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Abstract
We will present a formalization of pointfree topology in Martin-L&f’s type theory. A
notion of point will be introduced and we will show that the points of a Scott topology
form a Scott domain. This work follows closely the intuitionistic approach to pointfree
topology and domain theory, developed mainly by Martin-L&f and Sambin. The important
difference is that the definitions and proofs are machine checked by the proof assistant

ALF.
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1 Introduction

The traditional motivation for topology relies on abstracting first from Fuclidean spaces to
metric spaces, and then abstracting out certain properties of their open sets.

A topology QX for a set X is a family of subsets of X which is closed under finite
intersection and arbitrary union. X is the space of the topology and (X, Q.X) is a topological
space. The elements in X are called points and the sets in 2.X are called open sets. For the
development of general topology see for instance Kelley [8].

In pointfree topology (locale theory), Johnstone [7], one considers the open sets, and not
the points, as primitive entities and studies those properties of a topological space that can
be expressed without any mention of points. By abstracting from the fact that open sets are
subsets of points one only looks at the algebraic structure, called a frame, that the open sets
form.

A frame is a partially ordered set A with two operations meet A and join V, operating on
subsets of A, corresponding to intersection and union, respectively. Meet gives to each finite
subset the infimum and jotn gives to each subset the supremum. In particular, A contains
two elements true and false which correspond to empty meet and join, respectively. Binary
meets must also distribute over join. We call the elements in a frame for opens.

On the computer science side the motivation for topology relies on connections to domain
theory. Scott [14] has showed that by describing only the elements that contain a finite amount
of information, the computational content of a domain can be described topologically. This
emphasis makes the open sets independent of the points of the topological space, leading to
pointfree topology.

Given a frame, points can be defined uniquely from the opens as completely prime filters
[16]. As an example, take the special case when the opens are open sets (and true, A, V and <
are the whole space, (N, | and C, respectively). A completely prime filter I’ then corresponds
to the points in the intersection of the open sets in F. In other words, given a point z the
corresponding completely prime filter is the set of all open sets containing x. Let (4, A, V) be
a frame and let F' C A be upper closed, that is if « € I and a < b then b € F, then

Fis a filter iff it is closed under finite meets:
true € I and if a,b € F then a Ab € F,

a filter F'is completely prime iff it is inaccessible by joins:
if $C Aand VS € F then s € F for some s € S.

Another motivation for pointfree topology is constructiveness; sometimes the use of point-
free topology makes it possible to replace non constructive reasoning using the axiom of choice
by constructive proofs, see for instance Coquand [2, 4].

This work is a machine assisted formalization, in type theory [11], of (a part of) the
intuitionistic approach to pointfree topology and domain theory, developed by Martin-Lof
[10], Sambin [12], and by Sambin, Valentini and Virgili in [13]. All definitions and proofs are
checked by the proof assistant ALF [9]. In [12, 13] the constructivity is guaranteed by adopting
Martin-Lof’s type theory, but in this paper we will by type theory mean the formalization
in ALF. We will prove that this formalization really defines a frame, where the opens are
defined as equivalence classes of subsets. A closure operator will be defined and we will prove
that each equivalence class contains exactly one closed subset. As a concrete example of a
pointfree topology we will look at the neighbourhoods of the natural numbers. A notion of



point equivalent to completely prime filter will be introduced. Then we will look at a pointfree
version of Scott topology, and show that the points of this topology form a Scott domain.

Another formalization of constructive domain theory, in ALF, is presented in Hedberg|6].
Hedberg has implemented a cartesian closed category of semilattices and approximable map-
pings.

In Martin-Lof’s type theory, which is implemented in ALF, there are two basic levels:
types and sets. The sets are inductively defined and correspond to what is usually called
types in a programming language. The types are formed by the type Set, the types of
elements of sets in Set, and function types. In type theory propositions are identified with
sets and proofs of propositions are identified with elements of sets; in order to prove that a
proposition is true we need to find an element in the corresponding set. Three different forms
of definitions (apart from definitions of contexts and substitutions, which will be explained
later) will be used in this paper:

1. Inductive definitions of sets or families of sets, which consist of a formation rule and
introduction rules prescribing how its canonical elements are formed.

2. Explicit definitions, which are names for well typed expressions.

3. Implicit definitions, which provide the possibility of defining functions using pattern
matching [3]. These may be recursive.

All type theory expressions will be written in ALF-syntax and in typewriter font. For example,
the set of natural numbers is inductively defined by

N : Set
zero : N
succ : (n:N)N

Addition can then be implicitly defined, using pattern matching:

add : (n:N;m:N)N
add(zero,m) = m
add(succ(nl),m) = succ(add(nl,m))

And a function that doubles its argument can be explicitly defined:
double = [n]add(n,n) : (n:N)N

In this paper, we will often refer to appendices about proofs. However, most proof
terms are too long for a comprehensible presentation, so we have decided to omit many
of them entirely and only present their types. Instead all proofs can be obtained by ftp;
ftp.cs.chalmers.se: /pub/users/ceder/formtop /.

2 Formalization of pointfree topology in ALF

2.1 Formal topology

Following Sambin [12, 13|, a structure (S, A, 1, <, pos) is called a formal topology if it satisfies
the following requirements:



1. 5 is a formal base, that is, a set with the binary operation A and element 1 such
that (S, A, 1) forms a meet semilattice (that is, an algebra with a unit element and
a binary operator satisfying commutativity, associativity, unit law and idempotence).
The elements in S are called formal basic neighbourhoods.

2. qis a covering relation, that is, a relation between elements of S and subsets of S which
for arbitrary a,b € S and U,V C S satisfies:

aclU
aalU

reflexivity

aalU (VbeU)(baV)
adV

transitivity

aqU

“left1
aNbalU nle

adU a4V
ad{bnhc:belU,ceV}

A-right
3. pos is a consistency predicate, that is, a predicate on the elements of S which for
arbitrary @ € S and U C § satisfies:

pos(a) aalU
(Fb e U) pos(b)

monotonicity

pos(a) - a<U
adU

positivity

If we extend A, < and pos for arbitrary U,V C S by the definitions

UANV={arb:acUbeV}
UaV=WVNaelU)aaV)

POS(U) = (Ja € U)pos(a)
then transitivity, A-right, and monotonicity can be written

aaU U<V
adV

transitivity

adlU a<V
adUAV

A-right

pos(a) a<U comicit
POS(U) Y

which are also closer to the forthcoming definitions in type theory. (Observe the introduction
of the new symbols A, <t and POS. The reason not to let A, < and pos be overloaded is that
all of them will be defined in ALF and ALF does not support overloading.)



In order to define (S, A, 1) to be a semilattice, an ordering or equality between the elements
in S is needed. To avoid that, one can notice that if (2) in the definition above holds then
(S, A, 1) is a semilattice iff for arbitrary « € S and U C S

% A-left2
and

m A-1
hold.

Proof: First, assume that (S, A, 1) is a semilattice with equality =g, A-left2 then follows
from A-leftl and commutativity of A, and A-1 is proved by

ﬂ reflexivity

1a{1} ot .
anla{l} Arleltz anl=ga "™

aa{l}

Second, if A-left2 and A-1 hold then, then we can define an equality between elements in S such
that two element are equal if they are covered by each other’s singleton sets. Commutativity,
associativity, unit law and idempotence for A, with respect to that equality are then easily
proved; so (S, A, 1) form a semilattice with 1 as top element (for more details see appendix
D, that (S,A,1) form a semilattice is proved in ALF after the notion of formal topology is
defined in type theory).

By exchanging the requirement that (S, A, 1) should form a semilattice for the two new
rules, we get a definition which is equivalent to the standard definition of formal topology.
The reason for this exchange is that it makes the formalization shorter; it is easier to state
the new rules than to define a semilattice.

4 must respect =g

In the definition of formal topology, a subset of .S is a propositional function with argument
ranging over S. For instance, a is considered as an element in U iff ¢ € S and U(a) holds. In
section 2.3 there is a little theory of these subsets.

2.2 Explanations of the definition of formal topology

We can think of the elements of S as containing information represented by regions, in such
a way that a neighbourhood corresponding to a subregion of another is more informative (it
contains more specific information). By a A b we mean the conjunction of the information
represented by the intersection of the corresponding regions

a

aNb

and a subset U of S as the disjunction of the information in its elements, represented by the
union of the regions of its elements. Then the covering can be understood by a picture: a<lUU



iff the region of @ is covered by the region of U.

b, by b3

a aqU

where U = {by, by, b3}

Transitivity, A-left and A-right can now be understood by the pictures

transitivity A-left1 A-right

aNb

UAV

Thinking of the neighbourhoods in terms of information we can understand the infor-
mation in a positive neighbourhood as meaningful or not contradictory. Monotonicity then
says that if a is positive and a is covered by U, then U must contain something meaningful.

