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Abstract

We will present a formalization of pointfree topology in Martin�L�f�s type theory� A

notion of point will be introduced and we will show that the points of a Scott topology

form a Scott domain� This work follows closely the intuitionistic approach to pointfree

topology and domain theory� developed mainly by Martin�L�f and Sambin� The important

di�erence is that the de�nitions and proofs are machine checked by the proof assistant

ALF�
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� Introduction

The traditional motivation for topology relies on abstracting �rst from Euclidean spaces to
metric spaces
 and then abstracting out certain properties of their open sets�

A topology �X for a set X is a family of subsets of X which is closed under �nite
intersection and arbitrary union� X is the space of the topology and hX��Xi is a topological
space� The elements in X are called points and the sets in �X are called open sets� For the
development of general topology see for instance Kelley ����

In pointfree topology �locale theory�
 Johnstone ���
 one considers the open sets
 and not
the points
 as primitive entities and studies those properties of a topological space that can
be expressed without any mention of points� By abstracting from the fact that open sets are
subsets of points one only looks at the algebraic structure
 called a frame
 that the open sets
form�

A frame is a partially ordered set A with two operations meet � and join �
 operating on
subsets of A
 corresponding to intersection and union
 respectively� Meet gives to each �nite
subset the in�mum and join gives to each subset the supremum� In particular
 A contains
two elements true and false which correspond to empty meet and join
 respectively� Binary
meets must also distribute over join� We call the elements in a frame for opens�

On the computer science side the motivation for topology relies on connections to domain
theory� Scott ���� has showed that by describing only the elements that contain a �nite amount
of information
 the computational content of a domain can be described topologically� This
emphasis makes the open sets independent of the points of the topological space
 leading to
pointfree topology�

Given a frame
 points can be de�ned uniquely from the opens as completely prime �lters

����� As an example
 take the special case when the opens are open sets �and true
 �
 � and �
are the whole space


T


S
and �
 respectively�� A completely prime �lter F then corresponds

to the points in the intersection of the open sets in F � In other words
 given a point x the
corresponding completely prime �lter is the set of all open sets containing x� Let hA����i be
a frame and let F � A be upper closed
 that is if a � F and a � b then b � F 
 then

F is a �lter i� it is closed under �nite meets

true � F and if a� b � F then a � b � F 


a �lter F is completely prime i� it is inaccessible by joins

if S � A and

W
S � F then s � F for some s � S�

Another motivation for pointfree topology is constructiveness� sometimes the use of point�
free topology makes it possible to replace non constructive reasoning using the axiom of choice
by constructive proofs
 see for instance Coquand ��
 ���

This work is a machine assisted formalization
 in type theory ����
 of �a part of� the
intuitionistic approach to pointfree topology and domain theory
 developed by Martin�L�f
��	�
 Sambin ����
 and by Sambin
 Valentini and Virgili in ����� All de�nitions and proofs are
checked by the proof assistant ALF ���� In ���
 ��� the constructivity is guaranteed by adopting
Martin�L�f�s type theory
 but in this paper we will by type theory mean the formalization
in ALF� We will prove that this formalization really de�nes a frame
 where the opens are
de�ned as equivalence classes of subsets� A closure operator will be de�ned and we will prove
that each equivalence class contains exactly one closed subset� As a concrete example of a
pointfree topology we will look at the neighbourhoods of the natural numbers� A notion of
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point equivalent to completely prime �lter will be introduced� Then we will look at a pointfree
version of Scott topology
 and show that the points of this topology form a Scott domain�

Another formalization of constructive domain theory
 in ALF
 is presented in Hedberg����
Hedberg has implemented a cartesian closed category of semilattices and approximable map�
pings�

In Martin�L�f�s type theory
 which is implemented in ALF
 there are two basic levels

types and sets� The sets are inductively de�ned and correspond to what is usually called
types in a programming language� The types are formed by the type Set
 the types of
elements of sets in Set
 and function types� In type theory propositions are identi�ed with
sets and proofs of propositions are identi�ed with elements of sets� in order to prove that a
proposition is true we need to �nd an element in the corresponding set� Three di�erent forms
of de�nitions �apart from de�nitions of contexts and substitutions
 which will be explained
later� will be used in this paper


�� Inductive de�nitions of sets or families of sets
 which consist of a formation rule and
introduction rules prescribing how its canonical elements are formed�

�� Explicit de�nitions
 which are names for well typed expressions�

�� Implicit de�nitions
 which provide the possibility of de�ning functions using pattern
matching ���� These may be recursive�

All type theory expressions will be written in ALF�syntax and in typewriter font� For example

the set of natural numbers is inductively de�ned by

N � Set

zero � N

succ � �n�N�N

Addition can then be implicitly de�ned
 using pattern matching


add � �n�N�m�N�N

add�zero�m� � m

add�succ�n���m� � succ�add�n��m��

And a function that doubles its argument can be explicitly de�ned


double � 	n
add�n�n� � �n�N�N

In this paper
 we will often refer to appendices about proofs� However
 most proof
terms are too long for a comprehensible presentation
 so we have decided to omit many
of them entirely and only present their types� Instead all proofs can be obtained by ftp�
ftp�cs�chalmers�se
 �pub�users�ceder�formtop���

� Formalization of pointfree topology in ALF

��� Formal topology

Following Sambin ���
 ���
 a structure hS��� �� �� posi is called a formal topology if it satis�es
the following requirements


�



�� S is a formal base
 that is
 a set with the binary operation � and element � such
that hS��� �i forms a meet semilattice �that is
 an algebra with a unit element and
a binary operator satisfying commutativity
 associativity
 unit law and idempotence��
The elements in S are called formal basic neighbourhoods�

�� � is a covering relation
 that is
 a relation between elements of S and subsets of S which
for arbitrary a� b � S and U� V � S satis�es


a � U
a � U

re�exivity

a � U ��b � U��b � V �

a � V
transitivity

a � U
a � b � U

��left�

a � U a � V

a � fb� c � b � U� c � V g
��right

�� pos is a consistency predicate
 that is
 a predicate on the elements of S which for
arbitrary a � S and U � S satis�es


pos�a� a � U

�	b � U� pos�b�
monotonicity

pos�a�
 a � U

a � U
positivity

If we extend �
 � and pos for arbitrary U� V � S by the de�nitions

U
V
V � fa � b � a � U� b � V g

U � V � ��a � U��a � V �

POS�U� � �	a � U�pos�a�

then transitivity
 ��right
 and monotonicity can be written

a � U U � V
a � V

transitivity

a � U a � V
a � U

V
V

��right

pos�a� a � U

POS�U�
monotonicity

which are also closer to the forthcoming de�nitions in type theory� �Observe the introduction
of the new symbols

V

 � and POS� The reason not to let �
 � and pos be overloaded is that

all of them will be de�ned in ALF and ALF does not support overloading��

�



In order to de�ne hS��� �i to be a semilattice
 an ordering or equality between the elements
in S is needed� To avoid that
 one can notice that if ��� in the de�nition above holds then
hS��� �i is a semilattice i� for arbitrary a � S and U � S

b � U
a � b � U

��left�

and

a � f�g
���

hold�
Proof
 First
 assume that hS��� �i is a semilattice with equality �S 
 ��left� then follows

from ��left� and commutativity of �
 and ��� is proved by

� � f�g

� � f�g
re�exivity

a � � � f�g
��left�

a � � �S a
unit

a � f�g
� must respect �S

Second
 if ��left� and ��� hold then
 then we can de�ne an equality between elements in S such
that two element are equal if they are covered by each other�s singleton sets� Commutativity

associativity
 unit law and idempotence for �
 with respect to that equality are then easily
proved� so hS��� �i form a semilattice with � as top element �for more details see appendix
D
 that hS��� �i form a semilattice is proved in ALF after the notion of formal topology is
de�ned in type theory��

By exchanging the requirement that hS��� �i should form a semilattice for the two new
rules
 we get a de�nition which is equivalent to the standard de�nition of formal topology�
The reason for this exchange is that it makes the formalization shorter� it is easier to state
the new rules than to de�ne a semilattice�

In the de�nition of formal topology
 a subset of S is a propositional function with argument
ranging over S� For instance
 a is considered as an element in U i� a � S and U�a� holds� In
section ��� there is a little theory of these subsets�

��� Explanations of the de�nition of formal topology

We can think of the elements of S as containing information represented by regions
 in such
a way that a neighbourhood corresponding to a subregion of another is more informative �it
contains more speci�c information�� By a � b we mean the conjunction of the information
represented by the intersection of the corresponding regions

����
��

�
�

�
��

�
�
�

a

b

a � b

and a subset U of S as the disjunction of the information in its elements
 represented by the
union of the regions of its elements� Then the covering can be understood by a picture
 a�U

