998, edited by D. Batens,
C. Mortensen, G. Priest, and J.-P. van
Bendegem, King’s College Publications,
2000. pp.149–63.

[5] W. A. Carnielli and M. Lima-Marques.
Reasoning under inconsistent knowledge.
Journal of Applied Non-Classical Logics
2(1):49–79, 1992.

[6] W. A. Carnielli and J. Marcos. Limits
for paraconsistency calculi. To appear
in Notre Dame Journal of Formal Logic
40(3), 1999.

[7] W. A. Carnielli and J. Marcos. A ta-
xonomy of C-systems. To appear in
Paraconsistency: The Logical Way to
the Inconsistent – Proceedings of the
II World Congress on Paraconsistency

(WCP’2000), edited by W. A. Carnielli,
M. E. Coniglio, I. M. L. D’Ottaviano,
Marcel Dekker, 2001.

[8] W. A. Carnielli, J. Marcos, and S. de
Amo. Logics of Formal Inconsistency and
Evolutionary Databases. To appear in
Logic and Logical Philosophy 7–8, Proceed-
ings of the Jaskowski’s Memorial Sympo-
sium, 2001.

[9] N. C. A. da Costa. Inconsistent Formal
Systems (in Portuguese). Thesis, UFPR,
Brazil, 1963. Curitiba: Editora UFPR,
68p, 1993.

[10] S. Jaśkowski. Propositional calculus for
contradictory deductive systems (in Pol-
ish). Studia Societatis Scientiarum Toru-
nensis sectio A-I:57–77, 1948.

[11] J. Marcos. Possible-Translations Seman-
tics (in Portuguese). Thesis, Unicamp,
xxviii+240p, 1999.
URL=ftp://www.cle.unicamp.br/pub/thesis/J.Marcos/.

[12] J. Marcos. 8K solutions and semi-solu-
tions to a problem of da Costa (and their
duals). To appear.