Positivity says exactly that only positive elements contribute to the covering since positivity
is equivalent to

M openness

aaUT where Ut = {b € U : pos(b)}
Proof: We first assume positivity and show openness:

[be U] [pos(b)]
be Ut
baU™T

pos(b) = baU™T
baU™T

(Vbe U)(baUT)

aalU UaUt
aaUT

def of Ut

reflexivity

—-intro

positivity

V-intro

def

transitivity

Then by assuming openness, positivity is proved by

[b € {a}"]

——————————— def
pos(a) - a<lU b=a& pos(b) .
subst,—-elim

@€ {a} reflexivity ball V-intro

a<ia) (Wb e {a)H)(bal)

— —~ < openness def

a<a{alt {fa}t U

transitivity
adlU



For the moment, regard the elements in S as being neighbourhoods of concrete points;
xea will be used here to mean that a is a neighbourhood of the point z. Then 1 corresponds
to the whole space, A corresponds to intersection, ¢ <U means “the set of points forming a is
included in the union of U”, and pos(a) means that a is inhabited. For this special case, we
can actually prove monotonicity and positivity. For monotonicity: pos(a) implies that there is
a point, say «, in a and since a U there exists a b in U such that zeb, that is (3b € U) pos(b).
For positivity:

[zea]

pos-intro

pos(a) pos(a) — a1 U
a<U
[zea] aCyUU
xe JU
a CUU
aaU

—-elim
def

C-elim
C-intro

def

2.3 Subsets as propositional functions

As mentioned before, we use propositional functions over the base set S as subsets of S. If
U is a propositional function over .S and « an element in S, then a is considered to be an
element in U iff U(a) holds. We extend this to explain when a subset (propositional function)
is a subset of another subset of .S. Let U and V be propositional functions over S, then U
is a subset of V iff for all a in S, U(a) implies V (a). This can be defined by an introduction
rule:

subset : (S:Set;U:(S)Set;V:(S)Set)Set

subsetintro : (S:Set;
U:(S)Set;
V:(S)Set;
(a:8;U(a))v(a))
subset(S,U,V)

U and V are considered equal (as sets) iff they are subsets of each other:

eqsubset = [S,U,V]Product(subset(S,U,V),subset(S,V,U))
(S:Set;U:(S)Set;V:(S)Set)Set

where Product is conjunction.

2.4 Using a context to formalize pointfree topology

We will now represent a formal topology by a list of assumptions (type declarations), in
which we assume sets and functions ranging over these sets as well as express the axioms that
describe the properties of the formal topology. Lists of type declarations are formalized as
contexts, constructions which are governed by the following rules

I': Context o :type [I']
[]: Context [z : o] : Context




where x does not occur free in I and [['; 2 : o] is the extension of I' with the clause z : a.

In the implementation one will be used for 1, meet and MEET for A and A, respectively,
cov and COV for < and <, respectively.

First, MEET, COV and POS must be defined since they will be used inside the context
defining the topology. They depend on S, meet, cov and pos, so S, meet, cov and pos occur
as parameters in MEET, COV and P0S. By this way MEET, COV and POS can be used to different
contexts defining formal topologies. But standing for themselves, without such a context,
they have of course not the intended meaning. MEET, COV and POS could be explicitly defined,
using quantifiers, but introduction rules makes the proofs easier:

MEET : (S:Set;meet:(S;S)S;U:(S)Set;V:(S)Set;S)Set

MEETintro : (S:Set;meet:(S;S)S;U:(S)Set;V:(S)Set;a:5;b:5;U(a);V(b))
MEET(S,meet,U,V,meet(a,b))

COV : (S:Set;cov:(S;(S)Set)Set;U:(S)Set;V:(S)Set)Set

COVintro : (S:Set;cov:(S;(S)Set)Set;U:(S)Set;V:(S)Set;(a:5;U(a))cov(a,V))
cov(s,cov,U,V)

POS : (S:Set;pos:(S)Set;U:(S)Set)Set

P0Sintro : (S:Set;pos:(S)Set;U:(8)Set;b:S3;U(b);pos(b))P0S(S,pos,U)

Our context also makes use of singleton sets, which are explicitly defined using proposi-
tional equality:

Sing = Id : (S:Set;S;S)Set

Finally, the formal topology TOP is defined as a context which contains the following
assumptions: S is a set with a particular element 1 and a binary operator meet, cov is a
relation between elements and subsets of S and pos is a predicate on the elements of S, followed

by the list of properties (corresponding to the rules in the definition of formal topology in
section 2.1) that S, 1, meet, cov and pos must have.

TOP is [S:Set; one:S; meet:(S;3)S; cov:(S;(S)Set)Set; pos:(S)Set;
covmeetl:(a:S)cov(a,Sing(S,one));
covrefl:(a:S;U:(S)Set;U(a))cov(a,U);
covtrans: (a:S;

U:(S)Set;

V:(S)Set;

cov(a,U);

£:C0V(S,cov,U,V))cov(a,V);
covmeetll:(a:S;b:5;U:(S)Set;cov(a,U))cov(meet(a,b),U);
covmeetl2:(a:S;b:5;U:(S)Set;cov(b,U))cov(meet(a,b),U);



covmeetr: (a:S;

U:(S)Set;

V:(S)Set;

cov(a,U);

cov(a,V))cov(a,MEET(S,meet,U,V));
mono: (a:S;U: (S)Set;pos(a);cov(a,U))P0S(S,pos,U);
posi:(a:S;U:(8)Set; (pos(a))cov(a,U))cov(a,U)]

However, using contexts to represent algebraic structures have some drawbacks. For
instance, the definition above gives us no template for making new topologies; a proof or
definition that involve several algebraic structures require as many contexts. That means
that reasoning using many algebraic structures is tedious. In Betarte [1] there is a more
detailed discussion about this.

2.4.1 Concrete topology as substitution

We also want to express that some structure is an instance of the definition of formal topology.
For that we use the notion of substitution, that is an assignment of objects of appropriate
types to the variables in a context. Substitutions are introduced by the following rules

v Al a:type [A] a:ay [[]
{30 {viw:=a}:[Aje:a] I

where { } is the empty substitution and {v;z := a} is the extension of the substitution v with
the assignment z := a. This will be used in the example below. In Tasistro [15], substitutions

are explained in more detail.

2.4.2 Example: Neighbourhoods of the natural numbers

As an example, given by Sambin [12], of a concrete pointfree topology we take the set SN of
neighbourhoods of the natural numbers given by the rules

N € SN

0e SN

a € SN
s(a) € SN

e SN

and if @ and b are two neighbourhoods of a number then, their intersection, a A, b is a
neighbourhood of the same number. Furthermore, a neighbourhood is positive if it is a
neighbourhood of a number.

The intended meaning is that s"(N), where n € N, is a neighbourhood of all numbers
in {n,n+ 1,n+2,...}, s*(0) is a neighbourhood only of s"(0), and no number has ff as
neighbourhood (ff is needed to make sure that given two neighbourhoods a and b, @ A, b is

10



a neighbourhood). The figure illustrates the structure that the neighbourhoods form:

N
0 4 \s@

The figure is not complete, there are also an infinite number of empty neighbourhoods of the
form s(...s(ff)...), which are not identical to ff but are equal to ff in the sense that they are
all non positive and therefore also covered by each other’s singleton sets.

Formalized in type theory, SN is a set with four constructors:

SN : Set
onenat : SN
zero : 3N

s : (SN)SN
ff : SN

where onenat and zero correspond to N and 0, respectively. A, (meetnat) can be implicitly
defined, using pattern matching;:

meetnat : (a:SN;b:SN)SN
meetnat(onenat,b) = b
meetnat(zero,onenat) = zero
meetnat(zero,zero) = zero
meetnat(zero,s(h)) ff
meetnat(zero,ff) = ff
meetnat(s(h),onenat) = s(h)
meetnat(s(h) ,zero) = ff
meetnat(s(h),s(hl)) = s(meetnat(h,hl))
meetnat(s(h),ff) = ff
meetnat(£ff,b) = ff

We define a neighbourhood to be positive if it is a neighbourhood of a number, thus ff, s(ff),
s(s(ff)), ... are the only non-positive neighbourhoods:

posnat : (a:SN)Set
posnat (onenat) = N1
posnat (zero) = N1
posnat(s(h)) = posnat(h)
posnat(ff) = Empty

11



where N1 is the set containing tt as only element, that is, a true proposition and Empty is
the empty set, that is, a false proposition.
Before defining the covering relation we define a partial order <,,,; on the neighbourhoods

by
a<peb it an,b=ua

This is the same ordering as in a semilattice (and in the figure above), which the neighbour-
hoods in fact form even though we have not proved it yet. In type theory <, .: is explicitly
defined using propositional equality:

legnat = [a,b]Id(SN,meetnat(a,b),a) : (a:SN;b:SN)Set
Now we can define the covering relation, for arbitrary a € S and U C 5, by
aqU iff  ais not positive or (b€ U)(a <nqut b)
But instead the following definition by introduction rules will be used

covnat : (a:SN;U:(SN)Set)Set
covnatil : (a:SN;U:(SN)Set; (posnat(a))Empty)covnat(a,U)
covnati2 : (a:SN;U:(SN)Set;b:SN;U(b);leqnat(a,b))covnat(a,l)

It is easy to see that the two definitions of covering above (< and covnat) are equivalent. The
reason not to define covnat explicitly, using existential quantification, is that the definition
by introduction rules makes the proofs easier and shorter.