�



i� the region of a is covered by the region of U �
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b�
b� b�

a a � U

where U � fb�� b�� b�g

Transitivity
 ��left and ��right can now be understood by the pictures
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a � b
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transitivity

aUV

Thinking of the neighbourhoods in terms of information we can understand the infor�
mation in a positive neighbourhood as meaningful or not contradictory� Monotonicity then
says that if a is positive and a is covered by U 
 then U must contain something meaningful�
Positivity says exactly that only positive elements contribute to the covering since positivity
is equivalent to

a � U

a � U�
openness

where U� � fb � U � pos�b�g

Proof
 We �rst assume positivity and show openness


a � U

�b � U � �pos�b��

b � U�
def of U�

b � U�
re�exivity

pos�b�
 b � U�
��intro

b � U�
positivity

��b � U��b � U��
��intro

U � U�
def

a � U�
transitivity

Then by assuming openness
 positivity is proved by

a � fag

a � fag
re�exivity

a � fag�
openness

pos�a�
 a � U

�b � fag��

b � a 	 pos�b�
def

b � U
subst���elim

��b � fag���b � U�
��intro

fag� � U
def

a � U
transitivity

�



For the moment
 regard the elements in S as being neighbourhoods of concrete points�
x�a will be used here to mean that a is a neighbourhood of the point x� Then � corresponds
to the whole space
 � corresponds to intersection
 a �U means �the set of points forming a is
included in the union of U�
 and pos�a� means that a is inhabited� For this special case
 we
can actually prove monotonicity and positivity� For monotonicity
 pos�a� implies that there is
a point
 say x
 in a and since a�U there exists a b in U such that x�b
 that is �	b � U� pos�b��
For positivity


�x�a�

�x�a�

pos�a�
pos�intro

pos�a�
 a � U

a � U
��elim

a �
S
U

def

x�
S
U

��elim

a �
S
U

��intro

a � U
def

��� Subsets as propositional functions

As mentioned before
 we use propositional functions over the base set S as subsets of S� If
U is a propositional function over S and a an element in S
 then a is considered to be an
element in U i� U�a� holds� We extend this to explain when a subset �propositional function�
is a subset of another subset of S� Let U and V be propositional functions over S
 then U

is a subset of V i� for all a in S
 U�a� implies V �a�� This can be de�ned by an introduction
rule


subset � �S�Set�U��S�Set�V��S�Set�Set

subsetintro � �S�Set�

U��S�Set�

V��S�Set�

�a�S�U�a��V�a��

subset�S�U�V�

U and V are considered equal �as sets� i� they are subsets of each other


eqsubset � 	S�U�V
Product�subset�S�U�V��subset�S�V�U�� �

�S�Set�U��S�Set�V��S�Set�Set

where Product is conjunction�

��� Using a context to formalize pointfree topology

We will now represent a formal topology by a list of assumptions �type declarations�
 in
which we assume sets and functions ranging over these sets as well as express the axioms that
describe the properties of the formal topology� Lists of type declarations are formalized as
contexts
 constructions which are governed by the following rules

� � � Context


 � Context � � type �
�

�
� x � �� � Context

�



where x does not occur free in 
 and �
� x � �� is the extension of 
 with the clause x � ��
In the implementation one will be used for �
 meet and MEET for � and

V

 respectively


cov and COV for � and �
 respectively�
First
 MEET
 COV and POS must be de�ned since they will be used inside the context

de�ning the topology� They depend on S
 meet
 cov and pos
 so S
 meet
 cov and pos occur
as parameters in MEET
 COV and POS� By this way MEET
 COV and POS can be used to di�erent
contexts de�ning formal topologies� But standing for themselves
 without such a context

they have of course not the intended meaning� MEET
 COV and POS could be explicitly de�ned

using quanti�ers
 but introduction rules makes the proofs easier


MEET � �S�Set�meet��S�S�S�U��S�Set�V��S�Set�S�Set

MEETintro � �S�Set�meet��S�S�S�U��S�Set�V��S�Set�a�S�b�S�U�a��V�b��

MEET�S�meet�U�V�meet�a�b��

COV � �S�Set�cov��S��S�Set�Set�U��S�Set�V��S�Set�Set

COVintro � �S�Set�cov��S��S�Set�Set�U��S�Set�V��S�Set��a�S�U�a��cov�a�V��

COV�S�cov�U�V�

POS � �S�Set�pos��S�Set�U��S�Set�Set

POSintro � �S�Set�pos��S�Set�U��S�Set�b�S�U�b��pos�b��POS�S�pos�U�

Our context also makes use of singleton sets
 which are explicitly de�ned using proposi�
tional equality


Sing � Id � �S�Set�S�S�Set

Finally
 the formal topology TOP is de�ned as a context which contains the following
assumptions
 S is a set with a particular element � and a binary operator meet
 cov is a
relation between elements and subsets of S and pos is a predicate on the elements of S
 followed
by the list of properties �corresponding to the rules in the de�nition of formal topology in
section ���� that S
 �
 meet
 cov and pos must have�

TOP is 	S�Set� one�S� meet��S�S�S� cov��S��S�Set�Set� pos��S�Set�

covmeet���a�S�cov�a�Sing�S�one���

covrefl��a�S�U��S�Set�U�a��cov�a�U��

covtrans��a�S�

U��S�Set�

V��S�Set�

cov�a�U��

f�COV�S�cov�U�V��cov�a�V��

covmeetl���a�S�b�S�U��S�Set�cov�a�U��cov�meet�a�b��U��

covmeetl���a�S�b�S�U��S�Set�cov�b�U��cov�meet�a�b��U��

�



covmeetr��a�S�

U��S�Set�

V��S�Set�

cov�a�U��

cov�a�V��cov�a�MEET�S�meet�U�V���

mono��a�S�U��S�Set�pos�a��cov�a�U��POS�S�pos�U��

posi��a�S�U��S�Set��pos�a��cov�a�U��cov�a�U�


However
 using contexts to represent algebraic structures have some drawbacks� For
instance
 the de�nition above gives us no template for making new topologies� a proof or
de�nition that involve several algebraic structures require as many contexts� That means
that reasoning using many algebraic structures is tedious� In Betarte ��� there is a more
detailed discussion about this�

����� Concrete topology as substitution

We also want to express that some structure is an instance of the de�nition of formal topology�
For that we use the notion of substitution
 that is an assignment of objects of appropriate
types to the variables in a context� Substitutions are introduced by the following rules

f g � � � �
�

� � � �
� � � type ��� a � �� �
�

f�� x �� ag � ��� x � �� �
�

where f g is the empty substitution and f�� x �� ag is the extension of the substitution � with
the assignment x �� a� This will be used in the example below� In Tasistro ����
 substitutions
are explained in more detail�

����� Example� Neighbourhoods of the natural numbers

As an example
 given by Sambin ����
 of a concrete pointfree topology we take the set SN of
neighbourhoods of the natural numbers given by the rules

N � SN


 � SN

a � SN
s�a� � SN

� � SN

and if a and b are two neighbourhoods of a number then
 their intersection
 a �nat b is a
neighbourhood of the same number� Furthermore
 a neighbourhood is positive if it is a
neighbourhood of a number�

The intended meaning is that sn�N�
 where n � N 
 is a neighbourhood of all numbers
in fn� n � �� n � �� ���g
 sn�
� is a neighbourhood only of sn�
�
 and no number has � as
neighbourhood �� is needed to make sure that given two neighbourhoods a and b
 a�nat b is

�	



a neighbourhood�� The �gure illustrates the structure that the neighbourhoods form


�� ��

�� ��

��

C
C
C
C
C
C
C
C
CC

�
�
�
�

�
�
�
�

� �
� �

� �
�

N


 s�N�

s�
� s�s�N��

s�s�
��

�

The �gure is not complete
 there are also an in�nite number of empty neighbourhoods of the
form s����s�� �����
 which are not identical to � but are equal to � in the sense that they are
all non positive and therefore also covered by each other�s singleton sets�

Formalized in type theory
 SN is a set with four constructors


SN � Set

onenat � SN

zero � SN

s � �SN�SN

ff � SN

where onenat and zero correspond toN and 

 respectively� �nat �meetnat� can be implicitly
de�ned
 using pattern matching


meetnat � �a�SN�b�SN�SN

meetnat�onenat�b� � b

meetnat�zero�onenat� � zero

meetnat�zero�zero� � zero

meetnat�zero�s�h�� � ff

meetnat�zero�ff� � ff

meetnat�s�h��onenat� � s�h�

meetnat�s�h��zero� � ff

meetnat�s�h��s�h��� � s�meetnat�h�h���

meetnat�s�h��ff� � ff

meetnat�ff�b� � ff

We de�ne a neighbourhood to be positive if it is a neighbourhood of a number
 thus � 
 s�� �

s�s�� ��
 ��� are the only non�positive neighbourhoods


posnat � �a�SN�Set

posnat�onenat� � N�

posnat�zero� � N�

posnat�s�h�� � posnat�h�

posnat�ff� � Empty

��



where N� is the set containing tt as only element
 that is
 a true proposition and Empty is
the empty set
 that is
 a false proposition�

Before de�ning the covering relation we de�ne a partial order �nat on the neighbourhoods
by

a �nat b i� a �nat b � a

This is the same ordering as in a semilattice �and in the �gure above�
 which the neighbour�
hoods in fact form even though we have not proved it yet� In type theory �nat is explicitly
de�ned using propositional equality


leqnat � 	a�b
Id�SN�meetnat�a�b��a� � �a�SN�b�SN�Set

Now we can de�ne the covering relation
 for arbitrary a � S and U � S
 by

a � U i� a is not positive or �	b � U��a �nat b�

But instead the following de�nition by introduction rules will be used

covnat � �a�SN�U��SN�Set�Set

covnati� � �a�SN�U��SN�Set��posnat�a��Empty�covnat�a�U�

covnati� � �a�SN�U��SN�Set�b�SN�U�b��leqnat�a�b��covnat�a�U�

It is easy to see that the two de�nitions of covering above �� and covnat� are equivalent� The
reason not to de�ne covnat explicitly
 using existential quanti�cation
 is that the de�nition
by introduction rules makes the proofs easier and shorter�

In order to show that SN
 onenat
 meetnat
 covnat and posnat is a formal topology one
must prove that all the properties of formal topology �the properties listed in the de�nition
of TOP� are satis�ed� Consult appendix C for more details�

The proof that the neighbourhoods of the natural numbers is a formal topology is then
completed by the substitution TOPNAT


TOPNAT is �S��SN� one��onenat� meet��meetnat� cov��covnat� pos��posnat�

covmeet���covmeetnat�� covrefl��covreflnat�

covtrans��covtransnat� covmeetl���covmeetnatl��

covmeetl���covmeetnatl�� covmeetr��covmeetnatr�

mono��mononat� posi��posinat
 � TOP 	


��� Properties of a formal topology

In this section we will concentrate on de�nitions and types
 not on the proofs� The proof
terms of the types are too long for a readable presentation
 they can however be obtained by
ftp �see the introduction�� For a description of the proofs see Sambin ����� The de�nitions
and results of this section are not used in the rest of the paper�

����� Frames and complete Heyting algebras

Here we show that a formal topology de�nes a frame in such a way that equivalence classes
of subsets �the equality will soon be de�ned� are the opens
 COV corresponds to the partial
order and MEET corresponds to the meet operation�

First we de�ne the equality relation between subsets such that two subsets are equal i�
they cover each other


��



EQS � 	U�V
Product�COV�S�cov�U�V��COV�S�cov�V�U�� �

�U��S�Set�V��S�Set�Set TOP

Note here that we are doing all this in the context TOP� That EQS is an equivalence relation
is easily proved �see appendix E
 EQSsymm
 EQSrefl
 EQStrans��

The opens �equivalence classes of subsets� are di�cult to de�ne in ALF and so are ordering

meet� and join�operations for opens
 instead we will rely on the fact that the ordering respects
EQS and that EQS respects meet and join
 which are de�ned on subsets� Of course that has to
be proved
 the types of the proof is in appendix E
 COVrespEQS
 EQSrespMEET
 EQSrespJOIN�

For the ordering COV is used
 which is a partial order on the family of subsets of S �appendix
E
 COVtrans
 COVrefl
 antisymmetry follows directly from the de�nition of the equality EQS��

For the meet operation we use MEET
 which gives the in�mum �appendix E
 MEETisinfl�

MEETisinfl�
 MEETisinfr��

Join is de�ned as a union


JOIN � 	T�I�U
union�S�T�I�U� � �T�Set�I��T�Set�U��T�S�Set�S�Set TOP

We postpone the de�nition of union to section ���� JOIN gives the supremum �appendix E

JOINissup�
 JOINissup���

Finally the in�nite distributivity

�T�Set�I��T�Set�V��S�Set�U��T�S�Set�

EQS�MEET�S�meet�V�JOIN�T�I�U���

JOIN�T�I�	i
MEET�S�meet�V�U�i���� TOP

holds �appendix E
 infdistr��
This far we have proved that a formal topology de�nes a frame� Implication can then be

de�ned in the frame so it becomes a complete Heyting algebra�
A complete Heyting algebra is a complete lattice A where
 for every a� b � A
 there is an

element a
 b satisfying
c � a
 b i� c � a � b�

In a frame 
 is de�ned by
a
 b �

W
fc � c � a � bg�

For a proof that this de�nition of implication gives a complete Heyting algebra see for in�
stance �����

The de�nition of implication translated to our case becomes

cHaimply � 	U�V�a
COV�S�cov�MEET�S�meet�U�Sing�S�a���V� �

�U��S�Set�V��S�Set�a�S�Set TOP

cHaimply respects EQS and satis�es the implication property �see appendix E
 cHaimplyrespEQS

cHaimplyprop�
 cHaimplyprop��� This completes the proof that a formal topology de�nes a
complete Heyting algebra�

����� Closure operator

In the previous subsection it was shown that the equivalence classes of subsets form a frame�
Now we will de�ne a closure operator
 that is an operator that given a subset U returns its
downward closure� The downward closure of a subset U is the subset of all neighbourhoods
which are covered by U �

��



We will show that each equivalence class contains a closed set and that the closed sets
form a frame which is isomorphic to the frame formed by the equivalence classes in such way
that each equivalence class is represented by its closed set�

A closure operator
 Cl
 is an operator acting on subsets and satisfying the following
properties

U � Cl�U�
U � V 
 Cl�U� � Cl�V �
Cl�Cl�U�� � Cl�U�

Here Cl is explicitly de�ned by

Cl � 	U�a
cov�a�U� � �U��S�Set�a�S�Set TOP

Cl satisfy the closure operator properties �appendix F
 Clprop�
�
���
We then say that a subset is closed or saturated if it is equal
 as a subset
 to its closure


sat � 	U
eqsubset�S�U�Cl�U�� � �U��S�Set�Set TOP

Since

�U��S�Set�EQS�U�Cl�U�� TOP

holds
 any equivalence class contains a closed subset� Given two subsets in the same equiva�
lence class
 their closures are equal

�U��S�Set�V��S�Set�EQS�U�V��eqsubset�S�Cl�U��Cl�V�� TOP�

so any equivalence class contains exactly one closed subset� Thus the closed subsets form a
frame which is isomorphic to the frame formed by the equivalence classes�

�U��S�Set�V��S�Set�COV�S�cov�U�V��subset�S�Cl�U��Cl�V�� TOP

and

�U��S�Set�V��S�Set�subset�S�Cl�U��Cl�V���COV�S�cov�U�V� TOP

hold
 so the order in this frame is the subset order�
cHaimply�U�V� is closed for any two subsets U and V
 and Cl preserves implication
 so

the closed sets form a cHa which is isomorphic to the one formed by the equivalence classes
�appendix F
 satcHaimply
 ClprescHaimply��

In appendix F meet� and join�operations are also de�ned� In appendix F there are also
proofs of that Cl is a cHa isomorphism�

��� Points

A formal point �Sambin ����� of a formal topology hS��� �� �� posi is a subset p of S which

for arbitrary a� b � S
 satis�es

�� � � p

��



��
a � p b � p

a � b � p

��
a � p a � U

�	b � U��b � p�

��
a � p

pos�a�

Even though a point is a subset
 the intuition of a subset as an open and a subset as a point
are not the same� A subset �recall section ���� we regard as union of the regions of its elements

while we can understand a point as something in the intersection of all neighbourhoods in it�
So an informal understanding of a � p �where a is a neighbourhood and p a point� might be
�p is a point in a�� Then we can understand the de�nition of points in the following way�

�� Any point p is in the space �since � corresponds to the whole space��

�� If p is in both a and b
 then p is in the intersection of a and b�

���
��

�
�
�
�
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a � b
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�� If p is in a and a is covered by U 
 then U must contain a neighbourhood containing p�
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b� b�

a

p

a � U

where U � fb�� b�� b�g

�� If p is in a then a is meaningful�

To avoid the existential quanti�cation
 in rule � of the de�nition of formal point
 we make
the following de�nition

P � �p��S�Set�U��S�Set�Set TOP

Pintro � �p��S�Set�U��S�Set�b�S�U�b��p�b��P�p�U� TOP

Informally
 P �p� U� holds i� �	b � U��b � p��
From rule ��� one can see that a de�nition by introduction rules of points impossible


