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Abstract. To any entailment relation [Sco74] we associate a distributive
lattice. We use this to give a construction of the product of lattices over
an arbitrary index set, of the Vietoris construction, of the embedding of a
distributive lattice in a boolean algebra, and to give a logical description
of some spaces associated to mathematical structures.

1 Introduction

Most spaces associated to mathematical structures: spectrum of a ring, space of
valuations of a field, space of bounded linear functionals, ...can be represented
as distributive lattices. The key to have a natural definition in these cases is to
use the notion of entailment relation due to Dana Scott. This note explains the
connection between entailment relations and distributive lattices. An entailment
relation may be seen as a logical description of a distributive lattice. Further-
more, most operations on distributive lattices are simpler when formulated as
operations on entailment relations.

A special kind of distributive lattices (and hence entailment relations) is then
used to represent compact regular spaces. We use this to give an alternative
construction of the product of a family of compact regular spaces, and of the
Vietoris power locale of a compact regular space [Joh82]. Theorems such as
Tychonof’s theorem for compact Hausdorff space or Hahn-Banach theorem get
then a purely logical interpretation and proof.

2 Entailment Relation

Let S be a set, we think of its elements as abstract “statements” or propositions.
We denote by X,Y, Z, ... arbitrary finite subsets of S. We write X,Y for X UY
and X, s for X U {s}.

Definition 1. An entailment relation | on the set S is a relation between finite
subsets of S satisfying the following conditions of reflexivity, monotonicity and
transitivity:

X FY if XNY is inhabited (R)
XFY
X, X'FY,Y (M)

XtFs,Z X,sHZ

XrZ )




The first condition (R) can be replaced by the condition z  z using the
second condition (M).

Notice that this definition is “symmetric”: the converse of an entailment
relation is also an entailment relation.

As emphasised by Scott [Sco71, Sco73, Sco74], this notion of entailment re-
lation can be seen as an abstract generalisation of Gentzen’s multi-conclusion
sequent calculus. Gentzen was inspired by the notion of consequence relation, due
to Hertz, see [Gen69], and was the first to formulate the rule (T') in this setting.
A general investigation of logic in which this notion is taken to be fundamental
can be found in [Avr91].

The basic idea of this note is that entailment relations provide a general way
of presenting distributive lattices. The reason is as follows. First, relations as
equations e = f can be replaced by relations as inequations e < f and f < e.
Next, if e is expressed in disjunctive normal form and f in conjunctive normal
form, then the inequation e < f can be replaced by a set of inequations disjunct
of e < conjunct of f, which is the same form as an entailment.

Here is a general lemma about entailment relations that will be needed in
one example. We suppose given an entailment relation - on a set S. Let A C S
be a subset of S. We let X k4 Y mean that there exists a finite subset A9 C A
such that X, Ag F Y.

Lemma2. 4 is an entailment relation. It is the least entailment relation '
containing - such that ' a for all a € A.

Proof. The rules (R) and (M) clearly hold for -4 . Let us check the rule (T'). If
we have X 4 s5,Y and X,s F4 Y then there exist A;, A> C A finite such that
X, A1 Fs,Y and X, Ay,s - Y. By (T) and (M) for F it follows that we have
X,A1,A> F Y. Since A; U Ay C A is finite, this implies X F4 Y as desired.

It is clear that we have -4 a for all a € A. Let ' be an entailment relation
containing - such that ' a for all @ € A. If we have X, Ap F Y with 49 C A
finite then by using (T') we get X F' Y. This shows that ' contains k4 .

3 Distributive Lattices

Given a set S with a binary relation R on finite subsets of S we say that a map
f:S = D from S to a distributive lattice D preserves R iff X RY implies
Naex f(x) < Vyey f(y). We are interested in the following universal problem: a
distributive lattice D together with a map i : S — D preserving R such that for
any other map f : S — L preserving R there is a unique lattice map f': D — L
such that f'i = f. We say that D,i : S — D is generated by S, R. Since the
theory of distributive lattice is equational, there is a solution to this universal
problem. The goal of this section is to prove the following result.