In order to show that SN, onenat, meetnat, covnat and posnat is a formal topology one
must prove that all the properties of formal topology (the properties listed in the definition
of TOP) are satisfied. Consult appendix C for more details.

The proof that the neighbourhoods of the natural numbers is a formal topology is then
completed by the substitution TOPNAT:

TOPNAT is {S:=SN; one:=onenat; meet:=meetnat; cov:=covnat; pos:=posnat;
covmeetl:=covmeetnatl; covrefl:=covreflnat;
covtrans:=covtransnat; covmeetll:=covmeetnatll;
covmeetl2:=covmeetnatl2; covmeetr:=covmeetnatr;
mono :=mononat; posi:=posinat} : TOP ]

2.5 Properties of a formal topology

In this section we will concentrate on definitions and types, not on the proofs. The proof
terms of the types are too long for a readable presentation, they can however be obtained by
ftp (see the introduction). For a description of the proofs see Sambin [12|. The definitions
and results of this section are not used in the rest of the paper.

2.5.1 Frames and complete Heyting algebras

Here we show that a formal topology defines a frame in such a way that equivalence classes
of subsets (the equality will soon be defined) are the opens, COV corresponds to the partial
order and MEET corresponds to the meet operation.

First we define the equality relation between subsets such that two subsets are equal iff
they cover each other:

12



EQS = [U,V]Product(COV(S,cov,U,V),CO0V(S,cov,V,U))
(U:(S)Set;V:(S)Set)Set TOP

Note here that we are doing all this in the context TOP. That EQS is an equivalence relation
is easily proved (see appendix E: EQSsymm, EQSrefl, EQStrans).

The opens (equivalence classes of subsets) are difficult to define in ALF and so are ordering,
meet- and join-operations for opens, instead we will rely on the fact that the ordering respects
EQS and that EQS respects meet and join, which are defined on subsets. Of course that has to
be proved, the types of the proof is in appendix E: COVrespEQS, EQSrespMEET, EQSrespJOIN.

For the ordering COV is used, which is a partial order on the family of subsets of S (appendix
E: COVtrans, COVrefl, antisymmetry follows directly from the definition of the equality EQS).

For the meet operation we use MEET, which gives the infimum (appendix E: MEETisinf11,
MEETisinf1l2, MEETisinfr).

Join is defined as a union:

JOIN = [T,I,UJunion(S,T,I,U) : (T:Set;I:(T)Set;U:(T;S)Set;S)Set TOP

We postpone the definition of union to section 3.4. JOIN gives the supremum (appendix E:
JOINissupl, JOINissup2).
Finally the infinite distributivity

(T:Set;I:(T)Set;V:(S)Set;U:(T;S)Set)
EQS(MEET(S,meet,V,JOIN(T,I,U)),
JOIN(T,I,[iIMEET(S,meet,V,U(i)))) TOP

holds (appendix E: infdistr).

This far we have proved that a formal topology defines a frame. Implication can then be
defined in the frame so it becomes a complete Heyting algebra.

A complete Heyting algebra is a complete lattice A where, for every a,b € A, there is an
element a — b satisfying

c<a—=biff cha <hb.
In a frame — is defined by

a—=b=\{c:ecNa<b}.
For a proof that this definition of implication gives a complete Heyting algebra see for in-
stance [16].

The definition of implication translated to our case becomes

cHaimply = [U,V,a]COV(S,cov,MEET(S,meet,U,Sing(S,a)),V)
(U:(S)Set;V:(S)Set;a:S)Set TOP

cHaimply respects EQS and satisfies the implication property (see appendix E: cHaimplyrespEQS,
cHaimplypropl, cHaimplyprop2). This completes the proof that a formal topology defines a
complete Heyting algebra.

2.5.2 Closure operator

In the previous subsection it was shown that the equivalence classes of subsets form a frame.
Now we will define a closure operator, that is an operator that given a subset U returns its
downward closure. The downward closure of a subset U is the subset of all neighbourhoods
which are covered by U.

13



We will show that each equivalence class contains a closed set and that the closed sets
form a frame which is isomorphic to the frame formed by the equivalence classes in such way
that each equivalence class is represented by its closed set.

A closure operator, Cl, is an operator acting on subsets and satisfying the following
properties

U C o)
UCV— CUU)C CUV)
ClHCUUY) = CLU)

Here C1 is explicitly defined by
Cl = [U,alcov(a,U) : (U:(S)Set;a:S)Set TOP

C1 satisfy the closure operator properties (appendix F: Clprop1,2,3).
We then say that a subset is closed or saturated if it is equal, as a subset, to its closure:

sat = [Uleqsubset(S,U,CL(U)) : (U:(S)Set)Set TOP
Since
(U:(S8)Set)EQS(U,C1(U)) TOP

holds, any equivalence class contains a closed subset. Given two subsets in the same equiva-
lence class, their closures are equal

(U:(S)Set;V:(S)Set;EQS(U,V))eqsubset(3,C1(U),CL(V)) TOP,

so any equivalence class contains exactly one closed subset. Thus the closed subsets form a
frame which is isomorphic to the frame formed by the equivalence classes.

(U:(8)Set;V:(S)Set;COV(S,cov,U,V))subset(S,C1(U),C1(V)) TOP
and
(U:(8)Set;V:(S)Set;subset(S,C1(U),C1(V)))COV(S,cov,U,V) TOP

hold, so the order in this frame is the subset order.

cHaimply(U,V) is closed for any two subsets U and V, and Cl preserves implication, so
the closed sets form a cHa which is isomorphic to the one formed by the equivalence classes
(appendix F: satcHaimply, ClprescHaimply).

In appendix F meet- and join-operations are also defined. In appendix F there are also
proofs of that C1 is a cHa isomorphism.

2.6 Points

A formal point (Sambin [13]) of a formal topology (S, A, 1,4, pos) is a subset p of S which,
for arbitrary a,b € 5, satisfies

L Tep
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ac€p bep
aNbep

a€p adlU
(FbeU)(bep)

acp
pos(a)

4.

Even though a point is a subset, the intuition of a subset as an open and a subset as a point
are not the same. A subset (recall section 2.2) we regard as union of the regions of its elements,
while we can understand a point as something in the intersection of all neighbourhoods in it.
So an informal understanding of @ € p (where a is a neighbourhood and p a point) might be
“pis a point in @”. Then we can understand the definition of points in the following way.

1. Any point p is in the space (since 1 corresponds to the whole space).
2. If pis in both a and b, then p is in the intersection of a and b.

a b
aNb

p

3. If pisin a and a is covered by U, then U must contain a neighbourhood containing p.

b, by b3

aqU

? where U = {by, by, b3}

4. If pisin a then a is meaningful.

To avoid the existential quantification, in rule 3 of the definition of formal point, we make

the following definition
P : (p:(8)Set;U:(S)Set)Set TOP
Pintro : (p:(S)Set;U:(S)Set;b:S;U(b);p(b))P(p,U) TOP

Informally: P(p,U) holds iff (3b € U)(b € p).

From rule (3) one can see that a definition by introduction rules of points impossible:
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point : (p:(S)Set)Set TOP

pointintro : (p:(S)Set;
p(one);
(a:S;b:3;p(a);p(b))plmeet(a,b));
(a:8;U:(S)Set;p(a);cov(a,U))P(p,U);
(a:8;p(a))pos(al)
point(p) TOP

For instance it does not follow the general scheme (given in [5]) of an inductive definition: U
is of function type and is not a parameter to the definition. So a neat definition of formal
points in type theory seems to be impossible. Instead we can do the following: in order to
prove that a subset p is a point we prove

p(one) ,

(a,b:5;p(a);p(b))p(meet(a,b)) ,

(a:S;U: (S)Set;p(a);covia,U))P(p,U)
and

(a:S;p(a))pos(a).

And in order to prove that, given a point p, some property C(p) holds, we assume all prop-
erties a point must have:

(p:(S)Set;
p(one);
(a:S;b:3;p(a);p(b))plmeet(a,b));
(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);
(a:S;p(a))pos(a))

c(p) TOP

The above definition of points corresponds exactly to the definition of points as completely
prime filters. For details see appendix G.
3 The points of a Scott topology form a Scott domain
In this section we will show that the formal points of a Seott topology form a Scott domain.