��



point � �p��S�Set�Set TOP

pointintro � �p��S�Set�

p�one��

�a�S�b�S�p�a��p�b��p�meet�a�b���

�a�S�U��S�Set�p�a��cov�a�U��P�p�U��

�a�S�p�a��pos�a��

point�p� TOP

For instance it does not follow the general scheme �given in ���� of an inductive de�nition
 U
is of function type and is not a parameter to the de�nition� So a neat de�nition of formal
points in type theory seems to be impossible� Instead we can do the following
 in order to
prove that a subset p is a point we prove

p�one� 


�a�b�S�p�a��p�b��p�meet�a�b�� 


�a�S�U��S�Set�p�a��cov�a�U��P�p�U�

and

�a�S�p�a��pos�a��

And in order to prove that
 given a point p
 some property C�p� holds
 we assume all prop�
erties a point must have


�p��S�Set�

p�one��

�a�S�b�S�p�a��p�b��p�meet�a�b���

�a�S�U��S�Set�p�a��cov�a�U��P�p�U��

�a�S�p�a��pos�a��

C�p� TOP

The above de�nition of points corresponds exactly to the de�nition of points as completely
prime �lters� For details see appendix G�

� The points of a Scott topology form a Scott domain

In this section we will show that the formal points of a Scott topology form a Scott domain�

��� Scott domain

By a Scott domain we mean an algebraic cpo in which every family of elements which is
bounded above has a least upper bound� Observe that we use the word family and not
subset
 in general the points do not form a proper set in the type theoretic sense� In the
following de�nitions
 which are adopted from Sambin ����
 there is a distinction between sets


��



collections and families� Sets are inductively de�ned and families are subcollections indexed
by sets or subsets �propositional functions��

Let D � hD�vi be a partially ordered collection� A family �xi�i�I of elements in D is
bounded whenever there exist an element x � D such that ��i � I��xi v x� and directed if
I is inhabited and ��i� j � I��	k � I��xi v xk 	 xj v xk�� D is called a complete partial

order �cpo� if D has a minimum element � and every directed family has a supremum� The
supremum of a directed family �xi�i�I will be denoted

F
i�I xi�

An element a of a cpo D is called compact if
 for any directed family �xi�i�I of elements
in D
 a v

F
i�I xi implies that �	k � I��a v xk�� We will write K�D� for the collection of

compact elements of D�
A cpo D is called algebraic if
 for every x � D
 the collection fa � K�D� � a v xg of

compact lower bounds of x is a directed family of elements �ai�i�I 
 for a suitable index set
I 
 such that x �

F
i�I ai� This de�nition is stronger than the traditional
 normally it is only

required that x �
F
fa � K�D� � a v xg since fa � K�D� � a v xg is directed� But here we

also require that the compact elements of a domain must form a family�
From Sambin ���� it follows that any algebraic cpo such that any bounded pair of compact

elements has a supremum is a Scott domain� This is the property that we will show that the
points satisfy�

��� Scott topology

In the following de�nition we mean by set
 set in classical set theory� Let hX�vi be a poset
of points� The Scott topology on hX�vi consists of all sets U � X that satisfy


 U is upward closed
 that is if x � U and x v y then y � U �


 U is inaccessible by directed joins
 that is if V � X is directed and
W
V � U then

�	x � V ��x � U��

Now let hX�vi be a Scott domain and consider its Scott topology� It can be shown
�Sambin ����� that the subsets OU � fx � X � ��a � U��a v x�g
 for U �f K�X� ��f means
�nite subset�
 form a base for this topology� Moreover if OU is inhabited and OU �

S
i�I OUi

then �	i � I��OU � OUi
��

Proof
 Assume OU is inhabited and OU �
S
i�I OUi

� From OU inhabited it follows that
U is bounded above and since X is a Scott domain U has a supremum

F
U 
 for which

��a � U��a v
F
U� holds
 that is

F
U � OU � Now

OU �
�

i�I

OUi
�

G
U �

�

i�I

OUi

� �	i � I��
G

U � OUi
�

� �	i � I���a � Ui��a v
G

U��

Then take an arbitrary x � OU � Since hX�vi is algebraic
 x is equal to the supremum of its
compact lower bounds
 hence

F
U v x� By transitivity of v
 ��a � Ui��a v x� for some i � I 


that is x � OUi
for some i � I � So �	i � I��OU � OUi

��
This property of Scott topologies is taken as de�nition in the pointfree approach
 thinking

of the base fOU � U �f K�X�g as a formal base� A formal topology is called Scott if it
satis�es

��



a � U pos�a�

�	b � U��a � fbg�
scott

By the de�nition

SCOTTOP is TOP � 	scott��a�S�

U��S�Set�

cov�a�U��

pos�a��

Exists�S�	b
Product�U�b��cov�a�Sing�S�b����


SCOTTOP is the context TOP extended with the scott property�

����� Example� Neighbourhoods of the natural numbers

Recall the example in section ������ It is easy to see that the Scott property is also satis�ed

so SN
 onenat
 meetnat
 covnat and posnat actually form a Scott topology� For a full proof
in ALF see appendix I�

��� Points of a Scott topology

If the Scott property holds then the covering relation � can be replaced by the simpler relation
� de�ned by

a � b � a � fbg

A formal point is the same as a subset p satisfying

�� � � p

��
a � p b � p

a � b � p

��
a � p a � b

b � p

��
a � p

pos�a�

If we �rst de�ne the new order

leq � 	a�b
cov�a�Sing�S�b�� � �a�S�b�S�Set TOP

then the points can be de�ned �there is no longer a quanti�cation over subsets�


scpoint � �p��S�Set�Set SCOTTOP

scpintro � �p��S�Set�

p�one��

�a�S�b�S�p�a��p�b��p�meet�a�b���

�a�S�b�S�p�a��leq�a�b��p�b��

�a�S�p�a��pos�a��

scpoint�p� SCOTTOP

It is easy to prove that if the Scott property holds then a subset p is a point i� scpoint�p�

holds� For details see appendix J �point�scpoint
 scpoint�point��

��



��� De�nition of union of subsets	 directed families and compactness

Before we present the proof
 that the points of a Scott topology form a Scott domain
 some
more de�nitions are needed� In the proofs we will look at families of points where the index
set itself is a point �propositional function�
 so in the de�nitions the index set must be a
general subset� Formally
 the family fpigi�I consists of three parts


T�Set

I��T�Set

p��T�S�Set

The intended meaning is
 if i�T then p�i� is a member of the family i� I�i� holds�
Union of subsets


union � �S�Set�T�Set�I��T�Set�U��T�S�Set�S�Set

unionintro � �S�Set�

T�Set�

I��T�Set�

U��T�S�Set�

i�T�

I�i��

a�S�

U�i�a��

union�S�T�I�U�a�

The order in the domain is the subset order
 so in the de�nition of directed families and
compactness we use subset�

Directed families


directed � �S�Set�T�Set�I��T�Set�p��T�S�Set�Set

directedintro � �S�Set�

T�Set�

I��T�Set�

p��T�S�Set�

i��T�

I�i���

�i�T�j�T�I�i��I�j��

Exists�T�	k
Product�I�k��

Product�subset�S�p�i��p�k���

subset�S�p�j��p�k������

directed�S�T�I�p�

As was the case with the points �section ����
 a de�nition by introduction rules of com�
pactness is impossible� It would contain quanti�cations over function types


��



compact � ��S�Set�Set

compactintro � �q��S�Set�

�T�Set�

I��T�Set�

p��T�S�Set�

directed�S�T�I�p��

subset�S�q�union�S�T�I�p���

Exists�T�	i
Product�I�i��subset�S�q�p�i�����

compact�q�

In order to prove that a point q in a cpo is compact
 one has to show that the function type

�T�Set�

I��T�Set�

p��T�S�Set�

directed�S�T�I�p��

subset�S�q�union�S�T�I�p���

Exists�T�	i
Product�I�i��subset�S�q�p�i����

is inhabited� And in order to prove that
 given a compact point q
 some property C�q� holds
then all the properties of a compact point has to be assumed


�q��S�Set�

scpoint�q��

�T�Set�

I��T�Set�

p��T�S�Set�

directed�S�T�I�p��

subset�S�q�union�S�T�I�p���Exists�S�	i
Product�I�i��subset�S�q�p�i�����

C�q�

��� The points of a Scott topology form a Scott domain

Unless otherwise stated
 the types for the propositions in this section can be found in ap�
pendix L� The formal proofs can be obtained by ftp�

����� The points form an algebraic cpo

In order to show that the points of a Scott topology form a cpo
 which we denote by Pt�S�
�where S is the formal base�
 we need the extra property that � is positive� Points are subsets
of positive neighbourhoods and � is contained in all points
 so without the knowledge that �
is positive we cannot show that there are any points at all
 particularly no bottom element

and consequently no cpo�

The order is the subset order �subset� which
 of course
 is re�exive �subsetrefl in
appendix A�
 transitive �subsettrans in appendix A� and antisymmetric �by de�nition of
the equality
 eqsubset��

Next we need a bottom element
 a point which is a subset of all other points� Given a
positive element a � S
 its upper closure �a � fc � S � a � cg can easily be shown to be

�	



a point� In our type theoretic notation
 the upper closure of a neighbourhood a is leq�a��
genscp is a proof that given an arbitrary positive neighbourhood a
 leq�a� is a point� in
particular if pos�one� holds then leq�one� is a point� Intuitively
 since all points contains
� and all points are upper closed
 the upper closure of � is a least element� leqonemin is a
formal proof of that�

The union of a family of subsets is
 of course
 an upper bound of the family �unionsup��

it is less than or equal to all upper bounds �unionsup�� and the union of a directed family
of points is a point itself �unionpoint�� So given a directed family of points its supremum is
formed by taking the union of all points in the family�

That Pt�S� is algebraic is proved as follows� Given two arbitrary points p and q
 we have

��a�a�p is directed ���

and

q � p 	 q compact� �	a � p��q ��a� ���

which implies that the family of compact lower bounds to p is ��a�a�p� Finally the union of
��a�a�p �which is the supremum� is equal to p


�

a�p

�a � p ���

Proof of �
 � � p so p is inhabited� If a� b � p then a � b � p and �a� �b ���a � b��
Proof of ��
 Assume that q � p and q is compact� The family ��a�a�q is directed �follows

from ��� Clearly q �
S
a�q �a
 so by the de�nition of compactness �	a � q��q ��a� follows�

But if a � q then �a � q
 so we have �	a � q��q ��a� and from the assumption q � p we get
�	a � p��q ��a��

�
 Assume that �	a � p��q ��a�� Clearly q � p holds� By existential elimination q ��a

for some a � p� Let �ri�i�I be a directed family such that q �

S
i�I ri� By substitution we

have �a �
S
i�I ri� Now

�a �
�

i�I

ri � a �
�

i�I

ri

� �	i � I��a � ri�

� �	i � I���a � ri��

And by substituting back �	i � I��q � ri� follows� So q is compact�
Proof of �
 It is easy to see that p �

S
a�p �a� Let b �

S
a�p �a then �	a � p��b ��a�� But

if a � p then �a � p so b � p� Thus
S
a�p �a � p�

Again
 the proof terms are too long so we only present the types� � is proved by

genscpdir � �p��S�Set�scpoint�p��directed�S�S�p�leq� SCOTTOP

The implication from left to right in � follows from

��



scpcomplb� � �q��S�Set�

scpoint�q��

�T�Set�

I��T�Set�

r��T�S�Set�

directed�S�T�I�r��

subset�S�q�union�S�T�I�r���

Exists�T�	x
Product�I�x��subset�S�q�r�x�����

p��S�Set�

subset�S�q�p��

Exists�S�	a
Product�p�a��eqsubset�S�q�leq�a���� SCOTTOP

The �rst conjunct in the implication from right to left follows from

scpcomplb�a � �p��S�Set�

q��S�Set�

scpoint�p��

Exists�S�	a
Product�p�a��eqsubset�S�q�leq�a�����

subset�S�q�p� SCOTTOP

and the second conjunct from

scpcomplb�b � �p��S�Set�

q��S�Set�

Exists�S�	a
Product�p�a��eqsubset�S�q�leq�a�����

T�Set�

I��T�Set�

r��T�S�Set�

�i�T�I�i��scpoint�r�i���

subset�S�q�union�S�T�I�r���

Exists�T�	x
Product�I�x��subset�S�q�r�x���� SCOTTOP

� is proved by

supcompscp � �p��S�Set�scpoint�p��eqsubset�S�p�union�S�S�p�leq�� SCOTTOP

����� Every bounded pair of compact points has a supremum

In order to prove that every bounded pair of compact points has a supremum we �rst notice
that

if a point p is compact then �	a � p��p ��a� ���

The proof of this is similar to the proof of �� �In fact the converse also holds�� Now take two
arbitrary compact points p� and p�
 we then know that there exists positive a and b such that
p� ��a and p� ��b� If p� and p� are bounded
 by say the point r
 then a� b � r and since r is a
point a�b � r� Again
 since r is a point
 a�b is positive so ��a�b� is a point� �a� �b ���a�b�
and if �a� �b � q then ��a � b� � q� Hence the supremum of p� and p� is ��a � b�
 provided
they are bounded�

� follows from

��



gencompscp � �p��S�Set�

scpoint�p��

�T�Set�

I��T�Set�

p���T�S�Set�

directed�S�T�I�p���

subset�S�p�union�S�T�I�p����

Exists�T�	h
Product�I�h��subset�S�p�p��h�����

Exists�S�	h
Product�p�h��eqsubset�S�p�leq�h����

Now the fact that every two compact points
 which are bounded above
 have a supremum is
proved by

psuptoleqp � �p���S�Set�

p���S�Set�

scpoint�p���

scpoint�p���

�T�Set�

I��T�Set�

q��T�S�Set�

directed�S�T�I�q��

subset�S�p��union�S�T�I�q���

Exists�T�	h
Product�I�h��subset�S�p��q�h�����

�T�Set�

I��T�Set�

q��T�S�Set�

directed�S�T�I�q��

subset�S�p��union�S�T�I�q���

Exists�T�	h
Product�I�h��subset�S�p��q�h�����

r��S�Set�

scpoint�r��

subset�S�p��r��

subset�S�p��r��

q��S�Set�

scpoint�q��

Exists�S�	x
Product�Product�scpoint�leq�x���

Product�subset�S�p��leq�x���

subset�S�p��leq�x�����

Imply�Product�subset�S�p��q��

subset�S�p��q���

subset�S�leq�x��q���� SCOTTOP

The meaning of the type above is the following
 if p�
 p� and q are compact points
 such that
p� and p� are bounded above
 then

�	x � S���x is a point 	 p�� p� � �x 	 �p�� p� � q 
 �x � q���

��



����� Example� Natural numbers

Recall again the example in section ����� and �����
 on formal neighbourhoods of the natural
numbers� From the de�nition of points in a Scott topology it is easy to see that the domain
formed by the points in our case is

����
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�
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�
�

��




s�
�

�

s���

s�s����

s�s�
��

s����

where

� is fNg

 is fN� 
g

s��� is fN� s�N�g
s�
� is fN� s�N�� s�
�g

s�s���� is fN� s�N�� s�s�N��g
� �
� �

s���� is fN� s�N�� s�s�N��� ���g

and all points except of s���� are �nite�

� Discussion

��� Subsets as propositional functions

By using propositional functions to represent subsets we can form subsets that cannot be
constructed by using sets of type Set as subsets
 if P is a predicate over the set S then we
also have the subset fx � S � P �x�g
 in general there is no way to e�ectively produce the
elements of this subset
 and the same element can occur in several subsets�

Another possibility is to use
P
�sets
 let a �

P
�S� U� i� there exist some b � U�a� such

that ha� bi �
P
�S� U�� But to create

P
�S� U� we need the predicate U and when we use an

element a of a subset we �rst have to pick out a from the pair ha� bi�

��� The consistency predicate

The rule of positivity


pos�a�
 a � U

a � U 


has not been used in any formal proof� The rule of monotonicity


��



pos�a� a � U

�	b � U� pos�b� 


has been used to show
 if a is a positive neighbourhood in a Scott topology
 then the upper
closure of a
 �a
 is a point� This
 in turn
 is frequently used in the proof that the points of a
Scott topology form a Scott domain
 but the reason for that is that the points
 by de�nition

consist of positive neighbourhoods�

By simply removing the consistency predicate and its rules
 we can still show that �any
formal topology de�nes a frame� and �the points of a Scott topology form a Scott domain��
For Scott topologies
 however
 the Scott property


a � U pos�a�

�	b � U��a � fbg� 


must be changed� if a is the least element then a �U even if U is empty� A new condition for
a Scott topology might be

a � U � ��b � S��a � fbg�
W

�	b � U��a � fbg�

or
 even better
 remove the old condition and replace the covering � by � �de�ned by a � b �
a � fbg� in all the other rules� So one might ask whether the consistency predicate is needed�
The category of Scott topologies �with consistency predicate� is equivalent to the category of
Scott domains �for a proof see �����
 we cannot expect that this equivalence still holds if we
remove some rules from the de�nition of formal topology�

��� Problems

One of the main problems that occured when formalizing pointfree topology and domain
theory in ALF
 was that we did not �nd any internal de�nition of points �section ���� and
compactness �section ����� As a consequence many types have become long and hard to read�
it is cumbersome to say that something is a point�compact element
 both as assumption
and as result of a proposition� Another consequence is that the proof terms
 even for trivial
lemmas
 have become unreadable� they contain many variables and several of them are of
function type�

Another problem is that some properties are di�cult to express inside the theory� To show
the statements �the equivalence classes of subsets form a frame� and �the points of a Scott
topology form a Scott domain� we have proved a lot of properties
 which together implies
that one can understand
 outside the theory
 that the statements are correct�
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A Subsets as propositional functions

subset � �S�Set�U��S�Set�V��S�Set�Set 	
 C

subsetintro � �S�Set�

U��S�Set�

V��S�Set�

�a�S�U�a��V�a��

subset�S�U�V� 	
 C

eqsubset � 	S�U�V
Product�subset�S�U�V��subset�S�V�U�� �

�S�Set�U��S�Set�V��S�Set�Set 	


subsetrefl � �S�Set�U��S�Set�subset�S�U�U� 	
 I

subsetrefl�S�U� � subsetintro�S�U�U�	a�h
h�

subsettrans � �S�Set�

U��S�Set�

V��S�Set�

W��S�Set�

subset�S�U�V��

subset�S�V�W��

subset�S�U�W� 	
 I

subsettrans�S�U�V�W�subsetintro�������h���subsetintro�������h�� �

subsetintro�S�U�W�	a�h�
h�a�h��a�h����

B Formal topology

COV � �S�Set�cov��S��S�Set�Set�U��S�Set�V��S�Set�Set 	
 C

COVintro � �S�Set�

cov��S��S�Set�Set�

U��S�Set�

V��S�Set�

�a�S�U�a��cov�a�V��

COV�S�cov�U�V� 	
 C

��



MEET � �S�Set�meet��S�S�S�U��S�Set�V��S�Set�S�Set 	
 C

MEETintro � �S�Set�

meet��S�S�S�

U��S�Set�

V��S�Set�

a�S�

b�S�

U�a��

V�b��

MEET�S�meet�U�V�meet�a�b�� 	
 C

POS � �S�Set�pos��S�Set�U��S�Set�Set 	
 C

POSintro � �S�Set�

pos��S�Set�

U��S�Set�

b�S�

U�b��

pos�b��

POS�S�pos�U� 	
 C

Sing � Id � �S�Set�S�S�Set 	


TOP is 	S�Set� one�S� meet��S�S�S� cov��S��S�Set�Set� pos��S�Set�

covmeet���a�S�cov�a�Sing�S�one���

covrefl��a�S�U��S�Set�U�a��cov�a�U��

covtrans��a�S�U��S�Set�V��S�Set�cov�a�U��f�COV�S�cov�U�V��cov�a�V��

covmeetl���a�S�b�S�U��S�Set�cov�a�U��cov�meet�a�b��U��

covmeetl���a�S�b�S�U��S�Set�cov�b�U��cov�meet�a�b��U��

covmeetr��a�S�

U��S�Set�

V��S�Set�

cov�a�U��

cov�a�V��

cov�a�MEET�S�meet�U�V���

mono��a�S�U��S�Set�pos�a��cov�a�U��POS�S�pos�U��

posi��a�S�U��S�Set��pos�a��cov�a�U��cov�a�U�


��



C A concrete topology� Neighbourhoods of the natural num�
bers

SN � Set 	
 C

onenat � SN 	
 C

zero � SN 	
 C

s � �SN�SN 	
 C

ff � SN 	
 C

meetnat � �a�SN�b�SN�SN 	
 I

meetnat�onenat�b� � b

meetnat�zero�onenat� � zero

meetnat�zero�zero� � zero

meetnat�zero�s�h�� � ff

meetnat�zero�ff� � ff

meetnat�s�h��onenat� � s�h�

meetnat�s�h��zero� � ff

meetnat�s�h��s�h��� � s�meetnat�h�h���

meetnat�s�h��ff� � ff

meetnat�ff�b� � ff

leqnat � 	a�b
Id�SN�meetnat�a�b��a� � �a�SN�b�SN�Set 	


posnat � �a�SN�Set 	
 I

posnat�onenat� � N�

posnat�zero� � N�

posnat�s�h�� � posnat�h�

posnat�ff� � Empty

covnat � �a�SN�U��SN�Set�Set 	
 C

covnati� � �a�SN�U��SN�Set��posnat�a��Empty�covnat�a�U� 	
 C

covnati� � �a�SN�U��SN�Set�b�SN�U�b��leqnat�a�b��covnat�a�U� 	
 C

We present only the types
 because of the length of the proofs


covmeetnat� � �a�SN�covnat�a�Sing�SN�onenat�� 	


covreflnat � �a�SN�U��SN�Set�U�a��covnat�a�U� 	


covmeetnatl� � �a�SN�b�SN�U��SN�Set�covnat�a�U��covnat�meetnat�a�b��U� 	


��



covmeetnatl� � �a�SN�b�SN�U��SN�Set�covnat�b�U��covnat�meetnat�a�b��U� 	


covmeetnatr � �a�SN�

U��SN�Set�

V��SN�Set�

covnat�a�U��

covnat�a�V��

covnat�a�MEET�SN�meetnat�U�V�� 	


covtransnat � �a�SN�

U��SN�Set�

V��SN�Set�

covnat�a�U��

f�COV�SN�covnat�U�V��

covnat�a�V� 	


mononat � �a�SN�U��SN�Set�posnat�a��covnat�a�U��POS�SN�posnat�U� 	


posinat � �a�SN�U��SN�Set��posnat�a��covnat�a�U��covnat�a�U� 	


TOPNAT is �S��SN� one��onenat� meet��meetnat� cov��covnat� pos��posnat�

covmeet���covmeetnat�� covrefl��covreflnat�

covtrans��covtransnat� covmeetl���covmeetnatl��

covmeetl���covmeetnatl�� covmeetr��covmeetnatr�

mono��mononat�posi��posinat
 � TOP 	


D Semilattice

Order between the formal neighbourhoods


leq � 	a�b
cov�a�Sing�S�b�� � �a�S�b�S�Set TOP

Equality between the formal neighbourhoods


eqs � 	a�b
Product�leq�a�b��leq�b�a�� � �S�S�Set TOP

hS�meet�onei with order leq form a semilattice� We only present the types
 since the proofs
are too long


meetcomm � �a�S�b�S�eqs�meet�a�b��meet�b�a�� TOP

meetassoc � �a�S�b�S�c�S�eqs�meet�a�meet�b�c���meet�meet�a�b��c�� TOP

meetunit � �a�S�eqs�meet�one�a��a� TOP

meetidem � �a�S�eqs�meet�a�a��a� TOP

�	



E A formal topology de	nes a frame
complete Heyting alge�
bra

Equivalence between subsets


EQS � 	U�V
Product�COV�S�cov�U�V��COV�S�cov�V�U�� � �U��S�Set�V��S�Set�Set TOP

Join in the formal topology


JOIN � 	T�I�U
union�S�T�I�U� � �T�Set�I��T�Set�U��T�S�Set�S�Set TOP

�union is de�ned in appendix K��

Implication in complete Heyting algebra


cHaimply � 	U�V�a
COV�S�cov�MEET�S�meet�U�Sing�S�a���V� �

�U��S�Set�V��S�Set�a�S�Set TOP

A formal topology de�nes a frame�complete Heyting algebra� We only present the types

because of the length of the proof terms�

EQS is an equivalence relation


EQSrefl � �U��S�Set�EQS�U�U� TOP

EQSsymm � �U��S�Set�V��S�Set�EQS�U�V��EQS�V�U� TOP

EQStrans � �U��S�Set�V��S�Set�W��S�Set�EQS�U�V��EQS�V�W��EQS�U�W� TOP

COV is a partial order on the subsets of S �antisymmetri is direct from the de�nition of EQS�


COVrefl � �U��S�Set�COV�S�cov�U�U� TOP

COVtrans � �U��S�Set�

V��S�Set�

W��S�Set�

COV�S�cov�U�V��

COV�S�cov�V�W��

COV�S�cov�U�W� TOP

COV respects EQS


COVrespEQS � �U��S�Set�

V��S�Set�

U���S�Set�

V���S�Set�

COV�S�cov�U�V��

EQS�U�U���

EQS�V�V���

COV�S�cov�U��V�� TOP

��



EQS respects MEET


EQSrespMEET � �U��S�Set�

U���S�Set�

V��S�Set�

V���S�Set�

EQS�U�U���

EQS�V�V���

EQS�MEET�S�meet�U�V��MEET�S�meet�U��V��� TOP

EQS respects JOIN


EQSrespJOIN � �T�Set�

I��T�Set�

U��T�S�Set�

U���T�S�Set�

�i�T�I�i��EQS�U�i��U��i���

EQS�JOIN�T�I�U��JOIN�T�I�U��� TOP

The following proofs show that MEET
 JOIN and cHaimply have the correct properties