Theorem 3. Let S be a set with an entailment relation - . If D,i : S — D is
the distributive lattice generated by S,k then X FY iff Agexi(z) < Vyevi(y).



Corollary 4. Let S be a set with a binary relation R on finite subsets of S.
If D;i : S — D is the distributive lattice generated by S, R then the relation
X RTY defined by Npexi(z) < Vyeyi(y) is the least entailment relation con-
taining R.

We shall prove this theorem by building explicitly a distributive lattice D, :
S — D generated by a given entailment relation S, . Notice that, for any
solution, using distributivity, any element of D is equal to one element V; Asey;
i(z) for some finite set {Yp,...,Y,,—1} of finite subsets of S. This suggests the
following construction.

Let D be the set of finite sets of finite subsets of S. Intuitively A € D is
thought of as Vxea Azex . If A, B € D let AA B be the finite set of all unions
XUY, X € A)Y € Band AV B be the union of A and B. To each A € D we
can associate A* € D such that Z meets all elements of A iff Z contains one
element of A* : we take A* to be the set {{z} | z € X} if A is a singleton {X}
and (AU B)* = A* A B*. We define then A < Btomean X FY forall X € A
and Y € B*. Finally, we let i : S — D be the map i(a) = {{a}}.

Lemmab. If X Fy,Z forallyeY and Y - Z then X + Z.
Proof. This is a direct consequence of the rules (M) and (7).

Lemma 6. Let B be an element of D. If Y & Z for allY € B and X v Y, Z for
allY € B* then X ++ Z.

Proof. We write B = {Yy,...,Yn_1} and reason by induction on m. The base
case is trivial. If m > 0 then for any y € Y,,,_; and any Y’ € {Yp,..., Y _2}",
we have Y’y € {Yo,...,Y,,,—1}* and hence X F Y’ y. By hypothesis Yy F
Zy....Ym o Z and hence Yo Fy, Z,...,Y,, 2 F y, Z. By induction hypothesis
X Fy,Z, then by the previous lemma X + Z.

Proposition 7. The relation < is reflexive and transitive on D. Furthermore D
is a distributive lattice for the operation AN B and AV B with a least element
0 =10 and a greatest element 1 = {0}.

Proof. Reflexivity of < follows from (R). Transitivity is a consequence of the
previous lemma. For checking that A is indeed a meet operation, we remark that
each element of (AA B)* either contains an element of A* or contains an element
of B*. Distributivity holds because AA (BV C) =(AAB)V (AAC).

Proposition 8. The distributive lattice D,i : S — D is generated by the entail-
ment relation F .

Proof. Let L be a distributive lattice and f : S — L a map preserving .
If A={X;|i € I} we define f'(A) to be Ajer Veex, f(z). This is a lattice
morphism from D to L such that f’i = f. Furthermore, it is clear that the
values of f’ are uniquely determined by the condition f'i = f.



Theorem 3 is a direct consequence. In this particular construction we do
have X F Y iff Ayexi(z) F Vyevi(y) and hence, by unicity of the solution of
an universal problem, this holds for any solution. Another way of proving this
theorem, closer to the way taken in [JKM97], would be to consider the set S*
of syntactical A, V-formulae on S, to define a sequent calculus on S* taking as
axiom the sequents on atomic formulae given by the entailment relation. We
can then prove a cut-elimination result that gives another proof of theorem 3
[JKMIT].

4 Some Universal Constructions

The goal of this section is to show that the notion of entailment relation simpli-
fies the construction of the solution of some universal problems for distributive
lattices.

4.1 Product

Let D; be a family of distributive lattices, indexed over a set J. We consider
S = (Xj € J)D; and the following relation: X F Y iff there exists j € J
and ag,...,ap-1,b0,...,bm—1 in D; such that (j,a;) € X and (j,b;) € Y and
agN...Nap_1 <bpV...Vbp_1in D;. 3

Theorem 9. The relation b is an entailment relation on S. Let D,i : S — D
be the distributive lattice generated by S, and o; : D; — D be the map a —
i(a,j). Then D,o; : D; — D is the coproduct lattice of the family D;.