3.1 Scott domain

By a Scott domain we mean an algebraic cpo in which every family of elements which is
bounded above has a least upper bound. Observe that we use the word family and not
subset: in general the points do not form a proper set in the type theoretic sense. In the
following definitions, which are adopted from Sambin [13], there is a distinction between sets,
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collections and families. Sets are inductively defined and families are subcollections indexed
by sets or subsets (propositional functions).

Let D = (D,C) be a partially ordered collection. A family (z;);es of elements in D is
bounded whenever there exist an element 2 € D such that (Vi € I)(z; C z) and directed if
I is inhabited and (Vi,j € I)(3k € I)(2; C 2 & z; C ag). D is called a complete partial
order (cpo) if D has a minimum element L and every directed family has a supremum. The
supremum of a directed family (z;);er will be denoted | |;c; ;.

An element a of a cpo D is called compact if, for any directed family (x;);c; of elements
in D, a C | |;cyx; implies that (3k € I)(a C zp). We will write K (D) for the collection of
compact elements of D.

A cpo D is called algebraic if, for every @ € D, the collection {a € K(D) : a C z} of
compact lower bounds of z is a directed family of elements (a;);es, for a suitable index set
I, such that z = | |;c;a;. This definition is stronger than the traditional, normally it is only
required that = | |[{a € K(D) : a C 2} since {a € K(D) : a C 2} is directed. But here we
also require that the compact elements of a domain must form a family.

From Sambin [13] it follows that any algebraic cpo such that any bounded pair of compact
elements has a supremum is a Scott domain. This is the property that we will show that the
points satisfy.

3.2 Scott topology

In the following definition we mean by set, set in classical set theory. Let (X,C) be a poset
of points. The Scott topology on (X, C) consists of all sets U C X that satisfy

e U is upward closed, that is if 2 € U and o C y then y € U.

e [ is inaccessible by directed joins, that is if V C X is directed and V'V € U then
(Fz e V)(z el).

Now let (X,C) be a Scott domain and consider its Scott topology. It can be shown
(Sambin [13]) that the subsets Oy = {z € X : (Va € U)(« C 2)}, for U Cy K(X) (C; means
finite subset), form a base for this topology. Moreover if O is inhabited and Oy C ;7 Ov,
then (3 € I)(Oy C Or,).

Proof: Assume Oy is inhabited and Oy C (J;c;Ov,. From Oy inhabited it follows that
U is bounded above and since X is a Scott domain U has a supremum | |U, for which

(Va € U)(a C ||U) holds, that is [ |U € Opy. Now

ovclJou, = [JUuelJoy,
el el

(Fie 1)(| |U € Ou,)

=
& (FehMaeU)(aC]| |U).
Then take an arbitrary z € Op. Since (X, C) is algebraic, z is equal to the supremum of its
compact lower bounds, hence | |U C z. By transitivity of C, (Va € U;)(a C z) for some 7 € [,
that is 2 € Oy, for some ¢ € I. So (30 € I)(Oy C Oy,).

This property of Scott topologies is taken as definition in the pointfree approach, thinking
of the base {Opy : U Cy K(X)} as a formal base. A formal topology is called Scott if it
satisfies
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aalU  pos(a)
(Fb € U)(a<{b})
By the definition
SCOTTOP is TOP + [scott:(a:S;
U:(S)Set;
cov(a,U);
pos(a))
Exists(S, [b]Product(U(b),cov(a,Sing(S,b))))]

SCOTTOP is the context TOP extended with the scott property.

scott

3.2.1 Example: Neighbourhoods of the natural numbers

Recall the example in section 2.4.2. It is easy to see that the Scott property is also satisfied,
so SN, onenat, meetnat, covnat and posnat actually form a Scott topology. For a full proof
in ALF see appendix L.

3.3 Points of a Scott topology

If the Scott property holds then the covering relation < can be replaced by the simpler relation
< defined by

a<b=ax{b}
A formal point is the same as a subset p satisfying

L Tep

ac€p bep
aNbep
ac€p a<b
bep
acp
pos(a)

4.

If we first define the new order
leq = [a,b]cov(a,Sing(S,b)) : (a:S;b:S)Set TOP
then the points can be defined (there is no longer a quantification over subsets):

scpoint : (p:(S)Set)Set SCOTTOP

scpintro : (p:(S)Set;
p(one);
(a:S;b:S;p(a);p(b))p(meet(a,b));
(a:S;b:S;p(a);leqla,b))p(d);
(a:S;p(a))pos(a))
scpoint(p) SCOTTOP

It is easy to prove that if the Scott property holds then a subset p is a point iff scpoint (p)
holds. For details see appendix J (point2scpoint, scpoint2point).
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3.4 Definition of union of subsets, directed families and compactness

Before we present the proof, that the points of a Scott topology form a Scott domain, some
more definitions are needed. In the proofs we will look at families of points where the index
set itself is a point (propositional function), so in the definitions the index set must be a
general subset. Formally, the family {p;};cs consists of three parts:

T:Set
I:(T)Set
p: (T;8)Set

The intended meaning is: if 1:T then p(i) is a member of the family iff IT(i) holds.
Union of subsets:

union : (S:Set;T:Set;I:(T)Set;U:(T;S)Set;S)Set

unionintro : (S:Set;
T:Set;
I:(T)Set;
U:(T;S)Set;
i:T;
I(i);
a:S;
U(i,a))
union(S,T,I,U,a)

The order in the domain is the subset order, so in the definition of directed families and
compactness we use subset.
Directed families:

directed : (S:Set;T:Set;I:(T)Set;p:(T;S)Set)Set

directedintro : (S:Set;

T:Set;

I:(T)Set;

p:(T;S)Set;

i0:T;

1(i0);

(1:T;3:T;I(1);I(5))

Exists(T, [k]Product(I(k),
Product (subset(S,p(i),p(k)),
subset(S,p(j),p(k))))))
directed(S,T,I,p)

As was the case with the points (section 2.6), a definition by introduction rules of com-
pactness is impossible. It would contain quantifications over function types:

19



compact : ((S)Set)Set

compactintro : (q:(S)Set;
(T:Set;
I:(T)Set;
p:(T;S)Set;
directed(S,T,I,p);
subset(S,q,union(S,T,I,p)))
Exists(T,[i]Product(I(i),subset(S,q,p(i)))))
compact(q)

In order to prove that a point q in a cpo is compact, one has to show that the function type

(T:Set;
I:(T)Set;
p:(T;S)Set;
directed(S,T,I,p);
subset(S,q,union(S,T,I,p)))
Exists(T,[i]Product(I(i),subset(S,q,p(i))))

is inhabited. And in order to prove that, given a compact point q, some property C(q) holds
then all the properties of a compact point has to be assumed:

(q:(S)Set;
scpoint(q);
(T:Set;
I:(T)Set;
p:(T;S)Set;
directed(S,T,I,p);
subset(S,q,union(S,T,I,p)))Exists(S, [1]Product(I(i),subset(S,q,p(i)))))
c(q)

3.5 The points of a Scott topology form a Scott domain

Unless otherwise stated, the types for the propositions in this section can be found in ap-
pendix L. The formal proofs can be obtained by ftp.

3.5.1 The points form an algebraic cpo

In order to show that the points of a Scott topology form a cpo, which we denote by Pt(5)
(where S is the formal base), we need the extra property that 1 is positive. Points are subsets
of positive neighbourhoods and 1 is contained in all points, so without the knowledge that 1
is positive we cannot show that there are any points at all, particularly no bottom element,
and consequently no cpo.

The order is the subset order (subset) which, of course, is reflexive (subsetrefl in
appendix A), transitive (subsettrans in appendix A) and antisymmetric (by definition of
the equality, eqsubset).

Next we need a bottom element, a point which is a subset of all other points. Given a
positive element a € 9, its upper closure ta = {¢ € S : a < ¢} can easily be shown to be
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a point. In our type theoretic notation, the upper closure of a neighbourhood a is leq(a).
genscp is a proof that given an arbitrary positive neighbourhood a, leq(a) is a point; in
particular if pos(one) holds then leq(one) is a point. Intuitively, since all points contains
1 and all points are upper closed, the upper closure of 1 is a least element; leqonemin is a
formal proof of that.

The union of a family of subsets is, of course, an upper bound of the family (unionsup1),
it is less than or equal to all upper bounds (unionsup2) and the union of a directed family
of points is a point itself (unionpoint). So given a directed family of points its supremum is
formed by taking the union of all points in the family.