MEETisinfl� � �U��S�Set�V��S�Set�COV�S�cov�MEET�S�meet�U�V��U� TOP

MEETisinfl� � �U��S�Set�V��S�Set�COV�S�cov�MEET�S�meet�U�V��V� TOP

MEETisinfr � �W��S�Set�

U��S�Set�

V��S�Set�

COV�S�cov�W�U��

COV�S�cov�W�V��

COV�S�cov�W�MEET�S�meet�U�V�� TOP

MEETempty � �U��S�Set�COV�S�cov�U�Sing�S�one�� TOP

JOINissup� � �T�Set�I��T�Set�U��T�S�Set�i�T�I�i��

COV�S�cov�U�i��JOIN�T�I�U�� TOP

JOINissup� � �T�Set�

I��T�Set�

U��T�S�Set�

V��S�Set�

�i�T�I�i��COV�S�cov�U�i��V��

COV�S�cov�JOIN�T�I�U��V� TOP

infdistr � �T�Set�

I��T�Set�

V��S�Set�

U��T�S�Set�EQS�MEET�S�meet�V�JOIN�T�I�U���

JOIN�T�I�	i
MEET�S�meet�V�U�i���� TOP

��



cHaimplyrespEQS � �U��S�Set�

U���S�Set�

V��S�Set�

V���S�Set�

EQS�U�U���

EQS�V�V���

EQS�cHaimply�U�V��cHaimply�U��V��� TOP

cHAimplyprop� � �W��S�Set�

U��S�Set�

V��S�Set�

COV�S�cov�W�cHaimply�U�V���

COV�S�cov�MEET�S�meet�W�U��V� TOP

cHaimplyprop� � �W��S�Set�

U��S�Set�

V��S�Set�

COV�S�cov�MEET�S�meet�W�U��V��

COV�S�cov�W�cHaimply�U�V�� TOP

F Closure operator

Closure operator


Cl � 	U�a
cov�a�U� � �U��S�Set�a�S�Set TOP

Meet for the closed sets


MEETsat � 	U�V�a
Product�U�a��V�a�� � �U��S�Set�V��S�Set�a�S�Set TOP

Join for the closed sets


JOINsat � 	T�I�U
Cl�JOIN�T�I�U�� � �T�Set�I��T�Set�U��T�S�Set�S�Set TOP

Predicate for closed sets


sat � 	U
eqsubset�S�U�Cl�U�� � �U��S�Set�Set TOP

We only present the types
 because of the length of the proofs�

The covering order between closed subsets is the subset order


Cllemma�a � �U��S�Set�V��S�Set�COV�S�cov�U�V��subset�S�U�Cl�V�� TOP

Cllemma�b � �U��S�Set�V��S�Set�subset�S�U�Cl�V���COV�S�cov�U�V� TOP

Each equivalence class contains exactly one closed subset


Cllemma� � �U��S�Set�EQS�U�Cl�U�� TOP

Cllemma� � �U��S�Set�V��S�Set�EQS�U�V��eqsubset�S�Cl�U��Cl�V�� TOP

��



Cl is a closure operator


Clprop� � �U��S�Set�subset�S�U�Cl�U�� TOP

Clprop� � �U��S�Set�V��S�Set�subset�S�U�V��subset�S�Cl�U��Cl�V�� TOP

Clprop� � �U��S�Set�eqsubset�S�Cl�Cl�U���Cl�U�� TOP

The closed subsets form a frame which is isomorphic to the frame formed by the equivalence
classes and Cl is a cHa isomorphism