Proof. The fact that | is an entailment relation has a direct proof.

Also, we have (7,a)(4,b) F (j,ab) and (j,ab) = (j,a), (j,ab) F (j,b) for
each a,b € D; so that o;(ab) = o;(a)o;(b). Similarly we prove gj(a V b) =
oj(a) Voj(b), 0;(0) =0 and o;(1) =1 so that o; is a morphism.

If we have a lattice L with a family of morphisms f; : D; — L we can define

f:S—=0L, (j,a) — fi(a).

It is direct that f preserves - because each f; is a morphism and hence there
is a unique lattice map f' : D — L such that f’ié = f which is also the unique
lattice map such that f'o; = f; for all j.

Remark. If D; is generated by an entailment relation Sj,t another entailment
relation generating the coproduct of the family (D;) is given by the set S’ =
(Xj € J)S; with the entailment relation: X F Y iff there exists j € J and
0,y Tn=1,Y0,---,Ym—1 in S; such that (j,zx) € X and (j,y) € Y and
Loy 9y Lpn—1 H Yo,---rYm—1 in Sj.

% We can have n = 0 or m = 0 in this definition, defining as usual 0 (resp. 1) to be the

supremum (resp. infimum) of the empty family. For instance (7, 0) - holds by taking
m = 0.



4.2 Vietoris Construction

Let D be a distributive lattice. We take for S the set of elements Oz and $x for
x € D. We define the relation |- as follows: Ox;, Oy; F Oz, Ot iff Az < 2, VVity
in D for one k or A;z; Ay; < Vit in D for one j.

Theorem 10. I is an entailment relation on S. Furthermore, the lattice V(D)
generated by S, & is the lattice generated by abstract symbols O(a),<>(a), a € D
subject to the relations (see [Joh85])

— 0(1) =1, O(araz) = O(ay)B(az),

- 0(0) =0, O(ar Vaz) = Oar) VO(az),
— O(a1)0(az2) < O(araz),

= O(a1 Vaz) < O(ar) V O(az).

Proof. (R), (M) and (T) for F are immediate. It is also directly checked that
the given relations hold in V(D).

Let L be a distributive lattice with elements t(a),m(a) € L for a € D
satisfying

— m(1) =1, m(ayaz) = m(ar)m(asz),
t(O) = 0, t(a1 \Y Clz) = t(al) \Y t(a2),
— m(a1)t(az) < t(araz),

— m(ar Vaz) <m(ar) Vit(az).

We can define a map f: .S — L by f(O(a)) = t(a) and f(<C(a)) = m(a). It is
direct that f preserves F and hence there is a unique lattice map f' : D — L such
that f’¢ = f which is the unique lattice map such that f'O0 =t and f'C =m.

Remark. If D is generated by an entailment relation Sy, another entailment
relation generating V(D) is given by the set of elements O(X), &(X), where X
is a finite subset of Sp, with the entailment relation: 0X;, OY; F OZ;, 0T iff
there exists k such that z;, Zy F #; for all choices z; € X;,t; € T; or there exists
J such that z;,Y; - t; for all choices z; € X;,t; € 1.

4.3 Embedding of a distributive lattice in a boolean algebra

Let D be a distributive lattice. We are interested in the following problem: to
find a lattice map ¢ : D — B from D in a boolean algebra B such that, if B’
is any boolean algebra and f : D — B’ any lattice map there exists a unique
lattice map f' : B — B’ such that f'i = f. We say that B,i : D — B is the
boolean algebra generated by the distributive lattice D.

Let S be the set of elements € D or & for x € D. We define the relation +
as follows: z;,y; - 2k, & M Njzy ANt < Vjy; V Vgzg in D.

Theorem 11. + is an entailment relation on S. If B,i : S — B is the distribu-
tive lattice generated by S, F, then B is a boolean algebra, and x — i(z), D — B
s the boolean algebra generated by D.



Proof. That F is an entailment relation is direct.

We prove that any element of B has a complement. By construction each
element i(s) for s € S has a complement because i(Z) is the complement of i(z).
Furthermore the property of having a complement is closed by conjunction and
disjunction, hence any element of B has a complement.

The map ¢ : D — B, x +— i(x) is a lattice map. Indeed, if © < y we have
z F y and hence i(z) < i(y). Since i(x),i(y) F i(ry) we have also i(z)i(y) < i(zy)
and hence i(zy) = i(z)i(y). Similarly we prove i(zVy) = i(z) Vi(y) and i(0) =0
and (1) = 1.

Finally, if B" is a boolean algebra and f : D — B’ a lattice map, then we
can extend f to g : S — B’ by taking ¢g(z) = f(z). It is direct to check that
g preserves - and hence we have a unique lattice map f’' : B — B’ such that
f'i = g. This shows that there exists a unique lattice map f' : B — B’ such that
f'(i(z)) = f(z) for all z € D since this implies f'(i(Z)) = f(x) and hence this
condition is actually equivalent to f'i = g.

As an application of theorem 3 we get the following result.

Corollary 12. If B,i : D — B is the boolean algebra generated by a distributive
lattice D we have a < b in D iff i(a) <i(b) in B.

The reader can compare this construction with the ones in [Mac37, Mac39,
Per57].

Remark. If D is generated by an entailment relation Sy, another entailment
relation generating B is given by the set of elements z € Sy or Z for x € Sy with
the entailment relation: z;,y; b i, t; iff @, ¢ b yj, z¢ in Sp.

4.4 Dimension of Lattices

A. Joyal has suggested the following constructive definition of the Krull dimen-
sion of commutative rings (and distributive lattices, see [BJ81, En86]). We shall
only look at the case of dimension 0. For any distributive lattice D one considers
the distributive lattice Dy solution of the following universal problem: there exist
two morphisms ug,u; : D — Dy such that ug < u;. The dimension of D is then
defined to be 0 iff ug = u;. We can characterise the lattice D; as follows.

Let S be the set of formal elements ug(z) and wu;(z) for z € D. We consider
the relation wg(a;),uw1(b;) F uo(ck),u1(d;) defined by: there exists © € D such
that Aa; <z Ve and Aa; Abj Az < Vd;.

Theorem 13. The relation & is an entailment relation on S and the distributive
lattice Dy generated by S,t is a solution to the universal problem: there ezist
two morphisms ug,u; : D — Dy such that ug < uy.

Proof. That the relation b satisfies (R) and (M) is direct. Let us prove that it
satisfies (T). If we have both ug(x), ug(a), u1(b) F uo(c), ui (d) and ug(a), us (b)
uo(z), uo(c), u1(d) then there exist 21,22 € D such that za < 2z Ve, zz1ab < d



and a < 2o Vx Ve z0ab < d. Let us take z = z2; V 2z2. We have abz =
xz1abV z2ab < d. Furthermore xa < z1zVcand a <xVzsVesothata < zVe.
It follows that we have ug(a), u;(b) F ug(c),u1(d) as desired.

The second case to consider is if we have both

w1 (x), uo(a),u1 (b) Fuo(c),ur(d) and wug(a),ur(b) F ui(z),uo(c),ur(d).

In this case there exist 21,25 € D such that a < z; Ve, xz1ab < d and a <
z2 Ve, z0ab <z Vd. Let us take z = z125. We have a < (21 Ve)(z2Ve) =2zVe
and azb < xVd, azbr < d so that azb < d. It follows that we have ug(a), u1 (b) F
uo(c), ui (d) as desired.

The fact that we get a solution of the universal problem is then proved in
the same way as in the previous examples.

Using the theorem 3 we get the following corollary.

Corollary 14. We have ug(a)uy(b) < ug(c) V ui(d) iff there exists © € D such
that a < cV x and abz < d.

Another application is the following characterisation of lattices of dimension
0 [En86].

Corollary 15. A lattice D is of dimension 0 iff it is boolean.

Proof. In general u;(a) b ug(a) iff ug(1),us(a) F uo(a), us(0) iff @ has a comple-
ment in D. Hence ug = uq iff D is boolean.

5 Points

Let D be a distributive lattice. As usual a filter of D is a subset F' of D such
that:

— 1€ F and
— xy € F whenever z,y € F and
— y € F whenever z € F and z < y.

Each element x € D defines a filter F,, C D by taking y € F, to mean
zVy = 1. Dually an ideal of D is a subset I C D such that 0 € D and xVy € D
whenever z,y € D and y € D whenever ¢ € D and y < z. Each element x € D
defines an ideal I, = {y € D | y < z}.

Any distributive lattice D defines canonically a spectral space [Joh82], which,
as a frame, is the frame of all ideals of D. Let S, F be an entailment relation and
D,i : S — D the distributive lattice generated by S,F . The following result
gives a direct characterisation of points of the spectral space defined by D. We
recall that these points can be defined as prime filters o C D, that are filters «
such that 0 is not in « and such that if zVy € a then z € a or y € a.



Proposition16. The points of the spectral space defined by D are completely
determined by their restriction 3 = i !(a) C S. These are exactly the subsets (3
of S such that if X FY and X C 8 then Y N[ is inhabited.

Thus, if we see an entailment relation as a logical description of a spectral
space, we can interpret this proposition as stating that points are theories com-
patible with the entailment relation.

6 Examples

We give three examples of entailment relations naturally associated to some
mathematical structures. In each case we have a direct description of an induc-
tively defined entailment relation.

6.1 Spectrum of a ring

Let A be a commutative ring. The relation X F Y is defined to mean that the
product of the elements of ¥ belongs to the radical of the ideal generated by X.

Theorem 17. F is an entailment relation on A. It is the least entailment relation
on A such that:

- 0,
—1F,

— z Fxy,
*l’ykl’,y,
—z,ykx+y.

A point for this entailment relation is exactly a prime ideal of A.

6.2 Real Spectrum of a ring

Let A be a commutative ring. A cone of A is a subset C' C A closed by addition,
mutiplication and which contains all square elements 22, = € A. The following
claims are directly checked: the smallest cone S of A is the set of sum of squares;
if C'is a cone and a € A the cone generated by C' and a, that is the least cone
containing C' and a is the set C' + aC' of elements u + va, u,v € C. The relation
X F Y is defined to mean that there exists a relation of the form m +p = 0
where m is in the monoid generated by
X and p is in the positive cone generated by X and {—y |y € Y'}.

Theorem 18. F is an entailment relation on A. It is the least entailment relation
on A such that:

- k1,
—z,—xt,



- :L’-f-yl_l’,y,

- xayl_mya
—zy bz, —x,
—xzyFz,—y.

A point for this entailment relation defines a total ordering over A.

6.3 Space of Valuations

Let K be a field, that is a ring in which any element is 0 or is invertible, and
let S be the set of its invertible elements. If z;,y; are in S, we define z; F y;
to mean that there exist g; polynomials in yj_1 and z; with integer coefficients

such that Eyj_lqj =1.

Theorem 19. F is an entailment relation on S. It is the least entailment relation
on S such that:

-1
- Fzz,

-k -z,
z,y b xy,
Fa,yifey =o +y.

For a proof, see [CP98]. In [CP98] this description of the space of valuation
is used to give a constructive version of a proof of a theorem of Kronecker which
uses valuation rings. A point for this entailment relation defines a valuation ring
of K. Finally, notice that X F y means that y is integral over the set X.

6.4 Total Ordering of a Vector Space

Let E be a vector space over the field @ of rational numbers. We define z; - y; as
meaning that there exists r; > 0,s; > 0 such that Yr;z; = Ys;y; and Xr; = 1.
Another equivalent formulation is that X F Y mean that the convex hull of X
meets the positive cone generated by Y.

Theorem 20. F is an entailment relation on E. It is the least entailment rela-
tion on E such that:

—z,—xF,
—z4+ykay.

Notice that a consequence of these two clauses is ¢ + y,—y F = and so
z,y F x +y. It follows that x - pz for any natural number p > 0. Since pz F x
follows from the second clause for p > 0, we have tx - z if ¢ is a rational > 0.

A point for this entailment relation defines a strict ordering < on E such
that tx < ty implies x < y for ¢t > 0 and x + z < y + t implies z < y or z < t.



7 Normal Lattices and Compact Regular Spaces

7.1 Normal Lattices

For xz,y € D, we let + < y mean that there exists m such that am = 0 and
yVm = 1. We say that a filter F' C D is regular iff whenever x € F' there exists
z' € F such that 2’ < 2 [Mul90]. Dually we say that an ideal I C D is regular iff
x € I whenever z' € I for all ' < x. The following results are proved directly.

Lemma?2l. Fy = {1} and Fi = D are regular filters. Furthermore if Fy,F,
are regular then so are Fyy and Fyyy. Finally ' < © and y' < y imply both
2y Kzy and 2’ Vy < xVy.

We say that a distributive lattice D is normal iff all filters F; are regular.
An equivalent definition is given by the following result.

Lemma 22. D is normal iff whenever x V y = 1 there exist a,b € D such that
aVz=1 bVy=1 andab=0.

We say that an entailment relation - on a set S is normal iff whenever F b, X
there exist b',m € S such that F b, X and - b,m and V', m | .

Proposition 23. If - is normal then so is the distributive lattice D,i: S — D
generated by F .

Proof. Using lemma 21 and the fact that any element of D is a disjunction of
conjunctions of elements in i(S), it is enough to show that each filter Fj,) is
normal for z € S. Let a € F,). We can write a = Aja; with a; = Vii(y;z)
for some family (yjz) in S. We have then a; € Fj,) for each j and hence, by
theorem 3 - z,y;y, for each j. Using the normality of - we find then aj;, < i(y;r)
such that a} = Vka}k € Fj(y). Using the lemma 21 again, we have a; < a; for
all j and hence a’ = Aaj; < Aa; = a. Since a' € Fy(,), this shows that Fy,) is
regular.

Corollary 24. Let D; be a family of lattices and D,o; : Dj — D its coproduct.
If each D; is normal then so is D.

Corollary 25. If D is a normal lattice then so is V(D).

Proof. Suppose F Oa, X with X = Oay,-..,0a0n,,<b, ..., b, then, by def-
inition, a; Vby V...V b, = 1, for some ¢ or aVb;...V b, = 1. If we have
a; Vb V...Vb, =1, then we have - ¢0, X and F 0O1,0a and 01,00 F . If
we have a V by...V b, = 1 then since D is normal there exists a’ < a such
that @’ Vb, V...V b, =1, and hence - Oa’, X. We then have m € D such that
a'm =0 and aVm =1 and this implies + Oa, Om and Oa’, Om .

We do a similar reasoning if - ¢a, X.



7.2 Compact Hausdorff Spaces

Any distributive lattice defines a formal spectral space [Joh82] which can be
defined as the frame of all ideals of this lattice.

Lemma 26. For any distributive lattice D if x <y andy K y' then x < y' and
if v € 2’ and ' <y then x < y. If furthermore D is normal then the relation
< is dense: if © K y then there exists z such that v € z < y. If D is normal
and © < y1 V yo then there exists y; < y1 and yh K ya such that © < yj V yb.

The importance of the notion of normal lattices comes from the following
result.

Theorem 27. If D is a normal lattice, the regular ideals of D defines a frame
which is compact regular [Joh82]. Furthermore, any compact regular space can
be presented in this way.

Proof. If U is a subset of D define
jU)={zeD |V <z 2 €U}

From the lemma it follows that j(U) is a regular ideal of D whenever U is an
ideal of D. It follows that j defines a nucleus [Joh82] on the frame of ideals of
D whose fixed points are exactly the regular ideals. Hence [Joh82] regular ideals
form a frame. As a space, it is compact because 1 < 1, and hence 1 € \/ U; iff 1
is in the ideal generated by U;U;.

Let U be a regular ideal. We have U =/, ., j(I,) and we show that j(I,) =
V<o (Iy) and that j(I,) < j(I,) if v < u. This will show that regular ideals
define a regular space. The first assertion follows directly from the definition of
Jj- If v < u there exists m such that m Vu = 1 and vm = 0. We then have
J(Im) V j(I,) = 1 and j(1,)j(In) = 0 and hence j(I,,) < j(Iy).

The corollaries 24 and 25 give an alternative way of defining the product
of a family of compact regular spaces and the Vietoris space associated to a
compact regular space respectively and of showing that in both cases we get a
compact regular space [Joh82, Joh85]. For the product, this is a special case of
Tychonoff’s theorem [Joh82].

Theorem 28. The compact reqular space associated to the coproduct of a family
of normal lattices is the product of the family of associated spaces.

Theorem 29. If D is a normal lattice, the space associated to the normal lattice
V(D) is the Vietoris powerlocale of the compact reqular space associated to D.

The proofs are omitted here.



8 Example: Linear functionals of norm <1

Let E is a seminormed space [MP91] and S be the vector space @ x E. Let us
write p < x an element (p,z) € S. Using lemma 2 and theorem 20 we consider
the entailment relation over S generated by the axioms - —1 < x forz € N(1). A
direct definition is that p; < z; F g; < y; holds iff there exists r; > 0,7 > 0,s; >
0 and z € N(1) such that r + Xr; = 1 and r(z, —1) + Zri(zi, pi) = Zs;i(y;,q5)-
Notice that we can suppose z to be in the vector space generated by the elements
z; and y;.

Theorem 30. F is an entailment relation on S. It is the least entailment relation
such that, writing x <r for —r < —z:

—zrz<rr<zt,
—-r+s<zt+ykr<zs<y,
- F-l<zifzeN(Q).

Notice that - 7 < x,x < s is a consequence of these axioms for r < s.
Theorem 31. The entailment relation - is normal.

Proof. If - r < z, X it can be checked directly that there exists r’ > r such that
Fr’ < z,X. Furthermore we have then z < r',r' <z Fand Fz <r',r < z.

The points of the associated compact Hausdorff space are exactly the linear
functionals over E of norm < 1.

Let E; C E5 be two spaces. We have now two entailment relations 1,2 on
E1, E5 respectively. The following result, which is a direct consequence of the
direct description of -y and ks, can be seen as the localic version of the theorem
of Hahn-Banach [MP91].

Theorem 32. The entailment relation 2 is a conservative extension of b1: if
x;,y; € By thenr; < xbas; <yj iff ri <x;b1s; <y

Related work and Acknowledgement

A Gentzen style sequent calculus is studied in [JKM97]. There a category of
coherent sequent calculi with compatible consequence relations as arrows are de-
fined, this category is equivalent to the category of strong proxzimity lattices and
weak approximable relations. The sequents do not necessarily satisfy reflexivity
and this makes it possible to have different logical systems on the left and right
of the turnstile.

Direct descriptions of powerlocales in terms of presentational schemes have
been carried through in a number of contexts: for algebraic dcpos in [Plo83],
continuous dcpos in [Vic93], completions of quasimetric spaces in [Vic97], and
for strongly algebraic (SFP) domains in [Abr91].

The second author presented part of this work to the logic group in Padova
and wants to thank the audience for their interesting comments. Steve Vickers
gave also detailed comments that helped in the presentation of the paper.
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