That Pt(S) is algebraic is proved as follows. Given two arbitrary points p and ¢, we have

(1a)qep 1s directed (1)
and
q Cp & q compact < (Ja € p)(q =1a) (2)

which implies that the family of compact lower bounds to p is (fa)sep. Finally the union of
(ta)qep (which is the supremum) is equal to p:

U ta=p (3)

a€p

Proof of 1: 1 € p so p is inhabited. If a,b € p then a A b € p and Ta, 10 Cf(a A D).

Proof of 2 =: Assume that ¢ C p and ¢ is compact. The family (fa),g, is directed (follows
from 1). Clearly ¢ C U,e, T@, so by the definition of compactness (Ja € ¢q)(q Cta) follows.
But if a € ¢ then ta C ¢, so we have (da € ¢)(¢ =Ta) and from the assumption ¢ C p we get
(3a € p) (g =ta).

<: Assume that (da € p)(¢ =Ta). Clearly ¢ C p holds. By existential elimination ¢ =1,
for some a € p. Let (r;);er be a directed family such that ¢ C |J;c; ;. By substitution we
have fa C |J;cyr:- Now

Ta C Um & a € Uri
el el
& (Fiel)(aer)
< (FieDH(ta Cry).

And by substituting back (37 € I)(q C r;) follows. So ¢ is compact.

Proof of 3: It is easy to see that p C J,e, Ta. Let b € U,¢, Ta then (3a € p)(b €ta). But
if a € p then Ta C p so b € p. Thus |J,e, ta C p.

Again, the proof terms are too long so we only present the types. 1 is proved by

a€p

genscpdir : (p:(S)Set;scpoint(p))directed(S,S,p,leq) SCOTTOP

The implication from left to right in 2 follows from
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scpcomplbl : (q:(S)Set;
scpoint(q);
(T:Set;
I:(T)Set;
r:(T;S)Set;
directed(S,T,I,r);
subset(S,q,union(S,T,I,r)))
Exists(T, [x]Product(I(x),subset(S,q,r(x))));
p:(S)Set;
subset(S,q,p))
Exists(S, [a]lProduct(p(a),eqsubset(S,q,leq(a)))) SCOTTOP

The first conjunct in the implication from right to left follows from

scpcomplb2a : (p:(S)Set;

q:(8)Set;

scpoint(p);

Exists(S, [alProduct(p(a),eqsubset(S,q,leq(a)))))
subset(S,q,p) SCOTTOP

and the second conjunct from

scpcomplb2b : (p:(S)Set;
q:(8)Set;
Exists(S, [a]lProduct(p(a),eqsubset(S,q,leq(al))));
T:Set;
I:(T)Set;
r:(T;S)Set;
(1i:T;I(i))scpoint(r(i));
subset(S,q,union(S,T,I,r)))
Exists(T, [x]Product(I(x),subset(S,q,r(x)))) SCOTTOP

3 is proved by

supcompscp : (p:(S)Set;scpoint(p))eqsubset(S,p,union(S,S,p,leq)) SCOTTOP

3.5.2 Every bounded pair of compact points has a supremum

In order to prove that every bounded pair of compact points has a supremum we first notice
that

if a point p is compact then (a € p)(p =Ta) (4)

The proof of this is similar to the proof of 2. (In fact the converse also holds). Now take two
arbitrary compact points p; and po, we then know that there exists positive a and b such that
p1 =%a and py =71b. If p; and py are bounded, by say the point r, then a,b € r and since r is a
point aAb € r. Again, since r is a point, a A b is positive so T(aAb) is a point. ta, 1 CT(a Ab)
and if Ta,1b C ¢ then T(a Ab) C ¢q. Hence the supremum of p; and py is T(a A b), provided
they are bounded.

4 follows from
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gencompscp : (p:(S)Set;

scpoint(p);

(T:Set;

I:(T)Set;

p2:(T;S)Set;

directed(S,T,I,p2);

subset(S,p,union(S,T,I,p2)))
Exists(T, [h]Product(I(h),subset(S,p,p2(h)))))
Exists(S, [h]Product(p(h),eqsubset(S,p,leq(h))))

Now the fact that every two compact points, which are bounded above, have a supremum is
proved by

psuptoleqp : (pl:(S)Set;
p2:(S)Set;
scpoint(pl);
scpoint(p2);
(T:Set;
I:(T)Set;
q:(T;S)Set;
directed(S,T,I,q);
subset(S,pl,union(s,T,I,9)))
Exists(T, [h]Product(I(h),subset(S,pl,q(h))));
(T:Set;
I:(T)Set;
q:(T;S)Set;
directed(S,T,I,q);
subset(S,p2,union(s,T,I,9)))
Exists(T, [h]Product(I(h),subset(S,p2,q(h))));
r:(S)Set;
scpoint(r);
subset(S,pl,r);
subset(S,p2,r);
q:(8)Set;
scpoint(q))
Exists(S, [x]Product(Product(scpoint(leq(x)),
Product(subset(S,pl,leq(x)),
subset(S,p2,leq(x)))),
Imply(Product(subset(S,pl,q),
subset(S,p2,q9)),
subset(S,leq(x),q)))) SCOTTOP

The meaning of the type above is the following: if p;, po and ¢ are compact points, such that
p1 and po are bounded above, then

(Fz € S)(1x is a point & p1,p2 C T2 & (p1,p2 C ¢ — T2 C q)).
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3.5.3 Example: Natural numbers

Recall again the example in section 2.4.2 and 3.2.1, on formal neighbourhoods of the natural
numbers. From the definition of points in a Scott topology it is easy to see that the domain
formed by the points in our case is

L
where
1 is {N}
0 is {N,0}
s(L) s {N,s(N)}
S(0) is {Ns(N),s(0)
s(s(L)) is {N,s(N),s(s(N))}

s‘”(‘J_) is {W;S(W),S(S(N)), o}

and all points except of s*(L) are finite.

4 Discussion

4.1 Subsets as propositional functions

By using propositional functions to represent subsets we can form subsets that cannot be
constructed by using sets of type Set as subsets: if P is a predicate over the set S then we
also have the subset {# € S : P(x)}, in general there is no way to effectively produce the
elements of this subset, and the same element can occur in several subsets.

Another possibility is to use > -sets: let a € Y (5, U) iff there exist some b : U(a) such
that (a,b) : 32(5,U). But to create > (5,U) we need the predicate U and when we use an
element a of a subset we first have to pick out a from the pair (a,b).

4.2 The consistency predicate

The rule of positivity,

pos(a) - a<U
aalU ,

has not been used in any formal proof. The rule of monotonicity,
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pos(a) aalU
(3b € U) pos(b) ,

has been used to show: if a is a positive neighbourhood in a Scott topology, then the upper
closure of a, ta, is a point. This, in turn, is frequently used in the proof that the points of a
Scott topology form a Scott domain, but the reason for that is that the points, by definition,
consist of positive neighbourhoods.

By simply removing the consistency predicate and its rules, we can still show that “any
formal topology defines a frame” and “the points of a Scott topology form a Scott domain”.
For Scott topologies, however, the Scott property,

aalU  pos(a)
(Fb e U)(aaid}) ,

must be changed; if @ is the least element then a U even if U is empty. A new condition for
a Scott topology might be

adU < (Ybe S)(aa{b}) V (FbeU)(aa{b})

or, even better, remove the old condition and replace the covering < by < (defined by a < b=
a <{b}) in all the other rules. So one might ask whether the consistency predicate is needed.
The category of Scott topologies (with consistency predicate) is equivalent to the category of
Scott domains (for a proof see [13]), we cannot expect that this equivalence still holds if we
remove some rules from the definition of formal topology.

4.3 Problems

One of the main problems that occured when formalizing pointfree topology and domain
theory in ALF, was that we did not find any internal definition of points (section 2.6) and
compactness (section 3.4). As a consequence many types have become long and hard to read;
it is cumbersome to say that something is a point/compact element, both as assumption
and as result of a proposition. Another consequence is that the proof terms, even for trivial
lemmas, have become unreadable; they contain many variables and several of them are of
function type.

Another problem is that some properties are difficult to express inside the theory. To show
the statements “the equivalence classes of subsets form a frame” and “the points of a Scott
topology form a Scott domain” we have proved a lot of properties, which together implies
that one can understand, outside the theory, that the statements are correct.
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A Subsets as propositional functions
subset : (S:Set;U:(S)Set;V:(S)Set)Set ] C

subsetintro : (S:Set;
U:(S)Set;
V:(S)Set;
(a:8;U(a))v(a))
subset(S,U,V) (] c

eqsubset = [S,U,V]Product(subset(S,U,V),subset(S,V,U))
(S:Set;U:(S)Set;V:(S)Set)Set ]

subsetrefl : (S:Set;U:(S)Set)subset(S,U,U) ] I

subsetrefl(S,U) = subsetintro(S,U,U, [a,h]lh)

subsettrans : (S:Set;
U:(S)Set;
V:(S)Set;
W:(S)Set;
subset(S,U,V);
subset(S,V,W))
subset(S,U,W) (] I

subsettrans(S,U,V,W,subsetintro(_,_,_,h2),subsetintro(_,_,_,h)) =
subsetintro(S,U,W,[a,h1]h(a,h2(a,hl)))

B Formal topology
COV : (S:Set;cov:(S;(S)Set)Set;U:(S)Set;V:(S)Set)Set ] C

COVintro : (S:Set;
cov:(S;(S)Set)Set;
U:(S)Set;
V:(S)Set;
(a:S;U(a))cov(a,V))
Ccov(s,cov,U,V) ] C
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MEET : (S:Set;meet:(S;3)S;U:(S)Set;V:(S)Set;S)Set ] C

MEETintro : (S:Set;
meet:(S;S)S;
U:(S)Set;
V:(S)Set;
a:S;
b:S;
Ua);
V(b))
MEET(S,meet,U,V,meet(a,b)) ] C

POS : (S:Set;pos:(S)Set;U:(S)Set)Set ] C

P0Sintro : (S:Set;
pos: (8)Set;
U:(S)Set;
b:S;
U(b);
pos (b))
P0S(S,pos,U) ] C

Sing = Id : (S:Set;S;S)Set ]

TOP is [S:Set; one:S; meet:(S;3)S; cov:(S;(S)Set)Set; pos:(S)Set;
covmeetl:(a:S)cov(a,Sing(S,one));
covrefl:(a:S;U:(S)Set;U(a))cov(a,lU);
covtrans:(a:S;U:(S)Set;V:(S)Set;cov(a,U);f:COV(S,cov,U,V))cov(a,V);
covmeetll:(a:S;b:5;U:(S)Set;cov(a,U))cov(meet(a,b),U);
covmeetl2:(a:S;b:5;U:(S)Set;cov(b,U))cov(imeet(a,b),U);
covmeetr: (a:S;

U:(S)Set;
V:(S)Set;
cov(a,U);
cov(a,V))
cov(a,MEET(S,meet,U,V));
mono: (a:S;U: (S)Set;pos(a);cov(a,U))P0S(S,pos,U);
posi:(a:S;U:(8)Set; (pos(a))cov(a,U))cov(a,U)]
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C A concrete topology: Neighbourhoods of the natural num-

bers
SN : Set ] C
onenat : SN ] C
zero : SN ] C
s : (SN)SN ] c
ff : SN (] c
meetnat : (a:SN;b:SN)SN ] I

meetnat(onenat,b) = b
meetnat(zero,onenat) = zero
meetnat(zero,zero) = zero
meetnat(zero,s(h)) ff
meetnat(zero,ff) = ff
meetnat(s(h),onenat) = s(h)
meetnat(s(h) ,zero) = ff
meetnat(s(h),s(hl)) = s(meetnat(h,hl))
meetnat(s(h),ff) = ff

meetnat(£ff,b) = ff

legnat = [a,b]Id(SN,meetnat(a,b),a) : (a:SN;b:SN)Set ]

posnat : (a:SN)Set ] I
posnat (onenat) = N1
posnat (zero) = N1
posnat(s(h)) = posnat(h)
posnat(ff) = Empty

covnat : (a:SN;U:(SN)Set)Set ] C

covnatil : (a:SN;U:(SN)Set; (posnat(a))Empty)covnat(a,U) ]
covnati2 : (a:SN;U:(SN)Set;b:SN;U(b);leqnat(a,b))covnat(a,l)

We present only the types, because of the length of the proofs:

covmeetnatl : (a:SN)covnat(a,Sing(SN,onenat)) ]

covreflnat : (a:SN;U:(SN)Set;U(a))covnat(a,U) ]

covmeetnatll : (a:SN;b:SN;U:(SN)Set;covnat(a,U))covnat(meetnat(a,b),U)
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covmeetnatl2 : (a:SN;b:SN;U:(SN)Set;covnat(b,U))covnat(meetnat(a,b),U) ]

covmeetnatr : (a:SN;
U:(SN)Set;
V:(SN)Set;
covnat(a,U);
covnat(a,V))
covnat(a,MEET(SN,meetnat,U,V)) ]

covtransnat : (a:SN;
U:(SN)Set;
V:(SN)Set;
covnat(a,U);
f:CO0V(SN,covnat,U,V))

covnat{a,V) ]
mononat : (a:SN;U:(SN)Set;posnat(a);covnat(a,U))PO0S(SN,posnat,U) ]
posinat : (a:SN;U:(SN)Set; (posnat(a))covnat(a,U))covnat(a,U) ]

TOPNAT is {S:=SN; one:=onenat; meet:=meetnat; cov:=covnat; pos:=posnat;
covmeetl:=covmeetnatl; covrefl:=covreflnat;
covtrans:=covtransnat; covmeetll:=covmeetnatll;
covmeetl2:=covmeetnatl2; covmeetr:=covmeetnatr;
mono : =mononat;posi:=posinat} : TOP ]

D Semilattice

Order between the formal neighbourhoods:

leq = [a,blcov(a,Sing(S,b)) : (a:S;b:S)Set TOP
Equality between the formal neighbourhoods:

eqs = [a,b]Product(leq(a,b),leq(b,a)) : (S;3)Set TOP

(S,meet ,one) with order leq form a semilattice. We only present the types, since the proofs
are too long:

meetcomm : (a:S;b:S)eqs(meet(a,b),meet(b,a)) TOP

meetassoc : (a:5;b:S;c:3)eqs(meet(a,meet(b,c)) ,meet(meet(a,b),c)) TOP
meetunit : (a:S)eqs(meet(one,a),a) TOP

meetidem : (a:S)eqs(meet(a,a),a) TOP
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E A formal topology defines a frame/complete Heyting alge-
bra

Equivalence between subsets:

EQS = [U,V]Product(COV(S,cov,U,V),CO0V(S,cov,V,U)) : (U:(S)Set;V:(S)Set)Set TOP
Join in the formal topology:

JOIN = [T,I,UJunion(S,T,I,U) : (T:Set;I:(T)Set;U:(T;S)Set;S)Set TOP

(union is defined in appendix K).

Implication in complete Heyting algebra:

cHaimply = [U,V,a]COV(S,cov,MEET(S,meet,U,Sing(S,a)),V)
(U:(S)Set;V:(S)Set;a:S)Set TOP

A formal topology defines a frame/complete Heyting algebra. We only present the types,
because of the length of the proof terms.

EQS is an equivalence relation:

EQSrefl : (U:(S)Set)EQS(U,U) TOP
EQSsymm : (U:(S)Set;V:(S)Set;EQS(U,V))EQS(V,U) TOP
EQStrans : (U:(S)Set;V:(S)Set;W:(S)Set;EQS(U,V) ;EQS(V,W))EQS(U,W) TOP

COV is a partial order on the subsets of S (antisymmetri is direct from the definition of EQS):
COVrefl : (U:(S)Set)COV(S,cov,U,U) TOP

COVtrans : (U:(S)Set;
V:(S)Set;
W:(S)Set;
cov(s,cov,U,V);
COvV(S,cov,V,W))
cov(s,cov,U,W) TOP

COV respects EQS:

COVrespEQS : (U:(S)Set;
V:(S)Set;
U’:(S)Set;
V?:(S)Set;
Cov(S,cov,U,V);
EQS(U,U’);
EQS(V,V?))
Cov(S,cov,U’,V?) TOP
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EQS respects MEET:

EQSrespMEET : (U:(S)Set;

U’:(S)Set;

V:(S)Set;

V?:(S)Set;

EQS(U,U’);

EQS(V,V?))
EQS(MEET(S,meet,U,V) ,MEET(S,meet ,U’,V’)) TOP

EQS respects JOIN:

EQSrespJOIN : (T:Set;
I:(T)Set;
U:(T;S)Set;
U’:(T;S)Set;
(1:T;I(1))EQS(U(1),U’(1)))
EQS(JOIN(T,I,U),JOIN(T,I,U’)) TOP

The following proofs show that MEET, JOIN and cHaimply have the correct properties:

MEETisinfl1l : (U:(S)Set;V:(S)Set)C0OV(S,cov,MEET(S,meet,U,V),U) TOP
MEETisinfl2 : (U:(S)Set;V:(S)Set)C0OV(S,cov,MEET(S,meet,U,V),V) TOP

MEETisinfr : (W:(S)Set;
U:(S)Set;
V:(S)Set;
Ccov(s,cov,W,U);
COv(S,cov,W,V))
CoV(S,cov,W,MEET(S,meet,U,V)) TOP

MEETempty : (U:(S)Set)COV(S,cov,U,Sing(S,one)) TOP

JOINissupl : (T:Set;I:(T)Set;U:(T;S)Set;i:T;I(i))
Cov(S,cov,U(i),JOIN(T,I,U)) TOP

JOINissup2 : (T:Set;
I:(T)Set;
U:(T;S)Set;
V:(S)Set;
(1:T;I(i))cov(S,cov,U(i),V))
cov(s,cov,JOIN(T,I,U),V) TOP

infdistr : (T:Set;
:(T)Set;
:(8)Set;
U:(T;S)Set)EQS(MEET(S,meet,V,JOIN(T,I,U)),
JOIN(T,I, [i]MEET(S,meet,V,U(i)))) TOP

< H
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cHaimplyrespEQS : (U:(S)Set;
U’:(S)Set;
V:(S)Set;
V?:(S)Set;
EQS(U,U’);
EQS(V,V?))
EQS(cHaimply(U,V),cHaimply(U’,V’)) TOP

cHAimplypropl : (W:(S)Set;
U:(S)Set;
V:(S)Set;
COV(S,cov,W,cHaimply(U,V)))
COV(S,cov,MEET(S,meet,W,U),V) TOP

cHaimplyprop2 : (W:(S)Set;
U:(S)Set;
V:(S)Set;
COV(S,cov,MEET(S,meet ,W,U),V))
CovV(S,cov,W,cHaimply(U,V)) TOP

F Closure operator

Closure operator:

Cl = [U,alcov(a,U) : (U:(S)Set;a:S)Set TOP

Meet for the closed sets:

MEETsat = [U,V,a]Product(U(a),V(a)) : (U:(S)Set;V:(S)Set;a:S)Set TOP
Join for the closed sets:

JOINsat = [T,I,UJC1(JOIN(T,I,U)) : (T:Set;I:(T)Set;U:(T;S)Set;S)Set TOP
Predicate for closed sets:

sat = [Uleqsubset(S,U,CL(U)) : (U:(S)Set)Set TOP

We only present the types, because of the length of the proofs.

The covering order between closed subsets is the subset order:

Cllemmaia : (U:(S)Set;V:(S)Set;COV(S,cov,U,V))subset(S,U,C1(V)) TOP

Cllemmaib : (U:(S)Set;V:(S)Set;subset(S,U,C1(V)))COV(S,cov,U,V) TOP
Each equivalence class contains exactly one closed subset:

Cllemma2 : (U:(8)Set)EQS(U,C1(U)) TOP

Cllemma3 : (U:(S)Set;V:(S)Set;EQS(U,V))eqsubset(S,C1(U),CL(V)) TOP
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Cl is a closure operator:

Clpropl : (U:(S)Set)subset(S,U,C1(U)) TOP
Clprop2 : (U:(S)Set;V:(8)Set;subset(S,U,V))subset(S,C1(U),C1(V)) TOP
Clprop3 : (U:(S)Set)egsubset(S,C1(C1(U)),C1(U)) TOP

The closed subsets form a frame which is isomorphic to the frame formed by the equivalence
classes and C1 is a cHa isomorphism:

C1J0IN2J0INsat : (T:Set;

I:(T)Set;
U:(T;S)Set)
eqsubset (S,
C1(JOIN(T,I,U)),
JOINsat(T,I,[i]1C1(U(i)))) TOP
C1MEET2MEETsatempty : (a:S)Cl(Sing(S,one),a) TOP

C1MEET2MEETsatbin : (U:(S)Set;

V:(S)Set)
eqsubset (S,
C1(MEET(S,meet,U,V)),
MEETsat (C1(U),C1(V))) TOP
satcHaimply : (U:(S)Set;V:(S)Set)sat(cHaimply(U,V)) TOP
ClprescHaimply : (U:(S)Set;
V:(S)Set)
eqsubset(S,Cl(cHaimply(U,V)) ,cHaimply(C1(U),C1(V))) TOP

G Points of a formal topology

P is a function that given a point returns a completely prime filter:

P : (p:(8)Set;U:(S)Set)Set TOP C

Pintro : (p:(S)Set;U:(S)Set;b:S;U(b);p(b))P(p,U) TOP C

We only present the types, because of the length of the proof terms.

Any point defines a completely prime filter:
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point2filterl : (p:(S)Set;
p(one);
(a:S;b:3;p(a);p(b))plmeet(a,b));
(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);
(a:S;p(a))pos(a);

U:(S)Set;
V:(S)Set;
cov(s,cov,U,V);
P(p,U))

P(p,V) TOP

point2filter2 : (p:(S)Set;
p(one);
(a:S;b:3;p(a);p(b))plmeet(a,b));
(a:8;U:(S)Set;p(a);cov(a,U))P(p,U);
(a:S;p(a))pos(a))
P(p,Sing(S,one)) TOP

point2filter3 : (p:(S)Set;
p(one);
(a:S;b:3;p(a);p(b))plmeet(a,b));
(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);
(a:S;p(a))pos(a);
U:(S)Set;
V:(S)Set;
P(p,U);
P(p,V))
P(p,MEET(S,meet,U,V)) TOP

point2filterd : (p:(S)Set;
plone);
(a:S;b:S;p(a);p(b))plmeet(a,b));
(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);
(a:S;p(a))pos(a);
T:Set;
I:(T)Set;
U:(T;S)Set;
P(p,JOIN(T,I,1))
Exists(T,[i]Product(I(i),P(p,U(i)))) TOP
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point2filter5 : (p:(S)Set;
p(one);
(a:S;b:S;p(a);p(b))plmeet(a,b));
(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);
(a:S;p(a))pos(a);
U:(S)Set;
P(p,U))

P0OS(S,pos,U) TOP

Any completely prime filter defines a point:

filter2pointl : (F:((S)Set)Set;
(U:(8)Set;V:(S)Set;COV(S,cov,U,V);F(U))F(V);
F(Sing(S,one));
(U:(8)Set;V:(S)Set;F(U);F(V))F(MEET(S,meet,U,V));
(T:Set;I:(T)Set;U:(T;S)Set;F(JOIN(T,I,U)))
Exists(T, [i]Product(I(i),F{U(i))));
(U:(S)Set;F(U))POS(S,pos,U))
F(Sing(S,one)) TOP

filter2point2 : (F:((S)Set)Set;
(U:(8)Set;V:(S)Set;COV(S,cov,U,V);F(U))F(V);
F(Sing(S,one));
(U:(8)Set;V:(S)Set;F(U);F(V))F(MEET(S,meet,U,V));
(T:Set;I:(T)Set;U:(T;S)Set;F(JOIN(T,I,U)))
Exists(T, [i]Product(I(i),F{U(i))));
(U:(S)Set;F(U))P0OS(S,pos,U);
a:S;
b:S;
F(Sing(S,a));
F(Sing(s,b)))
F(Sing(S,meet(a,b))) TOP

filter2point3 : (F:((S)Set)Set;
(U:(8)Set;V:(S)Set;COV(S,cov,U,V);F(U))F(V);
F(Sing(S,one));
(U:(8)Set;V:(S)Set;F(U);F(V))F(MEET(S,meet,U,V));
(T:Set;I:(T)Set;U:(T;S)Set;F(JOIN(T,I,U)))
Exists(T, [i]Product(I(i),F{U(i))));
(U:(S)Set;F(U))P0OS(S,pos,U);
a:S;
U:(S)Set;
cov(a,U);
F(Sing(s,a)))
P([x]F(Sing(S,x)),U) TOP
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filter2point4 : (F:((S)Set)Set;
(U:(8)Set;V:(S)Set;COV(S,cov,U,V);F(U))F(V);
F(Sing(S,one));
(U:(8)Set;V:(S)Set;F(U);F(V))F(MEET(S,meet,U,V));
(T:Set;I:(T)Set;U:(T;S)Set;F(JOIN(T,I,U)))
Exists(T, [i]Product(I(i),F{U(i))));
(U:(S)Set;F(U))P0OS(S,pos,U);
a:S;
F(Sing(s,a)))
pos(a) TOP

P is a bijection:

pfbijla : (p:(S)Set;
p(one);
(a:S;b:S;p(a);p(b))plmeet(a,b));
(a:S;U:(S)Set;p(a);cov(a,U))P(p,U);
(a:S;p(a))pos(a);
a:S;
p(a))

P(p,Sing(S,a)) TOP

pfbijib : (p:(S)Set;
plone);
(a:S;b:3;p(a);p(b))plmeet(a,b));
(a:8;U:(S)Set;p(a);cov(a,U))P(p,U);
(a:S;p(a))pos(a);

a:S;
P(p,Sing(S,a)))
p(a) TOP

pfbij2a : (F:((S)Set)Set;
(U:(8)Set;V:(S)Set;COV(S,cov,U,V) ;F(U))F(V);
F(Sing(S,one));
(U:(8)Set;V:(S)Set;F(U);F(V))F(MEET(S,meet,U,V));
(T:Set;I:(T)Set;U:(T;S)Set;F(JOIN(T,I,U)))
Exists(T, [i]Product(I(i),F{U(i))));
(U: (S)Set;F(U))P0OS(S,pos,U);
U:(S)Set;
F(U))
P([a]F(Sing(S,a)),U) TOP
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pfbij2b : (F:((S)Set)Set;
(U:(8)Set;V:(S)Set;COV(S,cov,U,V) ;F(U))F(V);
F(Sing(S,one));
(U:(8)Set;V:(S)Set;F(U);F(V))F(MEET(S,meet,U,V));
(T:Set;I:(T)Set;U:(T;S)Set;F(JOIN(T,I,U)))
Exists(T, [i]Product(I(i),F(U(i))));
(U: (S)Set;F(U))P0OS(S,pos,U);

U:(S)Set;
P([a]lF(Sing(S,a)),U))
F(U) TOP

H Scott topology

SCOTTOP is TOP + [scott:(a:S;
U:(S)Set;
cov(a,U);
pos(a))
Exists(S, [b]Product(U(b),cov(a,Sing(S,b))))]

SCOTTOP1 is SCOTTOP + [posl:pos(one)]

I A concrete Scott topology: Neighbourhoods of the natural
numbers

Here the example from appendix C continues.

scottnat : (a:SN;
U:(SN)Set;
covnat(a,U);
posnat(a))
Exists (SN, [b]Product(U(b),covnat(a,Sing(SN,b)))) ] I

scottnat(a,U,covnatil(_,_,h2),h1) =
case0([h]Exists (SN, [b]Product (U(b),covnat(a,Sing(SN,b)))) ,h2(h1))

scottnat(a,U,covnati2(_,_,b,h2,h3),hl1) =
Exists_intro(SN,

[b’]Product(U(b’),covnat(a,Sing(SN,b’))),

b,

pair(U(b),
covnat(a,Sing(SN,b)),
h2,
covnati2(a,Sing(SN,b),b,id(SN,b),h3)))
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TOPNAT2 is {S:=SN; one:=onenat; meet:=meetnat; cov:=covnat; pos:=posnat;
covmeetl:=covmeetnatl; covrefl:=covreflnat; covtrans:=covtransnat;
covmeetll:=covmeetnatll; covmeetl2:=covmeetnatl?2;
covmeetr:=covmeetnatr; mono:=mononat; posi:=posinat;
scott:=scottnat} : SCOTTOP (]

J Points of a Scott topology

Points of a Scott topology:

scpoint : (p:(S)Set)Set SCOTTOP C

scpintro : (p:(S)Set;
p(one);
(a:S;b:S;pa);p(b))plmeet(a,bl));
(a:S;b:S;p(a);leqla,b))p(d);
(a:S;p(a))pos(a))
scpoint(p) SCOTTOP C

In a Scott topology, scpoint is the same as point:

point2scpoint = [p,h,h1,h2,h3]
scpintro(p,
h,
hi,
[a,b,h4,h5]Exists_elim(S,
[x]Product(Sing(S,b,x),
p(x)),
[h6lp(b),
[a’,b’]idsubst’ (S,
[b1]p(bl),
b,
a’,
proj1(1d(s,b,a’),p(a’),b’),
proj2(Sing(S,b,a’),p(a’),b’)),
h2(a,Sing(S,b),h4,h5)),
h3)
(p:(S)Set;
p(one);
(a:S;b:S;pa);p(b))plmeet(a,bl));
(a:8;U:(S)Set;p(a);cov(a,U))Exists (S, [x]Product(U(x),p(x)));
(a:8;p(a))pos(al)
scpoint(p) SCOTTOP I
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scpoint2point : (p:(S)Set;
scpoint(p);
a:S;
U:(S)Set;
pal);
cov(a,U))
Exists(S, [h]Product(U(h),p(h))) SCOTTOP I
scpoint2point(p,scpintro(_,h3,h4,h5,h6),a,U,h1,h2) =
Exists_elim(S,
[b]Product (U(b),cov(a,Sing(S,b))),
[z]Exists(S, [h]Product (Uth),p(h))),
[a’,b]Exists_intro(S,
[(h]Product (U(h) ,p(h)),
a’,
pair(U(a’),
pla’),
proj1(u(a’),cov(a,Sing(S,a’)),b),
h5(a,a’,h1,proj2(U(a’),leq(a,a’),b)))),
scott(a,U,h2,h6(a,h1)))

K Union of subsets and directed families

Union of subsets, where the index set itself is a subset:

union : (S:Set;T:Set;I:(T)Set;U:(T;S)Set;S)Set ] C

unionintro : (S:Set;
T:Set;
I:(T)Set;
U:(T;S)Set;
i:T;
I(i);
a:S;
U(i,a))
union(S,T,I,U,a) ] C
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Directed families, where the index set is a subset:

directed : (S:Set;T:Set;I:(T)Set;p:(T;S)Set)Set ] C

directedintro : (S:Set;

T:Set;

I:(T)Set;

p:(T;S)Set;

i0:T;

I1(i0);

(1:T;3:T;I(1);I(5))

Exists(T, [k]Product(I(k),
Product (subset (S,p(i),p(k)),
subset(S,p(j),p(k))))))
directed(S,T,I,p) (1 C

L The points in a Scott topology form a Scott domain

We only present the types, since the proofs are too long.

The points in a Scott topology form a cpo:

leqonemin : (p:(S)Set;scpoint(p))subset(S,leq(one),p) SCOTTOP

unionpoint : (T:Set;
I:(T)Set;
p:(T;S)Set;
(1:T;I(i))scpoint(p(i));
directed(S,T,I,p))
scpoint (union(S,T,I,p)) SCOTTOP

unionsupl : (T:Set;
I:(T)Set;
p:(T;S)Set;
i:T;
I(i))
subset(S,p(i),union(S,T,I,p)) TOP

unionsup2 : (T:Set;
I:(T)Set;
p:(T;S)Set;
q:(8)Set;
(1:T;I(i))subset(S,p(i),q))
subset(S,union(s,T,I,p),q) TOP

which is algebraic and every two points has a least upper bound:

genscp : (a:S;pos(a))scpoint(leq(a)) SCOTTOP
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genscpdir : (p:(S)Set;scpoint(p))directed(S,S,p,leq) SCOTTOP

gencompscp : (p:(S)Set;

scpoint(p);

(T:Set;

I:(T)Set;

p2:(T;S)Set;

directed(S,T,I,p2);

subset(S,p,union(S,T,I,p2)))

Exists(T, [h]Product(I(h),subset(S,p,p2(h)))))
Exists(S, [h]Product(p(h),eqsubset(S,p,leq(h)))) SCOTTOP

scpcomplbl : (q:(S)Set;
scpoint(q);
(T:Set;
I:(T)Set;
r:(T;S)Set;
directed(S,T,I,r);
subset(S,q,union(S,T,I,r)))
Exists(T, [x]Product(I(x),subset(S,q,r(x))));
p:(S)Set;
subset(S,q,p))
Exists(S, [alProduct(p(a),eqsubset(S,q,1leq(a)))) SCOTTOP

scpcomplb2a : (p:(S)Set;

q:(8)Set;

scpoint(p);

Exists(S, [a]lProduct(p(a),eqsubset(S,q,leq(a)))))
subset(S,q,p) SCOTTOP

scpcomplb2b : (p:(S)Set;
q:(8)Set;
Exists(S, [alProduct(p(a),eqsubset(S,q,leq(a))));
T:Set;
I:(T)Set;
r:(T;S)Set;
(1i:T;I(i))scpoint(r(i));
subset(S,q,union(S,T,I,r)))
Exists(T, [x]Product(I(x),subset(S,q,r(x)))) SCOTTOP

supcompscp : (p:(S)Set;scpoint(p))eqsubset(S,p,union(S,S,p,leq)) SCOTTOP
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psuptoleqp :

(p1:(S)Set;
p2:(S)Set;
scpoint(pl);
scpoint(p2);
(T:Set;
I:(T)Set;
q:(T;S)Set;
directed(S,T,I,q);
subset(S,pl,union(sS,T,I,9)))
Exists(T, [h]Product(I(h),subset(S,pl,q(h))));
(T:Set;
I:(T)Set;
q:(T;S)Set;
directed(S,T,I,q);
subset(S,p2,union(s,T,I,9)))
Exists(T, [h]Product(I(h),subset(S,p2,q(h))));
r:(S)Set;
scpoint(r);
subset(S,pl,r);
subset(S,p2,r);
q:(8)Set;
scpoint(q))
Exists(S, [x]Product(Product(scpoint(leq(x)),
Product(subset(S,pl,leq(x)),
subset(S,p2,leq(x)))),
Imply(Product(subset(S,pl,q),
subset(S,p2,q9)),
subset(S,leq(x),q)))) SCOTTOP
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