ClJOIN�JOINsat � �T�Set�

I��T�Set�

U��T�S�Set�

eqsubset�S�

Cl�JOIN�T�I�U���

JOINsat�T�I�	i
Cl�U�i���� TOP

ClMEET�MEETsatempty � �a�S�Cl�Sing�S�one��a� TOP

ClMEET�MEETsatbin � �U��S�Set�

V��S�Set�

eqsubset�S�

Cl�MEET�S�meet�U�V���

MEETsat�Cl�U��Cl�V��� TOP

satcHaimply � �U��S�Set�V��S�Set�sat�cHaimply�U�V�� TOP

ClprescHaimply � �U��S�Set�

V��S�Set�

eqsubset�S�Cl�cHaimply�U�V���cHaimply�Cl�U��Cl�V��� TOP

G Points of a formal topology

P is a function that given a point returns a completely prime �lter


P � �p��S�Set�U��S�Set�Set TOP C

Pintro � �p��S�Set�U��S�Set�b�S�U�b��p�b��P�p�U� TOP C

We only present the types
 because of the length of the proof terms�

Any point de�nes a completely prime �lter


��



point�filter� � �p��S�Set�

p�one��

�a�S�b�S�p�a��p�b��p�meet�a�b���

�a�S�U��S�Set�p�a��cov�a�U��P�p�U��

�a�S�p�a��pos�a��

U��S�Set�

V��S�Set�

COV�S�cov�U�V��

P�p�U��

P�p�V� TOP

point�filter� � �p��S�Set�

p�one��

�a�S�b�S�p�a��p�b��p�meet�a�b���

�a�S�U��S�Set�p�a��cov�a�U��P�p�U��

�a�S�p�a��pos�a��

P�p�Sing�S�one�� TOP

point�filter� � �p��S�Set�

p�one��

�a�S�b�S�p�a��p�b��p�meet�a�b���

�a�S�U��S�Set�p�a��cov�a�U��P�p�U��

�a�S�p�a��pos�a��

U��S�Set�

V��S�Set�

P�p�U��

P�p�V��

P�p�MEET�S�meet�U�V�� TOP

point�filter� � �p��S�Set�

p�one��

�a�S�b�S�p�a��p�b��p�meet�a�b���

�a�S�U��S�Set�p�a��cov�a�U��P�p�U��

�a�S�p�a��pos�a��

T�Set�

I��T�Set�

U��T�S�Set�

P�p�JOIN�T�I�U���

Exists�T�	i
Product�I�i��P�p�U�i���� TOP

��



point�filter� � �p��S�Set�

p�one��

�a�S�b�S�p�a��p�b��p�meet�a�b���

�a�S�U��S�Set�p�a��cov�a�U��P�p�U��

�a�S�p�a��pos�a��

U��S�Set�

P�p�U��

POS�S�pos�U� TOP

Any completely prime �lter de�nes a point


filter�point� � �F���S�Set�Set�

�U��S�Set�V��S�Set�COV�S�cov�U�V��F�U��F�V��

F�Sing�S�one���

�U��S�Set�V��S�Set�F�U��F�V��F�MEET�S�meet�U�V���

�T�Set�I��T�Set�U��T�S�Set�F�JOIN�T�I�U���

Exists�T�	i
Product�I�i��F�U�i�����

�U��S�Set�F�U��POS�S�pos�U��

F�Sing�S�one�� TOP

filter�point� � �F���S�Set�Set�

�U��S�Set�V��S�Set�COV�S�cov�U�V��F�U��F�V��

F�Sing�S�one���

�U��S�Set�V��S�Set�F�U��F�V��F�MEET�S�meet�U�V���

�T�Set�I��T�Set�U��T�S�Set�F�JOIN�T�I�U���

Exists�T�	i
Product�I�i��F�U�i�����

�U��S�Set�F�U��POS�S�pos�U��

a�S�

b�S�

F�Sing�S�a���

F�Sing�S�b���

F�Sing�S�meet�a�b��� TOP

filter�point� � �F���S�Set�Set�

�U��S�Set�V��S�Set�COV�S�cov�U�V��F�U��F�V��

F�Sing�S�one���

�U��S�Set�V��S�Set�F�U��F�V��F�MEET�S�meet�U�V���

�T�Set�I��T�Set�U��T�S�Set�F�JOIN�T�I�U���

Exists�T�	i
Product�I�i��F�U�i�����

�U��S�Set�F�U��POS�S�pos�U��

a�S�

U��S�Set�

cov�a�U��

F�Sing�S�a���

P�	x
F�Sing�S�x���U� TOP

��



filter�point� � �F���S�Set�Set�

�U��S�Set�V��S�Set�COV�S�cov�U�V��F�U��F�V��

F�Sing�S�one���

�U��S�Set�V��S�Set�F�U��F�V��F�MEET�S�meet�U�V���

�T�Set�I��T�Set�U��T�S�Set�F�JOIN�T�I�U���

Exists�T�	i
Product�I�i��F�U�i�����

�U��S�Set�F�U��POS�S�pos�U��

a�S�

F�Sing�S�a���

pos�a� TOP

P is a bijection


pfbij�a � �p��S�Set�

p�one��

�a�S�b�S�p�a��p�b��p�meet�a�b���

�a�S�U��S�Set�p�a��cov�a�U��P�p�U��

�a�S�p�a��pos�a��

a�S�

p�a��

P�p�Sing�S�a�� TOP

pfbij�b � �p��S�Set�

p�one��

�a�S�b�S�p�a��p�b��p�meet�a�b���

�a�S�U��S�Set�p�a��cov�a�U��P�p�U��

�a�S�p�a��pos�a��

a�S�

P�p�Sing�S�a���

p�a� TOP

pfbij�a � �F���S�Set�Set�

�U��S�Set�V��S�Set�COV�S�cov�U�V��F�U��F�V��

F�Sing�S�one���

�U��S�Set�V��S�Set�F�U��F�V��F�MEET�S�meet�U�V���

�T�Set�I��T�Set�U��T�S�Set�F�JOIN�T�I�U���

Exists�T�	i
Product�I�i��F�U�i�����

�U��S�Set�F�U��POS�S�pos�U��

U��S�Set�

F�U��

P�	a
F�Sing�S�a���U� TOP

��



pfbij�b � �F���S�Set�Set�

�U��S�Set�V��S�Set�COV�S�cov�U�V��F�U��F�V��

F�Sing�S�one���

�U��S�Set�V��S�Set�F�U��F�V��F�MEET�S�meet�U�V���

�T�Set�I��T�Set�U��T�S�Set�F�JOIN�T�I�U���

Exists�T�	i
Product�I�i��F�U�i�����

�U��S�Set�F�U��POS�S�pos�U��

U��S�Set�

P�	a
F�Sing�S�a���U��

F�U� TOP

H Scott topology

SCOTTOP is TOP � 	scott��a�S�

U��S�Set�

cov�a�U��

pos�a��

Exists�S�	b
Product�U�b��cov�a�Sing�S�b����


SCOTTOP� is SCOTTOP � 	pos��pos�one�


I A concrete Scott topology� Neighbourhoods of the natural
numbers

Here the example from appendix C continues�

scottnat � �a�SN�

U��SN�Set�

covnat�a�U��

posnat�a��

Exists�SN�	b
Product�U�b��covnat�a�Sing�SN�b���� 	
 I

scottnat�a�U�covnati������h���h�� �

case��	h
Exists�SN�	b
Product�U�b��covnat�a�Sing�SN�b�����h��h���

scottnat�a�U�covnati������b�h��h���h�� �

Exists�intro�SN�

	b�
Product�U�b���covnat�a�Sing�SN�b�����

b�

pair�U�b��

covnat�a�Sing�SN�b���

h��

covnati��a�Sing�SN�b��b�id�SN�b��h����

��



TOPNAT� is �S��SN� one��onenat� meet��meetnat� cov��covnat� pos��posnat�

covmeet���covmeetnat�� covrefl��covreflnat� covtrans��covtransnat�

covmeetl���covmeetnatl�� covmeetl���covmeetnatl��

covmeetr��covmeetnatr� mono��mononat� posi��posinat�

scott��scottnat
 � SCOTTOP 	


J Points of a Scott topology

Points of a Scott topology


scpoint � �p��S�Set�Set SCOTTOP C

scpintro � �p��S�Set�

p�one��

�a�S�b�S�p�a��p�b��p�meet�a�b���

�a�S�b�S�p�a��leq�a�b��p�b��

�a�S�p�a��pos�a��

scpoint�p� SCOTTOP C

In a Scott topology
 scpoint is the same as point


point�scpoint � 	p�h�h��h��h�


scpintro�p�

h�

h��

	a�b�h��h�
Exists�elim�S�

	x
Product�Sing�S�b�x��

p�x���

	h�
p�b��

	a��b�
idsubst��S�

	b�
p�b���

b�

a��

proj��Id�S�b�a���p�a���b���

proj��Sing�S�b�a���p�a���b����

h��a�Sing�S�b��h��h����

h�� �

�p��S�Set�

p�one��

�a�S�b�S�p�a��p�b��p�meet�a�b���

�a�S�U��S�Set�p�a��cov�a�U��Exists�S�	x
Product�U�x��p�x����

�a�S�p�a��pos�a��

scpoint�p� SCOTTOP I

��



scpoint�point � �p��S�Set�

scpoint�p��

a�S�

U��S�Set�

p�a��

cov�a�U��

Exists�S�	h
Product�U�h��p�h��� SCOTTOP I

scpoint�point�p�scpintro���h��h��h��h���a�U�h��h�� �

Exists�elim�S�

	b
Product�U�b��cov�a�Sing�S�b����

	z
Exists�S�	h
Product�U�h��p�h����

	a��b
Exists�intro�S�

	h
Product�U�h��p�h���

a��

pair�U�a���

p�a���

proj��U�a���cov�a�Sing�S�a����b��

h��a�a��h��proj��U�a���leq�a�a���b�����

scott�a�U�h��h��a�h����

K Union of subsets and directed families

Union of subsets
 where the index set itself is a subset


union � �S�Set�T�Set�I��T�Set�U��T�S�Set�S�Set 	
 C

unionintro � �S�Set�

T�Set�

I��T�Set�

U��T�S�Set�

i�T�

I�i��

a�S�

U�i�a��

union�S�T�I�U�a� 	
 C

�	



Directed families
 where the index set is a subset


directed � �S�Set�T�Set�I��T�Set�p��T�S�Set�Set 	
 C

directedintro � �S�Set�

T�Set�

I��T�Set�

p��T�S�Set�

i��T�

I�i���

�i�T�j�T�I�i��I�j��

Exists�T�	k
Product�I�k��

Product�subset�S�p�i��p�k���

subset�S�p�j��p�k������

directed�S�T�I�p� 	
 C

L The points in a Scott topology form a Scott domain

We only present the types
 since the proofs are too long�

The points in a Scott topology form a cpo


leqonemin � �p��S�Set�scpoint�p��subset�S�leq�one��p� SCOTTOP

unionpoint � �T�Set�

I��T�Set�

p��T�S�Set�

�i�T�I�i��scpoint�p�i���

directed�S�T�I�p��

scpoint�union�S�T�I�p�� SCOTTOP

unionsup� � �T�Set�

I��T�Set�

p��T�S�Set�

i�T�

I�i��

subset�S�p�i��union�S�T�I�p�� TOP

unionsup� � �T�Set�

I��T�Set�

p��T�S�Set�

q��S�Set�

�i�T�I�i��subset�S�p�i��q��

subset�S�union�S�T�I�p��q� TOP

which is algebraic and every two points has a least upper bound


genscp � �a�S�pos�a��scpoint�leq�a�� SCOTTOP

��



genscpdir � �p��S�Set�scpoint�p��directed�S�S�p�leq� SCOTTOP

gencompscp � �p��S�Set�

scpoint�p��

�T�Set�

I��T�Set�

p���T�S�Set�

directed�S�T�I�p���

subset�S�p�union�S�T�I�p����

Exists�T�	h
Product�I�h��subset�S�p�p��h�����

Exists�S�	h
Product�p�h��eqsubset�S�p�leq�h���� SCOTTOP

scpcomplb� � �q��S�Set�

scpoint�q��

�T�Set�

I��T�Set�

r��T�S�Set�

directed�S�T�I�r��

subset�S�q�union�S�T�I�r���

Exists�T�	x
Product�I�x��subset�S�q�r�x�����

p��S�Set�

subset�S�q�p��

Exists�S�	a
Product�p�a��eqsubset�S�q�leq�a���� SCOTTOP

scpcomplb�a � �p��S�Set�

q��S�Set�

scpoint�p��

Exists�S�	a
Product�p�a��eqsubset�S�q�leq�a�����

subset�S�q�p� SCOTTOP

scpcomplb�b � �p��S�Set�

q��S�Set�

Exists�S�	a
Product�p�a��eqsubset�S�q�leq�a�����

T�Set�

I��T�Set�

r��T�S�Set�

�i�T�I�i��scpoint�r�i���

subset�S�q�union�S�T�I�r���

Exists�T�	x
Product�I�x��subset�S�q�r�x���� SCOTTOP

supcompscp � �p��S�Set�scpoint�p��eqsubset�S�p�union�S�S�p�leq�� SCOTTOP

��



psuptoleqp � �p���S�Set�

p���S�Set�

scpoint�p���

scpoint�p���

�T�Set�

I��T�Set�

q��T�S�Set�

directed�S�T�I�q��

subset�S�p��union�S�T�I�q���

Exists�T�	h
Product�I�h��subset�S�p��q�h�����

�T�Set�

I��T�Set�

q��T�S�Set�

directed�S�T�I�q��

subset�S�p��union�S�T�I�q���

Exists�T�	h
Product�I�h��subset�S�p��q�h�����

r��S�Set�

scpoint�r��

subset�S�p��r��

subset�S�p��r��

q��S�Set�

scpoint�q��

Exists�S�	x
Product�Product�scpoint�leq�x���

Product�subset�S�p��leq�x���

subset�S�p��leq�x�����

Imply�Product�subset�S�p��q��

subset�S�p��q���

subset�S�leq�x��q���� SCOTTOP

��


